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ABSTRACT

The number of amino acids that occupy a given protein site during evolution reflects
the selective constraints operating on the site. This evolutionary variability is strongly
influenced by the structural properties of the site in the native structure, and it is
quantified either through sequence entropy or through substitution rates. However,
while the sequence entropy only depends on the equilibrium frequencies of the amino
acids, the substitution rate also depends on the exchangeability matrix that describes
mutations in the mathematical model of the substitution process. Here we apply
two variants of a mathematical model of protein evolution with selection for protein
stability, both against unfolding and against misfolding. Exploiting the approximation
of independent sites, these models allow computing site-specific substitution processes
that satisfy global constraints on folding stability. We find that site-specific substitution
rates do not depend only on the selective constraints acting on the site, quantified
through its sequence entropy. In fact, polar sites evolve faster than hydrophobic
sites even for equal sequence entropy, as a consequence of the fact that polar amino
acids are characterized by higher mutational exchangeability than hydrophobic ones.
Accordingly, the model predicts that more polar proteins tend to evolve faster.
Nevertheless, these results change if we compare proteins that evolve under different
mutation biases, such as orthologous proteins in different bacterial genomes. In this
case, the substitution rates are faster in genomes that evolve under mutational bias that
favor hydrophobic amino acids by preferentially incorporating the nucleotide Thymine
that is more frequent in hydrophobic codons. This appearingly contradictory result
arises because buried sites occupied by hydrophobic amino acids are characterized by
larger selective factors that largely amplify the substitution rate between hydrophobic
amino acids, while the selective factors of exposed sites have a weaker effect. Thus,
changes in the mutational bias produce deep effects on the biophysical properties of
the protein (hydrophobicity) and on its evolutionary properties (sequence entropy and
substitution rate) at the same time. The program Prot_evol that implements the two
site-specific substitution processes is freely available at https://ub.cbm.uam.es/prot_
fold_evol/prot_fold_evol_soft_main.php#Prot_Evol.
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INTRODUCTION

The evolutionary variability of an amino acid site in a protein family is an important
indicator of the selective constraints that the site experiences. This variability is usually
quantified either through the sequence entropy (e.g., Goldstein ¢ Pollock, 2017) or
through the substitution rate (e.g., Grishin, Wolf ¢ Koonin, 2000). These two measures
of evolutionary variability are considered to be essentially equivalent, see for instance
the arguments presented in the seminal paper by Halpern ¢ Bruno (1998). Here we
adopt a model of protein evolution with global selective constraints for the maintenance
of the thermodynamic stability of the native state both against unfolding and against
misfolding, and we show that these two measures of evolutionary variability are not in
general equivalent since they are differently influenced by the mutational process, which in
general favors exchanges between polar amino acids, so that for sites with equal sequence
entropy the site-specific substitution rate tends to be higher at exposed sites occupied by
polar amino acids. Because of the same reason, we find that substitution rates averaged
across sites of the same protein are higher for more polar proteins. However, when we
compare different mutational processes, we find the counterintuitive result that mutational
processes that favor hydrophobic residues, such as those taking place in the genomes of
AT rich intracellular bacteria, tend to favor higher substitution rates. This is a result that
we argue is due to the differential constraints imposed by natural selection on buried and
exposed sites.

The evolutionary variability of a protein site is strongly influenced by the structural
properties of the site in the native state of the protein (Echave, Spielman & Wilke, 2016). In
particular, the substitution rate changes dramatically between exposed and buried sites in
such a way that buried sites tend to evolve more slowly than exposed sites. This is generally
attributed to the fact that natural selection imposes stronger constraints on buried sites
(Franzosa ¢ Xia, 2009). It was later shown that the number of native inter-residue contacts
formed by a protein site, which is negatively correlated with the solvent accessibility, is a
stronger predictor of the substitution rate (Yeh et al., 2014).

