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Abstract: Background: Chronic skin wounds are a growing financial burden for healthcare providers,
causing discomfort/immobility to patients. Whilst animal chronic wound models have been
developed to allow for mechanistic studies and to develop/test potential therapies, such systems
are not good representations of the human chronic wound state. As an alternative, human chronic
wound fibroblasts (CWFs) have permitted an insight into the dysfunctional cellular mechanisms
that are associated with these wounds. However, such cells strains have a limited replicative
lifespan and therefore a limited reproducibility/usefulness. Objectives: To develop/characterise
immortalised cell lines of CWF and patient-matched normal fibroblasts (NFs). Methods and Results:
Immortalisation with human telomerase resulted in both CWF and NF proliferating well beyond
their replicative senescence end-point (respective cell strains senesced as normal). Gene expression
analysis demonstrated that, whilst proliferation-associated genes were up-regulated in the cell lines
(as would be expected), the immortalisation process did not significantly affect the disease-specific
genotype. Immortalised CWF (as compared to NF) also retained a distinct impairment in their wound
repopulation potential (in line with CWF cell strains). Conclusions: These novel CWF cell lines
are a credible animal alternative and could be a valuable research tool for understanding both the
aetiology of chronic skin wounds and for therapeutic pre-screening.

Keywords: wound healing; fibroblasts; chronic wound; microarray; animal alternative

1. Introduction

Chronic skin wounds are an ever-increasing burden to health care providers. In the United States
(US) alone between 2.4 and 4.5 million individuals suffer from chronic wounds with associated treatment
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costs of $10 s billions [1–3]. Within the United Kingdom (UK), the National Health Service treats
hundreds of thousands of patients with chronic non-healing wounds, which amounts to an annual cost
of between £2.3 bn and £3.1 bn [4–8]. As well as being expensive to treat and manage, chronic wounds
significantly reduce the quality of life of those who suffer with them. Unfortunately, the prevalence of
chronic wounds increases with age, suggesting a significant looming health and financial problem as
our society ages.

In an attempt to study chronic wound biology and to test for potentially efficacious treatments the
scientific community has turned to the utilisation of chronic wound animal model systems. However,
to generate such animal model systems the conditions that are associated with formation of the chronic
wound are often artificial and ineffective. For example, to model the venous leg ulcer microenvironment
local tissue ischemia is generated often on the ears or back skin of animals. Ischemic back wounds
in rats can be generated using H shaped incisions, reducing blood perfusion along the horizontal
wound [9–11]. Modifications to the basic skin flap ischemic wound model have also been reported,
such as the insertion of a silicone sheet under the skin flap to reduce blood perfusion [12–19]. Ischemic
ear models can also be generated by surgical division of the arteries of the ear [16,20,21]. However,
there is a significant problem with these model systems in that whilst they do represent an impaired
healing system, they do not create wounds that fail to heal and so do not truly replicate the human
chronic venous ulcer situation. Thus, the existing animal model systems provide useful tools for
studying impaired wound healing, but more accurately model delayed acute wound healing rather
than true chronic wounds.

In order to provide details about the biological mechanisms that are associated with the study of
chronic wounds, chronic wound fibroblasts (CWF) have been isolated and utilised to gain an insight
into the cellular mechanisms as to why such wounds fail to heal. CWF have a distinct phenotype that
is retained during in vitro culture which relates to the failure of chronic wounds to heal. For example,
when compared to fibroblasts taken from acute wounds or normal skin (NF), patient-matched CWF
have a reduced proliferative potential [22–26], an altered morphology (appearing polygonal with clear
actin stress fibres and they are also larger than NF [27]) and a reduced ability to migrate and repopulate
an experimental wound [22,26,28,29]. As well as phenotypic alterations, gene expression profiles
are also altered in CWF when compared to NF [30–33]. For example, fibronectin gene expression
was demonstrated to be up-regulated in CWF as compared to patient-matched NF when cultured
in vitro [34], which correlates with in vivo observations [35].

As with all primary cells [36–38], CWF isolated directly from patients have a finite lifespan in
culture [22,24] and will change their cellular responses as they become more aged thereby, limiting
their utility as a reproducible model for studying chronic wound biology. However, for a number of cell
types, immortalised lines (often through the over expression of human telomerase reverse transcriptase;
hTERT) are now available that retain their specific genotype/phenotype [39–43]. Whilst there are
some reported examples of immortalised skin cells [44,45], to date there are no reported, validated
human chronic skin wound/disease cell lines. Hence, the aim of this study, was to characterise
patient-matched CWF (as compared to NF) hTERT-immortalised cell lines to investigate whether they
retained their disease-specific phenotype and could potentially, in the future, be utilised as a model cell
line for therapeutic and cytotoxicity testing of candidate drugs for the treatment of chronic wounds,
thereby reducing unnecessary animal experimentation.

