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Abstract

Background: Phages and plasmids are the major components of mobile genetic elements, and fragments from such
elements generally co-exist with chromosome-derived fragments in sequenced metagenomic data. However, there is a lack
of efficient methods that can simultaneously identify phages and plasmids in metagenomic data, and the existing tools
identifying either phages or plasmids have not yet presented satisfactory performance. Findings: We present PPR-Meta, a
3-class classifier that allows simultaneous identification of both phage and plasmid fragments from metagenomic
assemblies. PPR-Meta consists of several modules for predicting sequences of different lengths. Using deep learning, a
novel network architecture, referred to as the Bi-path Convolutional Neural Network, is designed to improve the
performance for short fragments. PPR-Meta demonstrates much better performance than currently available similar tools
individually for phage or plasmid identification, while testing on both artificial contigs and real metagenomic data.
PPR-Meta is freely available via http://cqb.pku.edu.cn/ZhuLab/PPR Meta or https://github.com/zhenchengfang/PPR-Meta.
Conclusions: To the best of our knowledge, PPR-Meta is the first tool that can simultaneously identify phage and plasmid
fragments efficiently and reliably. The software is optimized and can be easily run on a local PC by non-computer
professionals. We developed PPR-Meta to promote the research on mobile genetic elements and horizontal gene transfer.
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Findings
Introduction

Phages and plasmids, known as mobile genetic elements (MGEs),
are the main participants in horizontal gene transfer (HGT)
along with genetic information exchanging among prokaryotes

or eukaryotes [1]. Such elements can regulate the microbial com-
munity by interacting with the host. One of the important roles
of MGEs is their ability to distribute resistance genes among bac-
teria and facilitate environmental adaptations among microbial
communities [2]. In most cases, a substantial number of phage
and plasmid genomes are present in the microbial community.
For example, reports have shown that the abundance of marine
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phages even surpasses that of other organisms in marine sys-
tems, and more than half of the bacteria isolated from marine
systems contain ≥1 plasmid [3, 4]. Thus, the identification of
phage and plasmid fragments in metagenomes is a fundamen-
tal issue in comprehensive analyses of HGT and the interaction
between MGEs and hosts. Although experimental approaches
have been developed to enrich phages or plasmids from envi-
ronment samples [5, 6], the enriched samples lose host informa-
tion, which may hinder the comprehensiveness of the analyses.
Therefore, computational tools for directly identifying phages
and plasmids from metagenomes are expected to be developed
in the field.

However, the effective identification of such elements re-
mains a considerable challenge. Currently the fragment as-
sembly performance of both plasmid and phage from high-
throughput sequencing data is not as good as that of host-
derived fragments [7]. This indicates that sequences from
phages or plasmids exist as a large number of short fragments,
resulting in the difficulty of the identification. In addition, fewer
sequenced genomes of phages and plasmids are available com-
pared with bacterial genomes in current databases [1]. Espe-
cially, although the abundance of viruses is estimated to ex-
ceed that of other organisms on the earth [8], so far the num-
ber of phage genomes in the NCBI database is still less than
one-thirtieth the number of prokaryotic genomes, and it was
estimated that more than half of the sequences from viral
metagenomes could not find significant homology to the re-
leased database [5]. Therefore, it is essential to develop a tool
for identifying novel phages and plasmids from metagenomic
data with a large number of mixed short reads.

Despite the difficulty of identification, several tools have re-
cently been developed to detect either phages or plasmids from
culture-dependent whole-genome sequencing (WGS) data or
metagenomic data. Tools that detect regions from an integrated
phage sequence (referred to as prophage) over a sequenced com-
plete bacterial genome have been designed. These tools include
Prophinder [9], Phage Finder [10], PhiSpy [11], PHAST (and its en-
hanced version PHASTER) [12, 13], VirSorter [14], and ProphET
[15]. Such approaches primarily used a scan window to move
across the complete bacterial chromosome and extract regions
that seem to be phages on the basis of a similarity search against
viral databases. Because the scan windows of these tools are of-
ten required to be able to cover several genes, such tools are
difficult to apply to metagenomic data because the sequences
of metagenome are too short to contain even a complete gene
[16]. Although VirSorter can also assign metagenomic contigs as
phages or bacteria, its sensitivity of identification is quite low.
Moreover, lytic phages and some temperate phages do not in-
tegrate their genomes into their host chromosomes [17]; thus,
these tools may only be able to identify specific phages. The
tool MARVEL [18] can assign metagenomic bins as phages or
bacteria and demonstrates better performance than previous
tools. In the other hand, in order to identify sequences from
low-abundance phages, which may not fall into bins, tools that
can directly judge each fragment are also needed. In contrast,
VirFinder [19] can directly judge each sequence, and it uses a
logistic regression as the classifier to detect phage sequences
based on k-mer frequencies and presents a relatively good per-
formance. In terms of plasmids, most of the current tools for
plasmid identification were designed for WGS or even specific
species, such as PlasmidFinder [20], PLACNET [21], Plasmid-
Seeker [22], and mlplasmids [23]. However, the plasmid identifi-
cation strategy for WGS may not by applicable for metagenomes.
For example, PlasmidSeeker considers plasmid contigs to have a

higher read coverage because plasmids may have copies in their
hosts. In metagenome, however, the difference of read coverage
among contigs may result from different abundances of species
rather than copy number. The tool cBar [24] is the first tool
designed primarily for plasmid identification in metagenomes.
This tool applies sequential minimal optimization as a classi-
fier based on k-mer frequencies. Similar to cBar, PlasFlow [25]
is also a k-mer−based tool for identifying plasmids. Compared
with cBar, PlasFlow further combines the information of differ-
ent k-mer lengths and uses multiple neural networks as voting
devices to determine whether the sequence belongs to the plas-
mid, and it achieves a better performance than cBar.

Although related tools have been developed, state-of-the-
art tools for detecting short fragments have not presented sat-
isfactory performance. Moreover, because these tools can only
identify either phages or plasmids, they clearly do not meet the
needs of a comprehensive analysis of MGEs and HGT. Consider-
ing that poor sequence assembly performance results in a large
number of short fragments, it is a practical goal to develop a
higher performing tool. In this paper, we present the PPR-Meta
(Phage and Plasmid Recognizer for Metagenomes), a 3-class clas-
sifier for identifying metagenomic fragments as phages, plas-
mids, or chromosomes based on the deep learning algorithm.
To achieve higher performance on short fragments, we designed
a novel neural network architecture, which is referred to as the
Bi-path Convolutional Neural Network (BiPathCNN). To the best
of our knowledge, PPR-Meta is the first tool that can simulta-
neously identify phage and plasmid fragments efficiently and
reliably.