Two different models rationalize why sites that form many contacts are subject to
stronger selective constraints. The first kind of model, which we call stability-constrained
fitness model, models the fitness as the fraction of protein found in the native state, which
is a sigmoidal function of the folding free energy AG, i.e., f =1/(1+exp(—AG/kT))
(see Goldstein, 2011; Serohijos ¢ Shakhnovich, 2014; Bastolla, Dehouck & Echave, 2017).
The second kind of model is the structurally-constrained model of protein evolution,
which estimates how mutations affect the structure of the native state and computes the
fitness from this predicted structural change (Echave, 2008). In the literature stability-
constrained models are sometimes called structurally-constrained models, but we think
that this wording is misleading, since the fitness function that they assume depends only on
stability and not on structural changes. On the other hand, structurally-constrained models
model the mutation as a perturbation that changes the wild-type as predicted through the
Elastic Network Model (ENM Tirion, 1996) and linear response theory and assume that the
stability does not change. Thus, stability-constrained models predict the effect of mutations
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through the predicted stability change but neglect the effect of the corresponding structure
change, and structure-constrained models adopt the complementary perspective. Of course
mutations modify both the stability and the precise structure of the native state, but current
models of fitness cannot compute both effects.

In a recent work, we have shown that stability-constrained models that take into
account negative design for destabilizing misfolded conformations (Berezovsky, Zeldovich ¢
Shakhnovich, 2007; Noivirt-Brik, Horovitz ¢ Unger, 2009; Minning, Porto ¢ Bastolla, 2013)
predict that both the substitution rate and the entropy are maximal not at exposed sites
with few contacts, as observed, but at sites where the number of contacts is intermediate,
which can accomodate both hydrophobic and polar amino acids and are predicted to be
extremaly tolerant to mutations (Jinmenez, Arenas ¢ Bastolla, 2018). On the other hand,
when stability with respect to misfolding is neglected, stability-constrained models predict
that the variability is maximal at exposed sites with few contacts (Scherrer, Meyer ¢ Wilke,
2012; Echave, Jackson ¢ Wilke, 2015), but these kinds of models overestimate both the
tolerance to mutations and the average hydrophobicity at almost all positions (Jirmenez,
Arenas & Bastolla, 2018) and they score much worse than models that consider misfolding
in likelihood calculations (Arenas, Sanchez-Cobos ¢ Bastolla, 2015), so that models that
consider misfolding have to be preferred. In contrast, structure-constrained models
correctly predict that the variability is inversely related with the number of native contacts
(Huang et al., 2014). These results support the view that the structural effect of mutations
cannot be neglected, in particular at sites with intermediate numbers of contacts that are
extremely tolerant to mutations under the point of view of the stability.

Here we adopt the stability-constrained mean-field (MF, Arenas, Sanchez-Cobos
¢ Bastolla, 2015; Bastolla et al., 2006) and wild-type (WT, Jimenez, Arenas ¢ Bastolla,
2018) models of protein evolution that we used in the above-mentioned study. These
models assume that sites in the protein evolve independently in a site-specific manner,
and determine their site-specific properties by imposing a global constraint on the
thermodynamic stability of the known native state against both unfolding and misfolding.
The MF model significantly improves the likelihood of inferred evolutionary events with
respect to empirical models that do not take into account the structural properties of
each site (Arenas, Sanchez-Cobos ¢ Bastolla, 2015), and it improves the reconstruction of
the stability properties of ancestral sequences (Arenas et al., 2017). The WT model shows
even better performances on several data sets (M Arenas & U Bastolla, in preparation).
Both models exploit the formal analogy between the Boltzmann distribution in statistical
physics, in which the probability of each conformation depends on the energy changed of
sign and on the inverse of the temperature, and the stationary distribution of a protein
family in which the probability of each sequence depends on its fitness and on the effective
population size (Sella ¢ Hirsh, 2005; Mustonen & Lissig, 2005).

In the MF model, the effect on stability of amino-acid a at site i is predicted self-
consistently against the MF distribution at all other sites, in the spirit of mean-field models
in statistical mechanics. In turn, the WT model predicts the effect on stability and fitness
of mutations of the wild-type sequence towards amino acid a at site i. Thus, in theory the
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WT model is more suited for short evolutionary divergences and the MF model is more
suited for long evolutionary divergences (M Arenas & U Bastolla, in preparation).

After the site-specific amino-acid frequencies have been determined, the site-specific
exchangeability matrices that allow constructing the full site-specific substitution process
are computed applying the Halpern and Bruno formulas (Halpern ¢ Brumno, 1998), which
impose that the fixation probabilities agree with Kimura’s formulas (Kimura, 1962). Both
formulas are reproduced below for completeness.