2. Results

2.1. Introduction of hTERT Allows Primary NF and CWF Cell Strains to Escape Replicative Senescence

Patient-matched fibroblast strains were isolated from the chronic venous leg ulcer wound bed
and healthy, uninjured dermis of three patients as reported previously [22]. Cells were cultured
for extended periods of time until they underwent replicative senescence (as evidenced by the
plateauing of the growth curve). For all of the patients examined, CWF primary cell strains consistently
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underwent replicative senescence after a shorter duration of time in culture and at lower PD than their
corresponding, patient-matched NF primary cell strains (Figure 1).

Figure 1. Cumulative population doublings for normal skin (NF) (A,C,E) and chronic wound fibroblasts
(CWF) (B,D,F) primary cells (N), mock-infected cells (�) and catalytic component (hTERT)-infected
cells ( ) from Patient 1 (A,B), Patient 2 (C,D) and Patient 3 (E,F).

hTERT-immortalized cell lines were established for both CWF and NF by infecting cells at time t*
(indicated in Figure 1) with a retrovirus carrying the gene encoding hTERT along with the puromycin
resistance gene for the selection of the cells ectopically expressing active telomerase. To control
for the infection procedure, “mock infected” cells were prepared by infecting cells with an empty
vector (containing the puromycin resistance gene) only. For all of the patients examined a notable
extension of lifespan was achieved for all populations of CWF-hTERT and NF-hTERT. None of the
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cells lines demonstrated any signs of a slowing of their growth rate, a response that would have been
indicative of them entering senescence. Mock-infected cells all underwent replicative senescence at
similar times to their non-infected primary cell strains. Despite demonstrating linear growth in all
three patients, overall the hTERT immortalised CWF demonstrated reduced population doubling rates
when compared to their patient matched hTERT-NF; a similar differential growth rate observed for the
respective non-immortalised cell strains and the control-infected cells (Table 1).

Table 1. Respective growth rates of the CWF and NF cell lines and strain.

Days NF Primary
Patient 1

CWF Primary
Patient 1

NF Mock
Patient 1

CWF Mock
Patient 1

NF hTERT
Patient 1

CWF hTERT
Patient 1

0–50 2.660395186 1.372377017 2.903460321 1.676095021 2.820859002 1.761228228
50–100 2.063483514 1.155055922 2.21362413 1.491181981 2.17190845 2.350465441

100–150 1.708425038 0.238615271 1.931265023 0.808847164 2.888996473 2.100595582
150–200 1.092771348 - 1.209523855 0.589792188 2.546683912 2.147975214
200–250 0.65051411 - 0.306199448 - 2.911358566 2.340073042
250–300 - - - - 3.386106828 1.914658417
300–350 - - - - 4.037277255 2.316985136

Days NF Primary
Patient 2

CWF Primary
Patient 2

NF Mock
Patient 2

CWF Mock
Patient 2

NF hTERT
Patient 2

CWF hTERT
Patient 2

0–50 2.00003978 1.430818888 2.702882371 1.408288338 2.702421121 1.315226122
50–100 1.897508302 0.642582236 2.506688459 0.389073493 2.084423303 1.526944077

100–150 2.048256328 - 1.937150809 - 3.091048229 2.73604129
150–200 1.362063393 - 0.741986217 - 2.848323718 2.544191407
200–250 0.468038965 - - - 2.975591664 3.613521307
250–300 0.225106176 - - - 3.282693337 3.238706858
300–350 - - - - 3.283963285 3.136433714

Days NF Primary
Patient 3

CWF Primary
Patient 3

NF Mock
Patient 3

CWF Mock
Patient 3

NF hTERT
Patient 3

CWF hTERT
Patient 3

0–50 1.773899657 1.838731796 1.876174641 1.811924471 1.864799274 1.957757805
50–100 2.137331544 1.820469606 2.227068604 1.765460977 2.175212065 1.931044873

100–150 1.700143374 1.313762689 1.821538813 1.463326161 2.040014915 1.948431103
150–200 1.359040254 1.018979963 1.30906374 0.656850067 1.866400168 1.991061535
200–250 0.96345786 0.381403418 0.386622971 0.60575738 3.009158197 1.847844344
250–300 0.494600255 - - - 2.453037313 1.455326622
300–350 0.918257283 - - - 2.36463098 1.521344782