Dataset construction

Owing to the fact that no suitable real metagenome datasets
with confident annotation are available as a benchmark, we
therefore used simulated datasets with artificial contigs gener-
ated from sequenced complete genomes. We downloaded the
complete genomes of prokaryote chromosomes (total of 10,090
genomes), prokaryote plasmids (total of 8,801 genomes), and
phages (total of 2,279 genomes) from the NCBI genome database
[26]. The list of the genomes is provided in Additional file 1.
To evaluate the ability of PPR-Meta to identify novel species,
genomes released before January 2016 were used to build the
training set while the remainder were used to build the test
set. In general, prokaryote chromosomes may contain regions
of integrated phages, referred to as prophages [27]; however,
most genomes do not have the prophage annotation. Here, we
used ProphET (v0.5.1) to extract prophages from all the prokary-
ote chromosomes, and a total of 16,393 prophages predicted by
ProphET (shown in Additional file 2) were incorporated into the
phage dataset. Moving prophages from a chromosome dataset
to a phage dataset can help to both expand the phage dataset
and remove noise from the chromosome dataset. Because the
predicted prophages were generated by ProphET and could not
be used as a benchmark, we removed the predicted prophages
from the test set. To evaluate the performance of PPR-Meta for
prophage identification, we collected 267 manually annotated
prophages of 54 prokaryote chromosomes from Casjens [27].
To ensure that the test data were “novel” to PPR-Meta, these
prophages and their hosts were removed from the training set.

We used the MetaSim (v0.9.1) simulator [28] to extract arti-
ficial contigs from the complete genomes. Four groups of arti-
ficial contigs of different lengths were generated: Group A with
a length range of 100–400 bp, Group B with a length range of
400–800 bp, Group C with a length range of 800–1,200 bp, and
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Group D with a length range of 5,000–10,000 bp. Groups A, B, and
C were constructed to simulate the length obtained with differ-
ent sequencing technologies and the average assembly contig
length, while Group D was constructed to simulate long contigs
in metagenomic data.

We also used real metagenomic data to estimate the re-
liability of PPR-Meta. The real data included phage metage-
nomic data of bovine rumen [29], which were downloaded from
MG-RAST [30] (accessions: mgm4534202.3 and mgm4534203.3)
as raw reads and assembled by SPAdes (v3.11.1) [31]; plasmid
metagenomic data of bovine rumen [32], downloaded from MG-
RAST (accessions: mgm4460391.3); and 20 samples of healthy
human gut [33], downloaded from the NCBI SRA [34] and assem-
bled by SPAdes. The accessions of the human gut samples are
shown in Additional file 1. Additional details on the dataset con-
struction are provided in the Methods section.

Mathematical model of DNA sequences

The method of representing biological sequences is significant
for every machine learning–based tool. Although k-mer frequen-
cies have been widely used in many studies [19], such frequen-
cies may present serious fluctuations in short sequences [35].
Here, we use a more detailed approach to represent the DNA
fragments. Specifically, each sequence is represented by “base
one-hot matrix (BOH)” and “codon one-hot matrix (COH).” “One-
hot” is one of the most widely used encoding forms for each
character in a given string in the field of natural language pro-
cessing [36], and it is also used to represent bases or amino acids
in biological sequences. A “one-hot” vector contains several bits,
and the number of bits is equal to the number of character types
in a given string. For each character type, the corresponding bit
of the “one-hot” vector is 1 and the remaining bits are 0, and
there must be a one-to-one correspondence between each char-
acter type and each bit. For BOH in PPR-Meta, bases A, C, G, and
T are represented by [0,0,0,1], [0,0,1,0], [0,1,0,0], and [1,0,0,0], re-
spectively. Therefore, together with the complementary strand,
a sequence of length L can be represented by a BOH matrix of
length 2 × L and width 4. For COH, each sequence is first ex-
panded to 6 phases in the form of codons. For example, sequence
5′-ACGTTCGAACG-3′ will be split into the following 6 codon se-
quences:

1) ACG, TTC, GAA
2) CGT, TCG, AAC
3) GTT, CGA, ACG
4) CGT, TCG, AAC
5) GTT, CGA, ACG
6) TTC, GAA, CGT

Similar to BOH, each codon of COH is represented by a 64-
dimensional one-hot vector, namely, one certain position is 1
and the other positions are 0. Therefore, a sequence of length L
can be represented by a COH matrix of length 2 × L and width 64.
Both BOH and COH will be used as input for the neural networks
mentioned below.

Structure of deep learning neural networks

To ensure that PPR-Meta optimally adapts to sequences of differ-
ent lengths, we trained 3 neural networks for Groups A, B, and
C. To improve the performance, we designed BiPathCNN (Fig. 1),
a novel neural network structure, to make reliable predictions.

BiPathCNN contains a “base path” and a “codon path,” which
take BOH and COH as inputs, respectively. After multiple con-
volution operations, the data for the 2 paths are combined by a
merge layer. The fully connected layers then receive the merged
data and finally output 3 scores that reflect the likelihood of the
input fragment as a phage, chromosome, or plasmid.

The details of each layer are described as follows.
Layers b1 and c1: 1D convolutional layers with 64 convolu-

tion kernels using “ReLU” (Rectified Linear Unit) as the activa-
tion function. The ReLU function can be expressed as y = max(0,
x). These layers take BOH or COH as inputs. The length of the
convolution kernels is set to 6.

Layers b2 and c2: max pooling layers with a pooling length
set to 3.

Layers b3 and c3: batch normalization layers with the
dropout operation. Each element of the feature map from the
previous layer in each batch will be normalized, which can speed
up the convergence and prevent overfitting.

Layers b4-b6 and c4-c6: similar to layers b1–b3 or layers c1–c3,
respectively. We set the number of convolution kernels in layers
b4 and c4 as 128 and the length of the kernels as 3.

Layers b7 and c7: 1D convolutional layers containing 256 con-
volution kernels and using ReLU as the activation function. The
length of the convolution kernels is set to 3.

Layers b8 and c8: 1D global average pooling layers that output
the global average for each feature map of the previous layer.

Layers 9–11: The concatenation layers combine the output of
the “base path” and “codon path.” After the full connection layer
with the same number of nodes as the previous layer, the soft-
max layer calculates the probability of the input fragment as a
phage, chromosome, or plasmid.