Here we address the question whether the sequence entropy and the substitution
rate are equivalent measures of the evolutionary variability of a position, as suggested
by Halpern ¢ Bruno (1998) who argue that these measures should be positively related
in general. Nevertheless, we find that these two measures are not equivalent, since the
sequence entropy is only influenced by the equilibrium distribution of amino acids while
the substitution rate is also influenced by the mutation process that acts in evolution.
In particular, for equal sequence entropy, sites that are preferentially occupied by amino
acids with higher exchangeability have higher substitution rate, so that the substitution
rate is not a monotonic function of the sequence entropy in general. We also found that
polar amino acids are characterized by higher exchangeability so that, for equal sequence
entropy, exposed sites occupied by polar amino acids tend to substitute faster. However, it
is a bit counterintuitively, but expected on the basis of the present model, that if we simulate
mutational processes that favor hydrophobic amino acids the substitution rate increases
and the maximum across sites of the substitution rate moves towards more hydrophobic
sites, so that which sites are substituted faster ultimately depends on the mutation bias.

MATERIALS AND METHODS

Stability constrained fitness model

Stability constrained models of protein evolution assume that the fitness of a protein with
sequence A is proportional to the fraction of protein that is in the native state, which can be
computed from the folding free energy as (Goldstein, 2011; Serohijos ¢» Shakhnovich, 2014)

F(A) = e AGWIKT (1 +e—AG(A)/kT). 0

The computation is performed assuming that the native contact matrix C™ does not
change in evolution. Upon single mutation, the free energy change AGpyt = AGyi+AAG
is predicted adopting some models of protein stability (see below).

Equilibrium distribution

Another approximation that is often used in these models is that the mutation rate

is extremely slow (N < 1) so that at every time there is only one mutant gene that
“competes” with the wild-type gene for fixation in the population with effective population
size of N individuals. Under this scenario, the probability that the mutation gets fixed in
the population can be computed with Kimura’s formula (Kimura, 1962) as

o= (PA™ ) —g(A™)) _ |

wt mut) __
Pﬁx (A — A ) - e—N(qO(Am"t)—W(AWt)) 1 (2)
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where ¢(A) =log(f (A)) is the logarithmic fitness associated with the amino acid sequence
A, Eq. (1). As it is well known, the fixation probability tends to the neutral limit Pg, = 1/N
when Ag tends to zero, it tends exponentially to zero when Ag is negative and large,
and it tends to 1 —e~2¢ when Ag is positive. Nearly neutral mutations with selective
effect |Ap| ~ 1/N are likely to be fixed even when their effect is deleterious (Ohta, 1976).
Importantly, the above fixation probability defines a Monte Carlo process in sequence space
that fulfils detailed balance, so that its stationary distribution can be computed exactly
(Sella & Hirsh, 2005, Mustonen ¢ Lissig, 2005), except for the normalization constant,
which would require a sum over 20" possible sequences A=A, ---Ap:

P(Ay---Ar) ocexp((N —1)p(Ar-+-Ar)) (3)

Note the analogy between this formula and the Boltzmann distribution with energy equal
to —¢ and temperature equal to 1/(N —1). This explicit formula holds when the mutation
process is unbiased, so that all sequences are equally probable under the mutation model.
In the presence of mutation bias, the stationary distribution can be determined as the
distribution with minimal Kullback—Leibler divergence from the mutational distribution,
dg, =Y 4P™(A) [log(Pm“t(A)) —log(P(A))], with a constraint on the average fitness
> 4P(A)p(A). This condition generalizes the Boltzmann principle, and it was adopted
for developing the mean-field model of protein evolution (Arenas, Sanchez-Cobos &
Bastolla, 2015).

Mean-field model of protein evolution
The mean-field (MF) model assumes that the equilibrium amino acid distribution is the
product of independent distributions at each protein site,

L
P(A,...,AL) = ]_[Pi(A,-). (4)
=1

Of course this assumption is not realistic, since different sites determine protein stability
through their interactions, but it is needed for performing likelihood computations in
an efficient way. Our strategy consists in determining the effect of a mutation at site i
self-consistently, with respect to the MF distribution at all other sites. For simplicity, we
shall sometimes use the vectorial notation P; for indicating Pi(a), where a denotes one of
the twenty amino acid types.