2.2. Immortalised Cell Lines Express hTERT and hTR and Have Active Telomerase

To confirm that telomerase was ectopically expressed in the CWF-hTERT and NF-hTERT that
underwent lifespan extension, a number of analyses were undertaken. RT-PCR demonstrated that
both the constitutive template component (hTR) and catalytic component (hTERT) were expressed
in both of the cell types (Figure 2A). The telomere repeat amplification protocol (TRAP) assay was
performed on genomic DNA isolated from cell populations. Consistent with the observations of
extended lifespan, all the populations of immortalized cells demonstrated ectopic telomerase activity,
as demonstrated by a discernible 6 bp laddering, corresponding to multiples of the TTAGGG repeats
of the telomere sequence (Figure 2B). Such telomerase activity was coupled with a distinct alteration
in the appearance of the CWF (Figure 2C). Primary CWF strains, even at low passage/population
doubling level, were enlarged and stellate in appearance; features that were not attributable to the
equivalent passage/patient-matched NF, which were smaller and bi-polar in appearance. However,
post immortalisation and with increasing time in culture, the morphology of the CWF-hTERT cells
changed to become more like the morphology of NF-hTERT cells (i.e., they transitioned from a chronic
appearance to a more ‘normal’ appearance).
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Figure 2. Immortalised NF and CWF cell lines express hTERT and template component (hTR) as
demonstrated by RT-PCR (A) and have active telomerase as demonstrated by the appearance of a 6 bp
ladder (B). CWF immortalisation and maintenance in culture (C) changes the appearance of the chronic
cells from flattened and spread out to more bi-polar (and thereby more like the appearance of the NF
cells). Scale bar = 20 µm.

2.3. The Immortalisation Process Does Not Distort Gene Expression Signatures

As the aim of this investigation was to validate the establishment of a disease-specific,
immortalised cell resource, a global gene expression analysis was undertaken to determine whether
immortalisation using hTERT alters gene expression (i.e., the gene expression profile of the
immortalised cell lines is similar to the primary cell strains). Affymetrix microarray analysis was
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undertaken on both primary CWF and NF and on hTERT immortalised CWF and NF at 0 h (serum
starved) and 6 h (post serum stimulation), and at three culture time points after immortalisation (P23
[an early culture time point post immortalisation], P50 [a mid-culture time point post immortalisation),
and P80 [a late culture time point post immortalisation]).

Primary fibroblasts were compared to hTERT immortalised fibroblasts irrespective of source,
time post-immortalisation, or serum stimulation status. Using a false discovery rate (FDR) of 0.05
only six significantly altered genes were identified as being altered by immortalisation (Table 2).
When the FDR was relaxed to 0.01 a number of additional genes were identified as being altered by
immortalisation (Table 3). When over-representation analysis was carried out using these gene lists the
only pathways/processes significantly over represented in the genes altered by immortalisation were
associated with cell proliferation (Cell Cycle, Mitosis, and DNA Replication) or telomere maintenance
(Table 4). As hTERT immortalised cells are capable of sustained proliferation (exemplified in Figure 1)
the identification of genes involved in cell cycle, DNA replication, and telomere maintenance as being
altered by hTERT immortalisation was expected. Overall, therefore, whilst there were some limited
changes in the expression of individual genes between the primary and immortalized cells, there were
no major changes to the transcriptional profile of the cell lines when viewed from the process level
(i.e., the immortalization process did not have any effect on processes/pathways that would not have
been expected to be altered).

Table 2. Counts of genes identified as significantly different (FDR 0.05).

Normal (NF) Wound (CWF)

0 h 6 h after Serum
Stimulation 0 h 6 h after Serum

Stimulation

Early FDR 0.05 0 FDR 0.05 0 FDR 0.05 0 FDR 0.05 0
Mid FDR 0.05 0 FDR 0.05 6 FDR 0.05 0 FDR 0.05 0
Late FDR 0.05 3 FDR 0.05 0 FDR 0.05 0 FDR 0.05 0

Table 3. Counts of genes identified as significantly different (FDR 0.01).