The selection of the related hyperparameters of each path
mentioned above was based on LeNet-5 [37] and VGG [38], 2 clas-
sic convolutional neural networks (CNNs) in the field of artificial
intelligence. Specifically, the distribution of layers was based on
LeNet-5, which contained 3 convolution layers, and there was
a pooling layer between every 2 convolution layers. Meanwhile,
the distribution of the number of convolution kernels was based
on VGG, in which the number of convolution kernels in the dif-
ferent layers was increased by doubling. We also referred to VGG
to use ReLU as the activation function. All the neural networks
used Adam as the optimizer and cross-entropy as the loss func-
tion.

In practical applications, PPR-Meta uses BiPathCNN A to pre-
dict sequences between 100 and 400 bp, BiPathCNN B to predict
sequences between 400 and 800 bp, and BiPathCNN C to pre-
dict sequences between 800 and 1,200 bp. For sequences longer
than 1,200 bp, such as sequences in Group D, a scan window
will move across the sequence without overlapping, and the
weighted average of all windows’ predictions is calculated. The
length of the window is set to 1,200 bp (or less if the window
ends beyond the sequence boundary). For example, given a se-
quence of length 2,500 bp, the scan window will first cover the
bases from the first to 1,200th positions, then the window will
move to bases from the 1,201st to 2,400th positions, and finally,
the window will move to bases from the 2,401st to 2,500th po-
sitions. Then, PPR-Meta uses BiPathCNN C, BiPathCNN C, and
BiPathCNN A to predict the subsequences under the first, sec-
ond, and third windows, respectively. To generate the final score
for the whole sequence, PPR-Meta calculates the weighted av-
erage of these windows. The weights of these 3 windows are
1,200/2,500, 1,200/2,500, and 100/2,500, respectively.
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Figure 1: Structure of BiPathCNN. Three BiPathCNNs were trained for sequences from Groups A, B, and C. Each BiPathCNN contains a “base path” and a “codon path,”

which take BOH and COH as inputs, respectively.

Overall performance

We evaluated PPR-Meta according to 4 groups of test sets with
different lengths of short contigs. For each fragment input, the
algorithm calculates 3 scores representing the likelihood that
the fragment should be identified as a phage, plasmid, or chro-
mosome. Therefore, the category with the highest score is se-
lected as our prediction. We used 3-class confusion matrices
(shown in Fig. 2) to evaluate the overall performance of PPR-
Meta. In general, PPR-Meta had a better discrimination ability
when the sequences were longer, and the phage recognition
ability of PPR-Meta was better than the plasmid recognition abil-
ity. Plasmid sequences were easily confused with the host chro-
mosomes, which may be because phages and plasmids face dif-
ferent evolutionary pressures. Because plasmids must survive
in host cells, they may adapt their sequence signatures, such
as the GC content and codon usage, to their hosts. In contrast,

phages can assemble their own particles and remain outside
of the hosts. Moreover, certain phages may contain their own
transfer RNA, which allows them to change their codon usage
[39]. Thus, the various similarity of phages and plasmids to their
hosts may lead to differences in the identification ability of PPR-
Meta. In addition, transposons may carry plasmid DNA frag-
ments to the chromosome [1]. Therefore, the chromosome may
contain regions from the plasmid. Sequences shared between
the plasmid and the chromosome may also affect the judgment
of PPR-Meta. Overall, PPR-Meta can effectively identify the MGEs
in the test set.

Performance comparison

We then compare PPR-Meta with VirFinder (v1.1) and VirSorter
(v1.0.3) regarding the ability to identify phages, and with Plas-
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Figure 2: Confusion matrix of PPR-Meta. Three-class confusion matrices were used to evaluate the overall performance of PPR-Meta. Four matrices correspond to the

sequences of Group A–D. In each matrix, the rows represent the true category while the columns represent the predicted category of PPR-Meta.

Flow (v1.1) and cBar (v1.2) regarding the ability to identify plas-
mids. The evaluation criteria were the true-positive rate [TPR =
true positives/(true positives + false negatives)], false-positive
rate [FPR = false positives/(true negatives + false positives)], and
area under the curve (AUC). Note that PlasFlow will filter uncer-
tain predictions according to a default threshold. As a uniform
comparison, we turned off this feature by setting the threshold
to zero, thus using all the sequences for comparison.

The results are presented in Table 1. In all cases, the AUCs
of PPR-Meta were the highest. In terms of phages, VirSorter,
which is a gene-based tool, performed poorly, with almost all
phages missed. This is probably because there is not a suffi-
cient number of full-length genes present in short DNA frag-
ments for VirSorter’s analysis. This also indicates that methods
based on homology searches of genetic information are not ap-
plicable to species identification in metagenomes. Considering
that most contigs of metagenomes are short fragments, espe-
cially those of MGEs, VirSorter is not competent for phage iden-

tification despite achieving a higher performance for long con-
tigs in Group D. The tool VirFinder outperformed VirSorter. As
an alignment-free tool, VirFinder achieved a much higher TPR,
especially in short fragments. The TPR of PPR-Meta was approx-
imately 10% higher than that of VirFinder and the FPR was ap-
proximately 5−10% lower. The performance improvement on
short sequences demonstrates that our sequence representa-
tion method is more detailed than the k-mer frequencies, and
the deep learning algorithm is more capable of extracting se-
quence features than the logistic regression used by VirFinder.
In terms of plasmids, both cBar and PlasFlow did not perform
well. cBar appeared to produce random results in most cases,
with both the TPR and FPR near 50%. Although the AUC of
PlasFlow was slightly higher than that of cBar, PlasFlow tended
to categorize most sequences as plasmids, which resulted in
an extremely high FPR. For PPR-Meta, the TPR was comparable
to that of PlasFlow, while the FPR was approximately 25−40%
lower. In some cases, a few assembled sequences from high-
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Table 1: Evaluation of the performance of PPR-Meta and comparison of the performance of PPR-Meta and related tools

Group Tool
Evaluation on phage (%) Evaluation on plasmid (%)