The mean-field distribution is determined by minimizing the Kullback-Leibler
divergence (distance between distribution) with respect to a global mutational distribution
PM e, Y Pilog(Pi/PM™). We impose a constraint on the average fitness, which is
transformed into a constraint on the folding free energy AG. This condition on stability is
imposed through the Lagrange multiplier A that represents the strength of selection and
is related with the effective population size. Furthermore, we impose the normalization
constraints Y P! =1 at all sites.

Since the parameters that determine the folding free energy are fixed for all proteins
(see below), the only free parameters of the model are A and P™"". The frequencies are
generally determined from the observed sequences in the protein of known structures
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and the other sequences of the protein family, while A is determined by maximizing the

log-likelihood of the PDB sequence, Y ;log(P*(AYPP)), which yields a well-defined single

maximum. The pre-computation of the moments of the contacts makes the computation
very fast, it runs in a few minutes even for proteins of several hundreds of amino acids. For
further computational details see (Arenas, Sanchez-Cobos ¢ Bastolla, 2015).

Wild-type model of protein evolution

In the wild-type model (Jimenez, Arenas ¢ Bastolla, 2018), we also assume that sites evolve
independently. We further assume that the site-specific distribution P! of amino acid a at
position i is proportional to the background distribution P! multiplied by the exponential
of the logarithmic fitness of the corresponding mutation in which the wild-type amino
acid in the PDB A*" is substituted by the new amino acid a:

Py oc P exp (Ag (mut(A]" — a))). ?

The fitness of a sequence is computed as in Eq. (1). The parameter A is again determined
by maximizing the likelihood of the wild-type sequence, Y_,log(PWT/(ANT)).

Sequence entropy
The sequence entropy at position i measures the variability of this position as

20
Si=—Y Pilog(P}), (6)
a=1

where P;; is obtained either from the evolutionary model (mean-field or wild-type) or
from a MSA or from pooled amino acids at equivalent structural positions with the same
number of contacts.

Halpern-Bruno exchangeability matrices

To fully specify the site-specific substitution processes, besides the site-specific frequencies
P! we need to compute consistent exchangeability matrices with the Halpern-Bruno
formulas (Halpern ¢ Bruno, 1998).

Given a site-specific amino acid distribution that reflects selective constraints, the
Halpern-Bruno method allows computing the rate matrices of the associated site-specific
substitution processes Q;b = E{ibPZ’; that are produced by a global (not site-specific) mutation
process consistent together with Kimura’s fixation probability, Eq. (2).

Without loss of generality, we parametrize the rate matrix of the global mutation process
as Q" = EMY P, where PI™ is the stationary matrix of the mutation process and E5™
is its exchangeability matrix. To simplify formulas, here we assume detailed balance, i.e.,
we assume that ER"" is a symmetric matrix (this condition can be easily relaxed). We write
the rate matrices as Q;b = Qg},‘"Pﬁx(f; , fhi), where fu’ is the “fitness” of amino acid a at site 1.
We impose that Py is the fixation probability Eq. (2). Halpern and Bruno showed that the
site-specific fitness can be inferred from the stationary distribution from P! = pmut (f;i)N,
yielding the following site-specific substitution process

Q,, =E},P; (7)
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In (FS€11) In (Fsel,i)

i mut
E h_E Fse11 Fselz (8>
pi
with FSel — (9)
Pmut

The selective factors F5¢'' quantify how much the site-specific distribution P! deviates
from the background distribution P™"* induced by mutation alone.

It can be immediately seen that the exchangeability matrices E/, are symmetric, which
implies that detailed balance holds and P! is the stationary distribution.

Evolutionary rates

For neutral substitutions with F5¢/ = FZel’i, in particular synonymous substitutions

a = b, applying 'Hopital’s rule we find Ei, = E®"/F;®" and Q|, = Q™™, i.e., the rate
of synonymous substitutions equals the mutation rate, in agreement with Kimura’s theory.
If the amino acid b is favored by selection with respect to amino acid a, F sel "> FS sel.i_ then
the substitution rate is enhanced with respect to the neutral rate, and it is decreased in the
opposite case. Because of detailed balance, the flux in one direction and the other are equal,
R, =PiP/E!, =R! ,with

An(F5) — In(Fsebi)