Normal (NF) Wound (CWF)

0 h 6 h after Serum
Stimulation 0 h 6 h after Serum

Stimulation

Early FDR 0.01 476 FDR 0.01 193 FDR 0.01 161 FDR 0.01 145
Mid FDR 0.01 653 FDR 0.01 866 FDR 0.01 292 FDR 0.01 203
Late FDR 0.01 418 FDR 0.01 507 FDR 0.01 446 FDR 0.01 660

Table 4. Pathways/processes that were significantly over represented after immortalisation, that is
were up-regulated in hTERT cells (i.e., only those associated with cell proliferation [Cell Cycle, Mitosis
and DNA Replication] or telomere maintenance were altered).

Pathway Genes

DNA replication TOP2A, MCM3, RRM2, MCM6, NASP, CDC6, RFC3, CDK2, FEN1, CHEK1,
POLE2, GINS1, TERT, MCM7, NF2, CIZ1, GMNN, DTL, PDGFC, MCM4

DNA strand elongation
involved in DNA
replication

MCM3, MCM6, RFC3, FEN1, GINS1, MCM7, MCM4

cell cycle

TOP2A, MCM3, RANBP2, RRM2, MCM6, NASP, TUBB3, GAS7, CCNA2, TFDP2,
FGFR2, RARA, MAPRE3, CDC6, ZWINT, RFC3, CKS2, CDK2, RASSF1, FEN1,
BARD1, CHEK1, POLE2, GINS1, TUBB2C, HMG20B, SMAD6, TGFB2, TPX2,
MCM7, KIF2C, TUBB, CDKN2C, ARAP1, CDKN1C, CKAP2, GMNN, CEP55,
DTL, MCM4, RACGAP1
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Table 4. Cont.

Pathway Genes

organelle fission
CHMP1A, TUBB3, RANBP1, CDK1, CAV2, MAD2L1, CCNA2, BUB1B, DLGAP5,
CDC6, ZWINT, AURKA, CDK2, KIF23, CCNF, CENPA, TUBB, BUB1, HGF, TPX2,
KIF2C, RANGAP1, NEK1, NUSAP1, CEP55, PBK, CENPN, NCAPG2, CCDC99

mitotic cell cycle

POLD2, TOP2A, PSMD3, MCM3, RRM2, CHMP1A, TUBB3, DNM2, RANBP1,
UBE2S, RFC5, CDK1, CAV2, MAD2L1, CCNA2, BUB1B, DLGAP5, CDC6,
ZWINT, AURKA, DBF4, CDK2, PSMB9, GTSE1, CDC7, KIF23, FEN1, CCNF,
CENPA, GINS1, AKT1, DGKZ, TUBB2C, TUBB, ID4, BUB1, CDKN3, HGF, TPX2,
CDKN2D, SSNA1, MCM7, KIF2C, KPNA2, RANGAP1, TFDP1, NEK1, TCF3,
MDM2, PRC1, NUSAP1, GMNN, CEP55, PBK, CDKN1C, CENPN, NCAPG2,
TBRG4, CCDC99, MCM4

cell division

PPP1CA, CHMP1A, UBE2S, CDK1, MAD2L1, CCNA2, FGFR2, BUB1B, CDC6,
ZWINT, AURKA, CKS2, CDK2, CDC7, KIF23, CCNF, FGF1, FGF5, MDK, PTN,
BUB1, TPX2, KIF2C, NEK1, PRC1, NUSAP1, CEP55, PDGFC, PDGFD, NCAPG2,
CCDC99, RACGAP1

mitosis
CHMP1A, TUBB3, RANBP1, CDK1, CAV2, MAD2L1, CCNA2, BUB1B, DLGAP5,
CDC6, ZWINT, AURKA, CDK2, KIF23, CCNF, CENPA, TUBB, BUB1, HGF, TPX2,
KIF2C, RANGAP1, NEK1, NUSAP1, CEP55, PBK, CENPN, NCAPG2, CCDC99

M phase

TOP2A, CHMP1A, TUBB3, RANBP1, UBE2S, CDK1, CAV2, MAD2L1, CCNA2,
BUB1B, DLGAP5, CDC6, ZWINT, TRIP13, AURKA, CKS2, CDK2, KIF23, CCNF,
CENPA, TUBB, BUB1, HGF, TPX2, KIF2C, KPNA2, RANGAP1, NEK1, PRC1,
NUSAP1, CEP55, PBK, CENPN, NCAPG2, CCDC99