TPR FPR AUC TPR FPR AUC

Group A
100–400 bp

PPR-Meta 84.96 18.01 91.82 59.91 14.14 83.05

VirFinder 73.77 25.45 81.30 NA NA NA
VirSorter 0 0 50.00 NA NA NA
PlasFlow NA NA NA 71.89 62.59 56.30

cBar NA NA NA 52.68 46.07 53.31
Group B
400–800 bp

PPR-Meta 90.75 8.37 97.21 74.56 13.37 89.64

VirFinder 79.27 18.15 88.64 NA NA NA
VirSorter 0.05 0.002 50.02 NA NA NA
PlasFlow NA NA NA 72.61 55.01 62.50

cBar NA NA NA 55.00 43.59 55.70
Group C
800–1,200 bp

PPR-Meta 95.24 7.75 98.54 78.09 10.95 91.84

VirFinder 81.91 15.63 91.09 NA NA NA
VirSorter 0.17 0.002 50.09 NA NA NA
PlasFlow NA NA NA 75.89 50.55 68.01

cBar NA NA NA 55.54 41.87 56.84
Group D 5–10
kbp

PPR-Meta 99.20 3.25 99.77 87.53 6.45 96.02

VirFinder 89.26 8.13 97.12 NA NA NA
VirSorter 66.80 2.48 82.66 NA NA NA
PlasFlow NA NA NA 88.50 30.22 88.42

cBar NA NA NA 63.79 32.61 65.59

NA: not applicable.

abundance species may be much longer, so we also tested PPR-
Meta and the related tools using 15 and 30 kbp fragments (shown
in Additional File 3, Fig. S1). The results showed that the perfor-
mance of PPR-Meta was still the best for these long sequences.
In addition, we tested the accuracy as well as the running time
of each BiPathCNN on test datasets from different groups and
found that using a non-corresponding BiPathCNN to predict se-
quences from specific groups would lead to a lower accuracy
and longer running time (shown in Additional File 3, Fig. S2).
Overall, PPR-Meta presented a much better performance than
other homology-search−based tools such as VirSorter and k-
mer−based tools such as VirFinder, PlasFlow, and cBar.

Effectiveness of BiPathCNN

PPR-Meta achieved much higher performance than the other
methods as mentioned above. The innovation of PPR-Meta is
the design of BiPathCNN, which uses both base and codon in-
formation to improve the performance. In BiPathCNN, the “base
path” is beneficial to extracting the sequence features of non-
coding regions while the “codon path” is beneficial to extract-
ing coding regions. To verify the effectiveness of BiPathCNN,
we removed the codon path and base path and retrained PPR-
Meta. The newly trained PPR-Meta was tested, and the results
showed that the performance of PPR-Meta with either the base
path or codon path presented a lower performance only rel-
ative to that of BiPathCNN in most cases (Table 2). Moreover,
the performance of the codon path−only CNN was better than
that of base path−only CNN, which indicates that the features
that distinguish phages, chromosomes, and plasmids are more
concentrated in the coding region. Compared with other se-
quence representation methods that ignore the coding or non-
coding region, such as methods based on k-mer frequencies,

PPR-Meta uses a more detailed method of describing a sequence
and achieves a higher performance.

Performance in the presence of sequencing errors

Sequencing errors exist in various sequencing technologies, and
tools that handle high-throughput sequencing data should be
able to tolerate these errors. In addition, the third-generation
sequencing technologies, such as Pacific Biosciences and
Nanopore, have much higher rates of sequencing errors. Thus,
the compatibility of tools with new sequencing technologies
should be considered.

Sequencing errors can be divided into 2 types: base substi-
tutions and base insertions or deletions. We tested the impact
of these 2 types of sequencing errors on the identification per-
formance of PPR-Meta and related tools. We used MetaSim to
extract modified fragments with 1% substitutions and 1% inser-
tions or deletions separately from the test genomes. We used
the same criteria described above to compare the performance
of different tools in terms of both types of error. The results are
presented in Tables 3 and 4.

In most cases, in the presence of 1% base substitutions, a
slight decrease in each evaluation criterion was observed for
each tool compared with that in the presence of non-sequencing
errors, although the decrease was not obvious. PPR-Meta was
still the best-performing tool. When 1% of the bases were in-
serted or deleted, the performance of most tools was slightly re-
duced with the exception of VirSorter. Base insertions or dele-
tions caused substantial fluctuations in the performance of Vir-
Sorter. For sequences of Group D, the AUC of VirSorter decreased
by ∼9% compared with sequences with no errors. In our opinion,
the reason that VirSorter exhibits great fluctuations in perfor-
mance with base insertions or deletions is that insertions and
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Table 2: Performance comparison among BiPathCNN, the base path−only CNN, and codon path−only CNN

Group Tool
Evaluation on phage (%) Evaluation on plasmid (%)

TPR FPR AUC TPR FPR AUC

Group A
100–400 bp

BiPathCNN 84.96 18.01 91.82 59.91 14.14 83.05

Base path−only 81.86 24.58 87.50 56.96 17.60 78.50
Codon

path−only
86.84 20.47 91.85 62.15 16.65 82.26

Group B
400–800 bp

BiPathCNN 90.75 8.37 97.21 74.56 13.37 89.64

Base path−only 88.76 17.46 93.87 72.37 18.86 85.57
Codon

path−only
84.95 5.93 96.57 82.98 23.10 88.32

Group C
800–1,200 bp

BiPathCNN 95.24 7.75 98.54 78.09 10.95 91.84

Base path−only 92.09 17.71 95.47 73.31 15.12 88.02
Codon

path−only
94.60 12.44 97.55 73.17 12.41 89.22

Table 3: Identification performance of each tool with 1% base substitutions

Group Tool
Evaluation on phage (%) Evaluation on plasmid (%)

TPR FPR AUC TPR FPR AUC

Group A
100–400 bp

PPR-Meta 84.42 17.99 91.57 61.19 15.27 82.76

VirFinder 72.55 26.20 80.42 NA NA NA
VirSorter 0 0 50.00 NA NA NA
PlasFlow NA NA NA 71.72 62.82 55.86

cBar NA NA NA 52.98 46.18 53.40
Group B
400–800 bp

PPR-Meta 90.05 8.48 97.02 75.07 14.03 89.39

VirFinder 78.50 18.75 87.95 NA NA NA
VirSorter 0.02 0 50.01 NA NA NA
PlasFlow NA NA NA 72.31 55.61 61.87

cBar NA NA NA 54.83 44.63 55.10
Group C
800–1,200 bp

PPR-Meta 94.54 7.72 98.33 79.03 11.99 91.59

VirFinder 81.29 15.92 90.68 NA NA NA
VirSorter 0.21 0 50.11 NA NA NA
PlasFlow NA NA NA 75.24 50.91 67.15

cBar NA NA NA 56.57 42.85 56.86
Group D 5–10
kbp

PPR-Meta 98.97 3.15 99.75 87.65 7.20 95.83

VirFinder 88.90 8.19 97.01 NA NA NA
VirSorter 60.30 1.13 79.80 NA NA NA
PlasFlow NA NA NA 88.57 31.42 87.86

cBar NA NA NA 64.31 34.63 64.84

NA: not applicable.

deletions disrupt the phase of the open reading frame (ORF).
VirSorter identifies phage sequences primarily by observing the
distribution of genes, such as the densities of known viral genes
or the enrichment of short genes. Disrupting the ORF phase will
severely affect gene identification [40], thereby leading to inter-
ference in the downstream analysis. Thus, although VirSorter
can achieve relatively good performance on long contigs, cau-
tion should be taken when applying VirSorter to data generated
by third-generation sequencing technology.