Fsel i Fsel i (10)

ab — (PmuthutEmut)Fsel 1Fsel i

In the above equation, the flux is partitioned into a global component that is attributed
to the mutation process (superscript mut) and a site-specific component that is attributed
to selection (superscript sel), which allows analysing the contributions of mutation and
selection separately. The flux is maximal for substitutions ab that have large and almost
equal selective factors F3¢' &~ F;*"* and have large mutational flux P™PMUtEmut The
site-specific substitution rates are computed as the weighted average of the substitution
rate matrix Q,p = E;bP;;,

= PIELPi=) Rl (11)
a#b a#b
Since the flux between any pair of amino acids a and b decreases when their difference of
fitness increases, Halpern ¢ Bruno, (1998) argued that the substitution rate R'is higher at
position with higher sequence entropy. However, this argument is not rigorously valid,
since it neglects the fact that the substitution rate is enhanced at sites where the site-specific
" are correlated with the global mutational flux (PR P Emut),

Consistent with this argument, we observed that the substitution rate is not a strictly

selective favtors F sel, i 'F,

increasing function of sequence entropy but, for the same sequence entropy, it tends to
increase at sites that favor polar amino acids (see ‘Results’), which are characterized by
higher mutational fluxes than hydrophobic amino acids.

Mutation process

Finally, we have to define the global exchangeability matrix

E™ that characterizes the

mutation process. For this, we consider four types of mutational models. To compare
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the resulting substitution rates, in all cases we fix the scale of the exchangeability matrix

equating the substitution rate under mutation alone, 3, P;" P EGH = 1.

1. In the first model, the global exchangeability matrix is equal to the empirical
exchangeability matrix (WAG, Whelan ¢ Goldman, 2001; or JTT, Jones, Taylor
¢ Thornton, 1992), i.e., MU = E-"". We call this model the empirical (emp)
exchangeability matrix. Since empirical substitution processes include information
both on mutation and selection, we expect that they strongly correlate with the
selection process.

2. In the second model, we remove the effect of selection from the empirical substitution
model by imposing that for each pair of amino acids, the flux predicted by the global

emp

model and averaged over all positions is equal to the empirical flux P; P, TEq, ",

which is the observational data from which empirical models are deduced:

1,1 1,i
(P;nutPLr’nutEil;x) % ZFsel,iF;el,iln(Fbse l) - ln(Fase l)

: = BB 12

,’ Fbsel,i _ Fsel,i
where we use more compact matricial notation. We call the corresponding
exchangebility matrix El™* the flux matrix (flux).This mutation model yields optimal
results in phylogenetic inference (Arenas, Sanchez-Cobos ¢ Bastolla, 2015).

3. Thirdly, we model the mutational process at the nucleotide level, using the genetic
code and parameterizing the process through the nucleotide frequencies and the
transition-transversion ratio x. The four free parameters are fixed by imposing that
the resulting background distribution PI"" yields amino acid frequencies as close as
possible to those observed in the data, P;’bs (Arenas, Sanchez-Cobos ¢ Bastolla, 2015),
as detailed below. We call the corresponding exchangeability matrix the optimized
nucleotide (nuc_opt) matrix.

4. Thelast model is identical to the nuc_opt model, except that the nucleotide frequencies
are not optimized but they are input parameters. In this way, we can vary the
average hydrophobicity of the complete model by varying the Thymine content,
since hydrophobic amino acids are enriched in the T base at second codon position.
We call this model the nuc_var model.

In the nuc models, for any set of nucleotide frequencies and transition-tranversion rate
we combine the substitution process at the nucleotide level with a selection process that
assigns fitness one to sense codons and fitness zero to stop codons. Detailed balance is
fulfilled at the nucleotide level, but it is only approximated at the codon level because of this
selection against stop codons, therefore the transition to transversion rate can influence
the stationary frequencies and we have to compute the stationary distribution of the 61
sense codons numerically.

More precisely, we model the mutation rate between two codons differing at one
position, say the third one (111,13 and nynynj) as ;uc(ng,n;)f“uc(n;)S(nlnzng), where
w is a global rate parameter, (3, n;) is one if ns, n; are related through a transversion
and is the transition-tranversion rate otherwise, f"“(n;) is the stationary frequency
of the new nucleotide and S(nn,1}) is zero if nynyny is a stop codon, one otherwise.
After the frequencies of the 61 sense codons evolve to their equilibrium state, the
stationary frequencies of amino acids P are computed summing over codons and
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the exchangeability matrix is computed from the equilibrium fluxes between pairs of
codons that code for any pair of amino acids. In the nuc_opt model, the score of each set
of mutation parameters is computed as the likelihood of the observed number of amino
acids, 3, 1n°%(a)log (P;nut), and the parameters that maximize the likelihood are chosen.