DNA replication

RFC2, POLD2, PCNA, TOP2A, RRM1, RPA1, MCM3, MCM5, RRM2, MCM6,
NASP, MCM2, TK1, TYMS, RNASEH2A, RFC5, CDC6, RFC4, RFC3, DBF4,
POLA2, FEN1, CHAF1B, POLA1, RAD51, CCNE2, CHEK1, PDGFA, CIZ1,
GINS1, TERT, CENPF, MCM7, DUT, CDT1, NF2, ORC5, MCM4, CDC34, GMNN,
DTL, RMI1, TIPIN, MCM10, GINS2

cell cycle checkpoint

RFC2, TOP2A, BUB3, RPA1, MCM3, MCM5, MCM6, BIRC5, MCM2, CCNB2,
CDC20, UBE2C, RFC5, CDK1, MAD2L1, CCNA2, FANCG, BUB1B, CDC6, RFC4,
ZWINT, RFC3, DBF4, PSMB9, GTSE1, TTK, POLA1, CCNE2, CHEK1, CENPF,
MCM7, BUB1, CDT1, ORC5, MCM4, CCNB1, ZWILCH, DTL, TIPIN, MCM10

cell division

PPP1CA, BUB3, NCAPD2, CDC25B, PSRC1, BIRC5, CCNB2, CDC20, UBE2C,
CDK1, MAD2L1, CCNA2, FGFR2, BUB1B, CDC6, ZWINT, AURKA, NDC80,
CKS2, SMC2, KIF11, NEK2, KIF23, CCNF, CCNE2, RAB35, PDGFA, DIAPH2,
CENPF, MAEA, FGF5, MDK, KIF2C, AURKB, PTN, BUB1, TGFB2, TPX2, OIP5,
CCNB1, PRC1, NUSAP1, ZWILCH, CEP55, FBXO5, TIPIN, NCAPG2, ERCC6L,
ASPM, CDCA3, CDCA8, RACGAP1

S phase of mitotic cell
cycle

RFC2, POLD2, PCNA, RPA1, MCM3, MCM5, MCM6, MCM2, BCL6, RFC5,
CDC6, RFC4, RFC3, PSMB9, POLA2, FEN1, POLA1, GINS1, MCM7, CDT1,
ORC5, MCM4, GINS2

telomere maintenance via
recombination RFC2, POLD2, PCNA, RPA1, RFC5, RFC4, RFC3, POLA2, FEN1, POLA1

telomere maintenance via
semi-conservative
replication

RFC2, POLD2, PCNA, RPA1, RFC5, RFC4, RFC3, POLA2, FEN1, POLA1

M/G1 transition of
mitotic cell cycle

RPA1, MCM3, MCM5, MCM6, MCM2, CDC6, DBF4, PSMB9, POLA2, POLA1,
MCM7, CDT1, ORC5, MCM4, GMNN, MCM10

2.4. Immortalisation Does Not Reverse the Disease-Specific Wound Healing Cellular Phenotype

Fundamental to the development of any immortalised, disease-specific cell line is that the
immortalisation process does not reverse the disease-related cellular phenotype. As demonstrated in
Table 1, there were maintained CWF and NF differences in proliferative rate; cell proliferation being
a key phenotypic response during wound healing. Another key wound repair property is wound
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repopulation therefore the ability of the cell populations to undertake this crucial response was assessed
using a monolayer scratch wound assay and time-lapse microscopy. As reported previously for the
primary cell strains [22], there was a distinct difference in wound repopulation ability; NF repopulated
the wound after 24 h, but the CWF failed to do so (Figure 3; Supplemental Movies 1 & 2). Importantly,
such differences in wound repopulation were also maintained with their immortalised counterparts
(Figure 3; Supplemental Movies 3 & 4).

Figure 3. Utilising a monolayer wound scratch assay and time lapse microscopic analysis immortalised
NF, like the primary cells from which they were established, clearly repopulated the wound space over
a period of 24 h whereas the patient-matched CWF cells (both primary and immortalised) failed to do
so. Scale bar = 100 µm.

3. Discussion

This investigation has described the characterisation of hTERT immortalised disease and normal
fibroblast cell lines. These cell lines were derived from primary cells strains isolated from both chronic
wounds and patient matched normal skin. The aetiology of venous leg ulcers is poorly understood
and as such it is difficult to generate accurate model systems to permit the screening of candidate
therapeutic interventions. In an attempt to replicate the chronic wound environment, animal models
have been established, but these are really models of impaired, rather than chronic, wound healing.
Whilst primary human cell strains taken from chronic wounds have been utilised for investigations in
the past [22–29] these cells have a limited life span and reproducibility in the laboratory, and therefore
continual patient samples are necessitated. Furthermore, due to the variation between cell isolations
from different patients, it can be difficult to obtain reliable and reproducible data when using multiple
primary isolations. Therefore, the aim of this study was to characterise immortalised CWF and NF cell
lines to provide a robust research tool that will be suitable for (a) investigating the biology of chronic
wounds and (b) the future screening of candidate therapeutics for chronic wounds.