Considering that the error rate of the raw data generated
from third-generation sequencing technology may be much

higher, we also tested PPR-Meta and the related tools using ar-
tificial contigs modified with 10% base substitutions and 10%
insertions or deletions in Group D, whose lengths were close
to those of the raw reads generated from third-generation se-
quencing technology. The results are shown in Additional File 3
and Fig. S3. The results showed that the AUCs of PPR-Meta re-
mained the highest (>90%), although the performance fluctu-
ated somewhat, especially in the presence of 10% insertions or
deletions. Recently, many dedicated tools have been developed
to help improve the consensus accuracy for third-generation se-
quencing technology to >99% [41]; therefore, the extremely high
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Table 4: Identification performance of each tool with 1% base insertions or deletions

Group Tool
Evaluation on phage (%) Evaluation on plasmid (%)

TPR FPR AUC TPR FPR AUC

Group A
100–400 bp

PPR-Meta 80.26 18.64 89.28 65.29 19.93 81.62

VirFinder 72.62 25.96 80.57 NA NA NA
VirSorter 0 0 50.00 NA NA NA
PlasFlow NA NA NA 71.12 62.83 55.81

cBar NA NA NA 53.63 46.43 53.60
Group B
400–800 bp

PPR-Meta 85.50 9.69 95.26 77.44 17.57 88.48

VirFinder 79.00 18.76 88.28 NA NA NA
VirSorter 0.24 0 50.12 NA NA NA
PlasFlow NA NA NA 72.74 55.44 62.31

cBar NA NA NA 55.38 45.22 55.08
Group C
800–1,200 bp

PPR-Meta 92.99 9.12 97.54 79.74 14.29 90.80

VirFinder 81.98 16.00 90.93 NA NA NA
VirSorter 2.38 0.02 51.18 NA NA NA
PlasFlow NA NA NA 75.23 51.25 66.75

cBar NA NA NA 56.74 43.45 56.64
Group D 5–10
kbp

PPR-Meta 98.90 3.51 99.73 89.23 8.48 95.84

VirFinder 88.93 8.40 96.98 NA NA NA
VirSorter 47.25 0.25 73.51 NA NA NA
PlasFlow NA NA NA 88.74 31.70 88.08

cBar NA NA NA 64.62 35.40 64.61

NA: not applicable.

Table 5: Recognition rate of prophages

Group Tool
Recognition

rate (%)

Group A 100–400 bp PPR-Meta 60.79
VirFinder 43.46
VirSorter 0

Group B 400–800 bp PPR-Meta 60.59
VirFinder 40.77
VirSorter 0

Group C 800–1,200 bp PPR-Meta 68.09
VirFinder 41.94
VirSorter 0.05

Group D 5–10 kbp PPR-Meta 75.58
VirFinder 48.62
VirSorter 37.75

error rate on the raw data should not affect the use of PPR-Meta
on assembled third-generation sequences.

Prophage identification ability

We tested the prophage identification ability of the related tools
on the 267 manually annotated prophages. The results in Ta-
ble 5 showed that although the recognition rate of PPR-Meta for
prophages was lower than that for phage contigs generated from
the NCBI database, the overall performance of PPR-Meta was still
much better than that of VirFinder and VirSorter. We addition-
ally collected 139 manually verified prophages from the PhAn-
ToMe database [42], and most of the hosts of these prophages
were not the same as those of the previous 267 prophages. Con-
sistent with the results for the 267 prophages, the prophage

recognition rate of PPR-Meta was much higher than that of the
comparative tools (shown in Additional File 3, Fig. S4), indicating
that PPR-Meta can identify more prophages. The lower recogni-
tion rate of prophages compared with that of the phages in the
NCBI database may be due to the difference of sequence pattern
between prophages and phages in the NCBI database. The com-
plete genomes in the NCBI database tend to come from phages
that are easily obtained experimentally, while prophages hide
their genomes in the hosts. During co-evolution, prophages may
adjust the sequence pattern according to their hosts to elimi-
nate the hosts’ restriction enzymes [39]. In terms of VirFinder,
the ability to identify prophages was significantly reduced and
more than half of the prophages were missed, which may be
because VirFinder ignored prophages that exist in the chro-
mosomes during training. In both the training and test set of
VirFinder, all prophages were labelled as chromosomes, which
led to the misjudgement of prophages. In microbial communi-
ties, temperate phages are dominant and a significant portion of
temperate phages exist in the form of prophages [43]. For exam-
ple, prophages have been shown to represent the main compo-
nent of phages in healthy human guts [17]. In certain prokary-
otes, prophages account for up to 20% of the host chromosome
[27]. Thus, compared with VirFinder, PPR-Meta may be more
adapted to real microbial communities because it can identify
more prophages.

Evaluation in real metagenomic data

We also evaluated PPR-Meta and the related tools using real
metagenomic data. We first evaluated whether PPR-Meta can
identify MGEs using both phage metagenomic and plasmid
metagenomic data of bovine rumens, in which either phages or
plasmids were enriched before sequencing. The phage metage-
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nomic data were downloaded as raw reads, and a total of 107,529
contigs were generated after assembly. VirSorter, VirFinder, and
PPR-Meta were run on the phage metagenome. Consistent with
the results for artificial contigs, VirSorter missed nearly all the
phages and only 0.02% of the contigs were identified. VirFinder
and PPR-Meta were much better than VirSorter and identified
68.86% and 76.90% of the contigs, respectively, showing that PPR-
Meta had the highest coverage of this data set.