Data and observed substitution rates

We performed our computations on 213 proteins that were examined in a previous study
(Echave, Jackson ¢ Wilke, 2015). The results were qualitatively identical from one protein
to the other.

The observed substitution rates of 213 proteins that we show for comparison were
estimated in (Echave, Jackson ¢ Wilke, 2015) from the MSA of homologous sequences
through the program Rate4Site (Pupko et al., 2002), which builds the phylogenetic tree
using a neighbour-joining algorithm (Saitou ¢ Nei, 1987) and estimates rates with an
empirical Bayesian approach adopting the JTT model of sequence evolution (Jones, Taylor
& Thornton, 1992). The multiple sequence alignments were generously provided by Julidn
Echave and are publicly available at the url https://github.com/wilkelab/therm_constraints

rate_variation.

Modelling stability against unfolded and misfolded states
Finally, for completeness we descibe here how we estimate the folding free energy AG of
the experimentally known native state of a protein.

For this purpose, we adopt the contact matrix representation of the protein structure,
consisting in the following: for each pair of residues at positions i and j along the
polypeptidic chain, Cj; equals one if the residues are in contact and zero otherwise. We
define two residues to be in contact if any pair of their heavy atoms are closer than 4.5 A.
Since contacts with |i —j| <2 are formed in almost all structures, they do not contribute
to the free energy difference between the native and the misfolded ensemble, and we set
Cij =0 if |i—j| < 2. The free energy of a protein in the mesoscopic structure described
by Cj; is modelled as a sum of contact interactions, E(C,A) = ij CijU(A;,Aj), which
depends on the type of amino acids in contact A; and A; and on 210 contact interaction
parameters U (a, b), for which we adopt the parameters determined in (Bastolla, Vendruscolo
& Knapp, 2000).

For simplicity, we neglect the conformational entropy of the folded native state and
CP U (A, A)). Regarding the unfolded

i<j i
state, we neglect their contact interactions and estimate its free energy as Gy ~ —TLSy,

estimate its free energy as Gpa(C™,A) ~ )"

where T is the temperature in units in which kg = 1, L is chain length and Sy is the
conformational entropy per residue of an unfolded chain. We compute the free energy of
the misfolded state from the partition function of the contact energy E(C,A) over a set of
compact contact matrices C of L residues that are obtained from the PDB. In agreement
with previous studies (Garel & Orland, 1988; Shakhnovich ¢ Gutin, 1989; Bryngelson et
al., 1995), the resulting free energy is approximately described by the Random Energy
Model (REM) (Derrida, 1981), with the addition of the third moment of the contact energy
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(Minning, Porto ¢ Bastolla, 2013):

Gm¢E—Jﬁg<§:gZ@%U%@VH&Q>
C

((E—(E)?) N ((E—(E))?)
2T 6T?

where LSc is the logarithm of the number of compact contact matrices, (.) represents the

~ (E) — —LScT (13)

average over the set of alternative compact contact matrices of L residues. This estimate
only holds above the freezing temperature, while the free energy is kept constant below the
freezing temperature (Derrida, 1981). We assume for simplicity that the conformational
entropy, S(Cjj), is approximately the same for all compact structures including the native
one, and it can be neglected for computing free energy differences. The mean values of the
energy can be computed from the mean values of the contacts, which are computed
at the beginning and tabulated to accelerate the computation: (E) = ij(Cz-j)Uij,
((E—(E)) =3",_; k<1 ((C;jCu) = (Cij){Cu)) U;j Ui with Uy = U(A;,Aj). We also adopt
the approximation that (Cjj) only depends on |i—j| (Minning, Porto & Bastolla, 2013).
Putting together these free energy estimates, we obtain the free energy difference between
the native and the non-native states as

AG(C™, A) = Gyat — kT log (e_G““Sf/kT + e_GU/kT) , (14)

where the free energy of the non-native state is computed as a Boltzmann average, which is
essentially equal to Gp,;sf when the sequence is hydrophobic (Gpist — Gu /kT < —kT') and
is essentially equal to Gy when the sequence is hydrophylic (Gpist — Gu /kT >> kT'). For
neglecting stability against misfolding, we compute AG = Gt (C™, A) 4+ LSy .