This study has confirmed that the delivery of hTERT enabled the cells to escape replicative
senescence, as demonstrated by their extended lifespan. Non-immortalised CWF could achieve
a maximum of around 40 PD, yet hTERT-immortalised CWFs were still growing past 80 PD. TRAP assay
and PCR analysis confirmed such telomerase activity. Crucially, we also immortalised patient-matched
NF in order to account for inter-patient variability; these cells were also telomerase positive and were
still growing at 120 PD (more than twice the reported Hayflick limit [38]). Importantly, in line with
the observed differences in the CWF and NF cell strains prior to immortalisation, overall the hTERT
immortalised CWFs demonstrated reduced population doubling rates when compared to their patient
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matched hTERT NFs. This suggests that even though the senescence barrier has been overcome, there
are still distinct phenotypic anomalies that are intrinsic to the diseased cell lines.

To determine if immortalisation significantly altered gene expression, microarrays were used to
compare the hTERT immortalised cells with the primary cells from which they were derived at three
time points after immortalisation. The number of genes altered by immortalisation was small and
few known pathways were affected. Within the CWF and NF, over representation analysis of these
genes altered by the immortalisation process unsurprisingly identified pathways that were relating to
the cell cycle and DNA replication. These findings correlate with the increased proliferative ability
of the immortalised cells. Such an alteration in a limited number of genes (often in association with
the cell cycle) is supported by the findings of others [46] and agrees with reports that demonstrate
a good correlation between immortalised and parental cells [47]. Hence, these stable gene expression
signatures validate the hTERT immortalised cell lines as being an appropriate model of the primary
cell strains from which they were generated.

However, not all studies of hTERT immortalised fibroblast cell lines agree as to the effect hTERT
has on cellular phenotype. Lindvall et al. described significant differences in gene expression in their
hTERT-immortalised cells, including DNA repair genes and growth factor genes [48]. Wang et al. (2000)
showed hTERT immortalisation activated the oncogene c-MYC [49] and other oncognenes including
p16 and p53 have also been reported to be upregulated [50,51], something that would not be desired
if the cells were to be used for direct therapeutic interventions. Other studies, however, contradict
these findings. Pirzio et al. (2004) demonstrated low frequencies of chromosomal aberrations in
hTERT immortalised fibroblasts suggesting a role in genome stability for telomerase [52]. Furthermore,
Milyavsky et al. reported an up-regulation of p16 in their hTERT immortalised cells and the retention
of chromosome stability and the ability to enter G0 [53]. Importantly, none of these gene expression
alterations described previously were observed in any of the patient matched NF or CWF cell lines
investigated in this study.

Importantly, after immortalisation CWF retained their reduced ability to repopulate scratch
wounds. This reduced wound repopulation capacity is a characteristic previously reported for primary
CWF [22]. Wound repopulation in the monolayer scratch wound assay is via a combination of
proliferation and migration. In this study, the hTERT-CWF had a somewhat reduced growth rate
when compared to that of hTERT-NF so it is likely that the reduced repopulation is due to impaired
proliferation and migration (a specific disease phenotype still maintained after immortalisation). This
is significant in the context of wound healing because cells that have an impaired ability to repopulate
a wound environment in vivo will have a reduced capacity to adequately repair that tissue.

4. Materials and Methods

4.1. Patients and Tissues

Cultures of CWFs and patient-matched, uninvolved NFs were established following approval
from the Local Research Ethics Committee and after written informed consent from patients (n = 4)
with non-healing, chronic venous leg ulcers attending the Wound Healing Clinic at the University
Hospital of Wales, Cardiff. Only patients with wounds that failed to respond to conventional treatment
regimes after two months were used in the study; patients with diabetes, systemic immunosuppression,
or clinical signs of local infection were excluded. A 6-mm biopsy was taken from the chronic wound
bed and the uninvolved outer aspect of the ipsilateral thigh. All of the experiments were carried out
according to the Declaration of Helsinki Principles.