The plasmid metagenomic data were downloaded as assem-
bled contigs containing 5,771 sequences. It is worth noting that
there are a certain number of phages that survive as circular
DNA [17], and when enriching plasmids, these circular phages
will also be extracted together with the plasmids. Thus, the plas-
mid metagenome may contain a mixture of phages and plas-
mids in which the host chromosomes are filtered. From the Ref-
Seq viral database, we collected the genes labelled as “portal,”
“spike,” “major capsid protein,” “terminase large subunit,” “tail,”
“coat,” or “virion formation,” which were more likely to exist in
phages [14]. We found that one of the sequences contained a
homologous region of the portal protein by applying the blastx
search (e-value ≤ 1e−4), indicating that phages are likely to co-
exist with plasmids in this dataset. Therefore, PPR-Meta, Vir-
Sorter, VirFinder, cBar, and PlasFlow were all run on this dataset.
The results showed that VirSorter did not identify any sequences
as phages while VirFinder identified 49.90% as phages. cBar and
PlasFlow identified 64.46% and 74.67% of the sequences as plas-
mids. For PPR-Meta, a total of 81.96% of the sequences were iden-
tified as MGEs, in which 49.18% were phages and 32.78% were
plasmids. More than half of the sequences (64.73%) predicted as
phages by PPR-Meta were also predicted as phages by VirFinder,
and most of the sequences (74.74%) predicted as plasmids by
PPR-Meta were also predicted by PlasFlow. Furthermore, the se-
quence containing the homologous region of the portal protein
was identified as phages and 8 out of 10 sequences coding plas-
mid backbone functions listed in Fig. 3 of Kav et al. [32] were
also identified as plasmids by PPR-Meta. Thus, the prediction of
PPR-Meta may be reliable. Because of the filtering of chromo-
somes from this dataset, PPR-Meta could identify most of the
extrachromosomal elements with the fewest false-negative pre-
dictions.

Because we lack samples in which only chromosomes are
enriched and all the extrachromosomal elements are filtered,
estimating whether related tools will misjudge chromosomes
as MGEs directly is difficult using real data. Because 16S ri-
bosomal RNA (rRNA) is more likely to occur in chromosomes,
sequences containing the homologous region of 16S rRNA
are likely chromosome-derived. We collected 20 metagenome
samples from the human gut, which represented mixtures of
phages, chromosomes, and plasmids. All contigs of the sam-
ples were searched against the 16S rRNA database of Green-
genes [44] using blastn, and the contigs containing the homol-
ogous region (e-value ≤ 1e−4, hits length ≥ 250) of 16S rRNA
were collected. Hits longer than 250 bp could cover ≥1 conserved
region of 16S rRNA, so the alignments were reliable. In terms
of phage identification, PPR-Meta, VirFinder, and VirSorter pre-
dicted an average of 3.43%, 11.32%, and 0% of the 16S-like con-
tigs as phages, respectively, indicating that PPR-Meta likely gen-
erated fewer false-positive predictions than VirFinder. Although
VirSorter did not cover any of the 16S-like contigs, the low num-
ber of false-positive predictions came at the cost of missing al-
most all phages as shown above. In terms of plasmid identi-
fication, PPR-Meta, PlasFlow, and cBar predicted an average of
26.69%, 52.57%, and 63.36% of the 16S-like contigs as plasmids,
respectively, indicating that PPR-Meta may generate the low-

est number of false-positive predictions. Because individual ex-
trachromosomal elements also contain ribosomal RNA, espe-
cially large plasmids [45], the coverage of 16S-like contigs may
be higher than the real FPR. Overall, PPR-Meta can identify more
MGEs with fewer false-positive results.

Considering that third-generation sequencing technology is
more and more widely used to analyse metagenomes, we also
used real virome data generated by MinION [46] to test whether
PPR-Meta and the related tools can identify phages from third-
generation sequencing technology. The virome was downloaded
as assembled sequences (accession: GCA 900 491 955.1), con-
taining 1,500 sequences. The results showed that PPR-Meta,
VirFinder, and VirSorter could identify 79.20%, 76.27%, and
30.40% of viral sequences, respectively, indicating that PPR-Meta
has the highest performance. Therefore PPR-Meta can also han-
dle data from third-generation sequencing technology, although
it is designed primarily for second-generation sequencing tech-
nology.

Phages and plasmids in the human digestive tract

As an application example, we used PPR-Meta to analyse the
percentages of phages, bacterial chromosomes, and plasmids in
microbial communities from the human digestive tract. We col-
lected 10 samples from the gut (sampling from stools), 7 sam-
ples from the throat, and 10 samples from the oral cavity (sam-
pling from the tongue dorsum). All samples were downloaded
from the Human Microbiome Project [47] as assembled contigs.
The accessions of all samples are provided in Additional File 1.
PPR-Meta was run on all samples, and the percentages of se-
quences predicted as phages, chromosomes, and plasmids were
calculated. The results are shown in Fig. 3. We found that in the
positions closer to the outer end of the digestive tract, the per-
centages of phages and plasmids tended to be higher. For exam-
ple, in the gut, the inner end of the digestive tract, the percent-
ages of phages and plasmids were lower, while in the oral cavity,
the outer end of the digestive tract, the percentages were higher.
Especially, phage sequences occupied ∼14.80% of all sequences
in the gut, which was consistent with the estimated viral pro-
portion in the human gut (4−17%) [48]. In the oral cavity, the
percentage of phage sequences was obviously higher, occupying
∼26.23% of all sequences. It has been reported that the number
of phages in the oral cavity is estimated to be 35 times more
than that of bacteria [49], indicating that the high percentage
of phages predicted by PPR-Meta may be reliable. Moreover, the
high percentages of phages and plasmids means that HGT may
be more frequent. Because the outer end of the digestive tract is
closer to the changing external environment, HGT seems to be a
way for microbial communities at the outer end of the digestive
tract to adapt to the external environment.

Usage of PPR-Meta

PPR-Meta takes the sequence file in fasta format as input and
outputs a tabular file. The output file contains 3 scores between
0 and 1 that reflect the likelihood of obtaining phages, chro-
mosomes, and plasmids for each sequence. By default, the fi-
nal prediction is the category with the highest score. To meet
users’ actual requirements, PPR-Meta is designed with the op-
tion to adjust the threshold to filter out the uncertain predic-
tions so that the remaining predictions may be more reliable.
Given a threshold, a sequence with a highest score lower than
the threshold will be labelled as “uncertain.” In this way, the out-
puts of PPR-Meta contain 6 categories: phage, uncertain phage,
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Figure 3: Percentages of phages, chromosomes, and plasmids in the human di-
gestive tract. PPR-Meta was used to predict the sequences of phages, chromo-
somes, and plasmids in metagenomic assemblies, including samples from the
gut, throat, and oral cavity. The sequence percentages of phages, chromosomes,

and plasmids were calculated.

chromosome, uncertain chromosome, plasmid, and uncertain
plasmid. We evaluated the uncertain prediction rate, accuracy,
AUC, TPR, and FPR under different thresholds, and the results
are shown in Additional File 3, Fig. S5. In general, with a higher
threshold, the accuracy, AUC, and TPR as well as the uncertain
prediction rate will be higher, while the FPR will be lower.