RESULTS

Dependence of the substitution rate on the global exchangeability
model

In this work we studied two measures of the evolutionary variability of protein sites,
sequence entropy and substitution rate, predicted through the site-specific stability
constrained substitution models that we introduced and studied recently (Arenas, Sanchez-
Cobos & Bastolla, 2015; Jimenez, Arenas ¢ Bastolla, 2018). The results that we present arise
from the predictions of our computational models, not from the analysis of natural protein
sequences, thus they ignore important aspects of protein biology such as active sites and
protein-protein interactions. We have to pay this price in order to address general questions
such as the comparison between the two measures of evolutionary variability and how they
are affected by the mutational process and by selection on protein stability.

The models adopted in this study are described in Methods and schematically represented
in Fig. 1. They simulate an evolutionary process where mutations follow a global mutational
process modelled through a global amino acid distribution P and exchangeability matrix
EM (Fig. 1A), and they modify the stability of the protein AG, which determines fitness
through Eq. (1) (Fig. 1B). We adopt the approximation that sites of the protein evolve
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Figure 1 Schematic representation of the site-specific stability constrained substitution models stud-

ied in this work.
Full-size & DOI: 10.7717/peer;j.5549/fig-1

independently under site-specific substitution processes globally governed by the fitness
function of Eq. (1) (Fig. 1C). Since the stability AG depends on pairwise interactions, the
fitness effect of a mutation at a site depends on the amino acids present at all other sites.
In order to compute independent amino acid frequencies at each site, we perform two
type of approximations: the mean-field approximation (Fig. 1D; Arenas, Sanchez-Cobos
¢ Bastolla, 2015), which evaluates the effect of the mutation on stability considering the
mean-field of the other sites, and the wild-type approximation (Fig. 1E; Jimenez, Arenas
¢ Bastolla, 2018), which evaluates the effect of the mutation on stability when the other
sites are occupied by the same amino acid as in the PDB sequence. We then compute
site-specific substitution processes obtained by combining the global mutational process
and the site-specific fixation probabilities computed from the site-specific amino acid
frequencies through the Halpern-Bruno formula, Eq. (10).

We briefly report here previous results obtained with the stability-constrained models.
Since the main component of contact interaction matrices like the one that we adopt here is
hydrophobicity (i.e., U(a,b) ~ eh(a)h(b), where h(a) is related with the hydrophobicity of
amino acid a), the site-specific amino acid frequencies obtained under the stability-
constrained model yield high average hydrophobicity at buried sites at which the
native contact matrix has many contacts. More precisely, sites constrained to be highly
hydrophobic have large components of the principal eigenvector of the contact matrix
(Bastolla et al., 2005) or, almost equivalently, large effective connectivity (Bastolla et al.,
2008). These structural descriptors are strongly related with the number of contacts but
do not coincide with them. These stability constraints in turn influence the variability of
the amino acid distribution (Porto et al., 2005) in such a way that sites that are constrained
to have either very high or very low average hydrophobic (averaged over the site-specific
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amino acid distribution) are characterized by low entropy, while sites that can accomodate
both polar and hydrophobic amino acids are characterized by high entropy. Because of
this reason, the plot of the sequence entropy versus hydrophobicity and versus number of
contacts has a bell shape.

These stability constraints that influence the sequence entropy also influence the
site-specific substitution rates. However, we found that the substitution rates depend not
only on the selective forces that act specifically at each protein site, but also on the global
exchangeability matrix that represents the mutation process.

We considered three models of global exchangeability matrices (see ‘Materials and
Methods’): (1) Empirical (emp) exchangeability matrices, such as the familiar WAG
(Whelan ¢ Goldman, 2001) or JTT (Jones, Taylor & Thornton, 1992) matrices; (2) Flux
exchangeability matrices (flux), which are obtained from empirical exchangeability matrices
removing the selective factors represented in the stability-constrained mean-field model,
so that the average flux predicted by the model between any pair of amino acids coincides
with the observed empirical flux, see Eq. (12); (3) Exchangeability matrices between amino
acids obtained from a mutational process at the nucleotide level with parameters optimized
by maximizing the likelihood of the observed amino acid composition (nuc_opt); (4)
Exchangeability matrices obtained from a mutational process at the nucleotide level with
varying parameters, that allows studying the effect of varying hydrophobicity (nuc_var).