4.2. Establishment of Immortalized Chronic Wound and Patient-Matched NFs

hTERT immortalised fibroblast cell lines were generated from chronic wound and patient matched
normal fibroblast cell strains (strains described previously [22]). Fibroblasts were transfected with the
hTERT containing retroviral vector pBABE-hTERT. Positively transfected cells were selected by the
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addition of puromycin to the growth medium (Fibroblast-Serum Containing Medium [F-SCM + Puro],
consisting of Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with L-glutamine (2 mM),
antibiotics (100 U/mL penicillin G; 100 µg/mL streptomycin sulphate; 0.25 µg/mL amphotericin B),
puromycin 1 µg/mL, and 10% (v/v) foetal calf serum [FCS]; all of the reagents supplied by Invitrogen,
Paisley, UK). Upon reaching 80–90% confluence, fibroblast populations were passaged at a ratio of 1:3.

The populations doublings (PDs) of the cell populations were derived by direct counting of
cell numbers at each passage then calculation using the method previously described [54]. Cells in
monolayer culture were digitally imaged 24 h after passage using a Nikon Coolpix 995 digital camera
(Nikon, Kingston-upon-Thames, UK) attached to an Olympus CK2 microscope (×10 objective lens,
F-Stop 3.5) (Olympus, Southall, UK).

4.3. Telomerase Repeat Amplification Protocol (TRAP) Assay

Protein extracts were prepared and the TRAP assay was performed as described previously [55]
with some modifications. Cells (5 × 105) were re-suspended in 1 mL wash buffer (10 mM Hepes-KOH,
1.5 mM MgCl2, 1 mM KCl, and 1 mM DTT) and spun at 15,000× g for 2 min 4 ◦C. The supernatant
was removed and the cells were re-suspended in 100 µL lysis buffer (10 mM Tris-HCl, 1.5 mM MgCl2,
1 mM EGTA, 10% glycerol, 0.5% CHAPS, 1 mM PMSF, and 0.35% 2-mercaptoethanol). Cells were
incubated on ice for 30 min. The lysate was then centrifuged at 20,000× g for 30 min at 4 ◦C and the
supernatant collected and frozen on dry ice in 10 µL aliquots.

Reactions were set up in RNase free 0.5 mL microtubes, each reaction containing 2 µL of protein
extract and 48 µL of 1× reaction mix (40 mM Tris-HCl, 3 mM MgCl2, 126 mM KCl, 0.01% Tween 20,
2 mM EGTA, 0.2 g/L BSA, 100 M dNTPs, 1 µg T4 gene 32 protein and 100 ng TS primer). Negative
controls for each reaction were set up with heat denatured protein extracts (10 min at 85 ◦C). Reactions
were incubated for 30 min at 30 ◦C, the temperature was increased to 92 ◦C and 100 ng CX primer, and
2.5 U Taq polymerase were added to each reaction. TRAP products were amplified by 31 cycles (92 ◦C
for 30 s, 50 ◦C for 30 s, and 72 ◦C for 90 s). TRAP products were run on a 10% polyacrylamide (19:1) and
visualised using Sybr Gold (Invitrogen) and a Typhoon 9400 Variable Mode Imager (GE Healthcare,
Little Chalfont, UK) using an excitation wavelength of 488 nm and a 520 BP40 emission filter.

4.4. Reverse Transcription Polymerase Chain Reaction

PCR reactions were set up with the resulting cDNA and using the following primers: TR: 5-CTA
ACC CTA ACT GAG AAG GGC GTA-3 (TRC3F) and 5-GGC GAA CGG GCC AGC AGC TGA CAT
T-3 (TRC3R [56]) TERT: 5-CGG AAG AGT GTC TGG AGC AA-39 (LT5) and 5-GGA TGA AGC GGA
GTC TGG A-3 (LT6 [57]). As a control for RNA quality and successful cDNA synthesis, the GAPDH
gene was amplified using specific primers, including 5-CTC AGA CAC CAT GGG GAA GGT GA-39
(K136) and 5-ATG ATC TTG AGG CTG TTG TCA TA-39 (K137). The PCR conditions used for the
amplification of these genes were: initial incubation at 94 ◦C for 10 min, 36 cycles with 94 ◦C for 20 s,
step down annealing from 60 to 55 ◦C for 20 s, 72 ◦C for 20 s, and a final incubation at 72 ◦C for 10 min.
PCR products were run on a 2% agarose gel and visualized by ethidium bromide staining.