PPR-Meta is user friendly, and the program has been opti-
mized in a virtual machine so that users can directly run PPR-
Meta without installing any dependency package. We also pro-
vided a short video guide to show how to install the virtual ma-
chine. If users are analysing large-scale data, running the exe-
cutable file on the physical host is more suitable. In this way,
when the GPU is available, PPR-Meta will run on the GPU auto-
matically to speed up the program. The memory requirements
are dependent on the data size. We recommend ≥4−6 GB of
available memory when running the virtual machine or ≥16 GB
when handling large-scale data on the physical host. We tested
the running time of PPR-Meta using 90,000 sequences from 100
to 10,000 bp and found that this tool can handle all sequences
in ∼45 minutes on a machine with the following configuration:
CPU: Intel Core i7 6700; GPU: NVIDIA GTX1060; and Memory: 64G,
DDR4.

Discussion and Conclusions

In this paper, we proposed an ab initio method, PPR-Meta,
to identify both phages and plasmids from metagenomic se-
quences. PPR-Meta uses a novel strategy to improve the MGE
identification performance and avoids performing similarity
searches to make judgments. Similarity search−based tools,
such as VirSorter, provide good results for long sequences. How-
ever, such methods do not work effectively for short fragments
owing to the insufficient number of genes for the statistical
analysis. Compared with other reference-free tools, PPR-Meta
uses a more detailed method of characterizing DNA sequences.
We use a BOH matrix, which is beneficial for non-coding re-
gions, and a COH matrix, which is beneficial for coding regions,

Figure 4: ROC curve of classifying phage lifestyle and plasmid transmissibility. (a) Classifying virulent phages and temperate phages using life score. In order of
sequence length, the AUC is 0.63, 0.69, 0.71, and 0.76. (b) Classifying transmissible plasmid and non-transmissible plasmid using trans score. In order of sequence
length, the AUC is 0.58, 0.55, 0.60, and 0.62.
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to represent sequences. In contrast, traditional k-mer methods
do not consider coding or non-coding regions. When the se-
quence is short, k-mer frequencies will be noisy. On the other
hand, k-mer−based methods may also be more sensitive to the
sequence length than the BiPathCNN method in the present
work. The distribution of k-mer frequencies may be different
between long and short sequences, and the variance of the k-
mer frequencies for short sequences may be much higher. Thus,
the k-mer−based classifier constructed using short-sequence
data may not be applicable for long sequences, and vice versa.
Among the k-mer−based tools, cBar was trained with complete
genomes and PlasFlow was trained on 10-kbp fragments, which
might make it difficult for them to adapt to metagenomic data
with a wide range of lengths. In contrast, our BiPathCNN directly
extracts sequence features from the raw data represented by the
one-hot matrix and may be less sensitive to sequence length.
Tests of each BiPathCNN on test datasets from different groups
(Additional File 3, Fig. S2) also showed that although the over-
all accuracy was slightly reduced when testing each group us-
ing a non-corresponding BiPathCNN from the other groups, the
decrease was not obvious, indicating that our approach is not
quite sensitive to the sequence length. Another shortcoming of
k-mer−based tools may be that mapping sequences of differ-
ent length for k-mer feature vectors with the same dimension
will also lose some information. PPR-Meta takes all bases and
codons as inputs in the neural network, thereby exploiting all
information in the fragments. In the design of the algorithm, we
used a deep learning network as the classifier. Deep learning has
achieved great success in many fields, such as long non-coding
RNA identification [50] and the prediction of sequence specifici-
ties of nucleic acid binding proteins [51]. In the construction of
PPR-Meta, we designed the BiPathCNN, which contains a “base
path” and “codon path” to handle the BOH matrix and COH ma-
trix, respectively. Testing showed that the performance of the
CNN with double paths was better than that with a single path.

Furthermore, we were surprised to find that PPR-Meta’s out-
put scores were able to describe the interaction between phages
or plasmids and their hosts. Specifically, the difference between
the phage score and chromosome score reveals the lifestyle of
the phages (virulent or temperate), while the difference between
the plasmid score and chromosome score reveals the transmis-
sibility of the plasmids (transmissible or non-transmissible). We
collected both phage genomes with lifestyle annotations from
McNair et al. [8] and plasmid genomes with transmissibility an-
notations from Shintani et al. [52] and then extracted artificial
contigs. PPR-Meta was run on all the contigs, and the correctly
predicted contigs were retained. From the results, 2 normalized
statistics were constructed:

life score = (phage score − chromosome score) /phage score

and

trans score = (plasmid score − chromosome score) /plasmid score.

The receiver operating characteristic curve (ROC) showed
that life score could distinguish the lifestyle of phages while
trans score could distinguish the transmissibility of plasmids
with AUC > 0.5 (shown in Fig. 4). Specifically, temperate phages
tend to have lower life score values and non-transmissible plas-
mids tend to have lower trans score values. This phenomenon
may be due to the genome amelioration of foreign DNA to the
host. For example, research has shown that the comparison

of the trinucleotide composition between a plasmid and bac-
terial chromosome can be used to predict the host range of
plasmids [53]. Because temperate phages and non-transmissible
plasmids experience longer residence times within the host
cell, they may adjust the sequence pattern toward the host.
Thus, the sequence pattern between temperate phages (or non-
transmissible plasmids) and host chromosomes may be more
similar than that between virulent phages (or transmissible
plasmids) and host chromosomes, thereby resulting in a lower
life score (or trans score) value. Although tools that can classify
phage lifestyle and plasmid transmissibility on metagenomes
are lacking as far as we know, the aforementioned phenomena
may provide insights into the classification strategy for future
studies.

In general, bacteria contain genomic islands, regions of hori-
zontal origin on chromosomes [54]. The formation mechanisms
of some genomic islands are caused by phages or plasmids
[55]. To see how PPR-Meta and related tools perform on DNA
fragments from these regions, we collected genomic island se-
quences from the Islander database [56]. Upon testing on ar-
tificial contigs of between 100 bp and 10 kbp extracted from
these genomic islands, the results showed that PPR-Meta could
identify 65.25% of them as foreign DNA (either phage or plas-
mid), while VirFinder, VirSorter, PlasFlow, and cBar could iden-
tify 20.46%, 6.72%, 53.11%, and 51.62% of them, respectively, in-
dicating that PPR-Meta can better recognize sequences from re-
gions of horizontal origin on bacterial chromosomes.

PPR-Meta also has some limitations. In addition to prokary-
ote chromosomes, plasmids, and phages, other organisms of low
abundance may exist in the microbial community, such as fungi
and protozoans. Such organisms are not included in the training
set of PPR-Meta and may have interfered with the judgment of
PPR-Meta. To increase the suitability of PPR-Meta for real situa-
tion, we will retrain PPR-Meta regularly with expanded datasets.
More organisms, as well as newly sequenced genomes, will be
added to the dataset so that PPR-Meta will become more power-
ful and reliable. In addition, due to sequence exchanges among
phages, plasmids, and chromosomes, there are a few chimeric
sequences from 2 sources (e.g., a prophage and chromosome
chimera). PPR-Meta cannot perform detailed judgments about
these chimeras, and we are considering how to further identify
such sequences. However, because these chimeras do not exist
at a large scale, we believe that the presence of chimeras will not
have a significant impact on the application of PPR-Meta.

In conclusion, the performance of PPR-Meta has been shown
to be much better than that of currently available similar tools,
while none of these tools can function as PPR-Meta does. It is
thus expected that the PPR-Meta tool will meet the demand of
metagenomics analysis when considering the microbial com-
munity tangled with phages and plasmids, and certainly quali-
fies as a powerful tool for the research community.

Methods

PPR-Meta was trained and tested using artificial contigs. We
downloaded the accession list of prokaryote chromosomes,
prokaryote plasmids, and phages from the NCBI genome
database, and the corresponding genomes were downloaded ac-
cording to the list. To ensure the quality of the data, we only
used the complete genomic molecule with the RefSeq accession
prefix. Because chromosomes may contain prophages, we used
ProphET to extract the prophage regions of all chromosomes.
ProphET requires a genome sequence file (fasta format) and
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genome annotation file (gff format) as inputs. A few genomes
do not contain the annotation information, and these genomes
were removed from the dataset. We then used MetaSim to gen-
erate 4 groups of artificial contigs with different lengths as men-
tioned in the main text. To generate artificial contigs with no er-
ror for both training and test sets, we used the “exact” preset to
return fragments exactly matching reference sequences. In each
group, the “DNA Clone Size Distribution Type” was set to “Uni-
form.” To generate artificial contigs modified with sequencing
errors, we used the “Sanger” preset, which allows users to mod-
ify sequences according to their settings. Note that because we
were not going to generate sequences with technology-specific
errors, the following settings do not reflect the real situation of
the Sanger technology. For the generation of sequences with 1%
base substitutions, the “Read Length Distribution Type” was set
to “Uniform” and the “Mate Pair Probability” was set to 0; both
the “Error Rate at Read Start” and the “Error Rate at End of Read”
were set to 0.01; and both the “Insertion Error Rate” and “Dele-
tion Error Rate” were set to 0. For the generation of sequences
with 1% base insertions or deletions, most settings were the
same as mentioned above, except that both the “Insertion Er-
ror Rate” and “Deletion Error Rate” were set to 0.5. In general,
the performance of the algorithm will improve as the amount of
training data increases. Considering the memory size, running
time, and accuracy, a total of 2,700,000 artificial contigs were
generated to train PPR-Meta. The number of training contigs of
each phage, chromosome, and plasmid was 300,000 from Group
A to C.

We also used real metagenomic data to evaluate PPR-Meta
and the related tools. We used SPAdes to assemble the raw reads,
as we mentioned in the main text. The phage metagenomic
data of the bovine rumen were downloaded from MG-RAST,
and we used the command “spades.py –meta –1 file1.fastq –2
file2.fastq –o out folder” to assemble the paired-end raw reads.
In the assembly, the contig number, N50, average length, max-
imum length, and minimum length were 107,529, 288, 312.06,
75,508, and 56, respectively. To download the 20 samples of the
healthy human gut, we used the command “prefetch SRRacces-
sion” from the SRA Toolkit. All samples were downloaded as
“.sra” files. We then used the command “fastq-dump –split-files
accession.sra” from the SRA Toolkit to convert the sra file into 2
paired-end fastq files and used SPAdes with the aforementioned
settings to assemble the raw reads. The information about the
contig number, N50, average length, maximum length, and min-
imum length is provided in Additional File 1.

The artificial contigs are stored at [57].

Availability of supporting source code and
requirements

Project name: PPR-Meta.
Project home page: http://cqb.pku.edu.cn/ZhuLab/PPR Meta or
https://github.com/zhenchengfang/PPR-Meta.
Operating system: The code of PPR-Meta was written on Linux.
We optimized the program in a virtual machine; thus, PPR-Meta
is platform independent.
Programming language: python, matlab
Other requirements: no other requirements are needed if run-
ning in the virtual machine. If not, Python 2.7.12, TensorFlow
1.4.1, Keras 2.0.8, and MATLAB Component Runtime 2018a (for
free) are needed. MATLAB is not necessary.
License: GPL-3.0.
RRID:SCR 016915

Availability of supporting data and materials

The artificial contigs, related scripts, and original results are
available at http://cqb.pku.edu.cn/ZhuLab/PPR Meta/data/. All
the other data are available at corresponding references men-
tioned in the main text. Snapshots of our code and other sup-
porting data are available in the GigaScience repository, GigaDB
[58].

Additional files

Additional file 1: Accession list of the data used to train and test
PPR-Meta.
Additional file 2: Prophage coordinates predicted by ProphET.
Additional file 3: Figure S1: Comparison of the performance of
PPR-Meta and related tools using artificial contigs of 15k bp and
30k bp; Figure S2: Evaluation of the accuracy and running time of
each group using BiPathCNNs from different groups; Figure S3:
Identification performance of each tool with 10% base substitu-
tions or 10% indels (insertions or deletions) using sequences in
Group D. Figure S4: Recognition rate of prophages from PhAn-
ToMe database; Figure S5: Performance of PPR-Meta under dif-
ferent thresholds.
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