4.5. Microarray Analysis

RNA was extracted from serum-induced cells from all four patients. Briefly, cells were seeded at
a density of 640 cells cm2 in 20 cm diameter TC dishes and were cultured under standard conditions for
24 h. Cells were then serum-starved for 48 h to induce quiescence. Cells were then re-stimulated with
serum and harvested at 0 and 6 h for RNA extraction. Cells were washed with phosphate-buffered saline,
incubated with TRIzol (Invitrogen) at room temperature for 10 min, and RNA was extracted according to
standard phenol/chloroform extraction protocols. RNA concentration was quantified on an automated
RNA quantitation machine (Bio-Rad) and RNA quality was determined using the RNA Nano LabChip
kit (Agilent Technologies, Wokingham, UK). Samples were then processed by the Central Biotechnology
Service (Cardiff University, Cardiff, UK), following the detailed protocol for sample preparation and
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microarray processing available from Affymetrix (http://www.affymetrix.com). Briefly, first-strand
cDNA was synthesized from 5 µg total RNA using a T7-(dT)24 primer (Genset Corp., Nottingham,
UK) and reverse-transcribed with the Superscript Double-Stranded cDNA Synthesis Kit (Invitrogen).
After second-strand synthesis, the resulting cDNA was subjected to an in vitro transcription reaction
using a Bioarray kit (Enzo Diagnostics, New York, NY, USA) to generate biotinylated cRNA. This
was subsequently fragmented and hybridized to the Affymetrix U133A GeneChip, which contains
approximately 22,000 probe sets to detect the transcripts of approximately 14,000 distinct human genes,
plus additional expressed sequences tags.

Following hybridization and scanning, the resultant image files (.CEL) were analyzed using the
MAS 5.0 statistical algorithm (Affymetrix) to calculate an expression summary value for each probe set
on each GeneChip. The resulting expression data were scaled to a target intensity of 100. Differentially
expressed genes were identified by applying analysis of variance to the expression values for each
probe set, using (i) the patient identifier, (ii) the cell type (CWF vs. NF), and (iii) ±serum treatment as
the three sets of factors. The resulting p-values were corrected for multiple hypothesis testing using
the false discovery rate method [58]. The expression values were further visualized and explored by
hierarchical clustering (cosine similarity applied to log-transformed, median-centred data) and heat
map visualization.

Difference of the differences testing was undertaken using expression summaries that were generated
using the RMA algorithm [59]. For each patient NF or CWF sample, the (log2) fold change between
each pair of samples with and without serum was first calculated and then mean values for the NF and
CWF groups were calculated. Probe sets were selected where the mean induction (or repression) by
serum was twofold greater in the CWF group when compared with the NF group. All of the analyses
were performed in R and the scripts for all of the analyses are available from the authors upon request.
Over representation analysis was undertaken using the GOstats packages in R, using gene sets derived
from the Gene Ontology Biological Processes dataset.

4.6. In Vitro Wounding Studies

A standard monolayer scratch wound model was used to characterize wound repopulation.
Briefly, cells were seeded into 24-well tissue culture plates (2 × 104 cells per well), cultured to
confluence, and monolayers were wounded by scratching along the surface of the tissue culture plastic
with a standard 200 µL pipette tip. Cellular monolayers were gently washed with phosphate-buffered
saline, re-fed with F-SCM, and incubated under standard culture conditions on the motorized, heated,
and gassed stage of a Zeiss Axiovert 200 M microscope (Carl Zeiss, Welwyn Garden City, UK). Images
were collected every 15 min for 40 h using the Openlab software package, which was also used for
post-image acquisition analysis (Improvision, Coventry, UK).

5. Conclusions

hTERT-immortalised CWF (and patient-matched NF) cell lines have been established and
characterised with respect to their phenotype and genotype. The immortalisation process was
demonstrated to be effective as cells expressed telomerase and had extended lifespans. Furthermore,
immortalisation of NF and CWF retained genotypic and phenotypic differences. Validated disease
cell lines are now available for use in future studies of chronic wound healing. It is envisaged that
these cell lines may eventually offer a real alternative to the use of animal models in chronic wound
research and be a useful research tool for understanding the aetiology of chronic wounds as well as
a potential high-throughput screening tool for candidate therapeutics that can ameliorate the chronic
wound phenotype.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/
4/1001/s1. Sup Video 1 NF: Scratch wound repopulation by NF cell strain; Sup Video 2 CWF: Scratch wound
repopulation by CWF cell strain; Sup Video 3 hTERT NF: Scratch wound repopulation by NF cell line; Sup Video
4 hTERT CWF: Scratch wound repopulation by CWF cell line.
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