We found that empirical exchangeability matrices (emp) produce the larger substitution
rates (Figs. 2B and 2C ). These matrices take into account both the mutation process and
the selection process, since they have been obtained from substitutions that have been
fixed through natural selection. From Eq. (10) we can see that the substitution rate is
enhanced when the site-specific selective factors F;el’iFZel’i are correlated with the global
mutational flux (PP ERU). Since the empirical substitution models were determined
in such a way that their flux equals the flux observed in real data, which accounts both
for the mutational process and for selection, we expect and find that the empirical flux
is strongly correlated with the selective factors F{jel’iF;el’i averaged across all protein sites.
This argument explains why the empirical exchangeability matrices yield the highest
substitution rates.

The flux exchangeability matrices remove from the empirical exchangeability matrix
the effect of natural selection that is represented in the mean-field model averaged across
sites. Consistently, we find that the substitution rates determined through the flux model
are smaller than those determined with the emp model (Figs. 2B and 2C). We also found
in previous work that the flux model yields larger likelihood in phylogenetic inference
(Arenas, Sanchez-Cobos ¢ Bastolla, 2015). Because of these results, the flux model is our
default exchangeability model.

Figure 2C shows that the nuc_opt model with mutations at the nucleotide level
and optimized parameters produces lower substitution rates than the flux model when
associated with the MF model of selective constraints, which indicates that the flux model
combined with the MF model may still include some selection. However, when the WT
model of selection is applied, the nuc_opt model again produces lower substitution rates
than the flux model for exposed sites with few contacts and high entropy, but the flux model
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Figure 2 Effect of the exchangeability model on substitution rates. The plots represent substitution rate
versus sequence entropy (A—C) and versus number of native contacts (D-F) for MSA (A, D), WT model
(B, E) and MF model (C, F). Simulations are performed with the emp, flux and nuc_opt models of the
global exchangeability matrix. In all cases the emp model produces the highest substitution rates, consis-

tent with the fact that this model also represents selection.
Full-size & DOI: 10.7717/peerj.5549/fig-2

produces lower substitution rates for buried sites with many contacts and low entropy
(Figs. 2B and 2E). Note that the WT model represents stronger selective constraints than
the MF model, since it generally predicts lower sequence entropies and substitution rates.
Thus, these results suggest that the flux model associated with the WT model is effective in
removing selective constraints for sites with many contacts, but less effective for sites with
few contacts and high entropy.

Note that the curves that represent the substitution rates versus the sequence
entropy tend to collapse for very high rates. This is due to the fact that all the global
exchangeability matrices are normalized in such a way that their average flux equals one,
3 pPrutpmutEmut — 1 This flux is achieved at neutral sites where the selective factors F¢i

are equal and the entropy is maximal.
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Substitution rates are different for hydrophobic and hydrophylic sites
with the same entropy

Next, we investigated more in detail the relationship between site-specific sequence
entropies and substitution rates. Since the flux between any pair of amino acids a and b,
Eq. (10), decreases when their difference of fitness increases, Halpern and Bruno argued
that the substitution rate R’ is higher at position with higher sequence entropy (Halpern ¢
Bruno, 1998). However, this argument is not rigorously valid, since it neglects the fact that
the substitution rate is enhanced at sites where the site-specific selective factors F Zel’iFgel’i
are correlated with the global mutational flux (P P™ ES™). One can see in Figs. 2B-2C
that sites with larger entropy tend to have on the average larger substitution rates, as
predicted by Halpern ¢» Bruno (1998), but the substitution rate is not a strictly increasing
function of sequence entropy, not even when it is averaged over different sites.

We then show in Fig. 3 the detailed plot of the substitution rate versus the sequence
entropy for all sites of a small protein, chosen in such a way that we can spot all of the sites.
We can clearly see in Fig. 3 two branches that correspond to different numbers of native
contacts. Sites with few contacts, which tend to be occupied by polar amino acids, evolve
faster than sites with many contacts, occupied by hydrophobic amino acids, even if their
sequence entropy is equal. With the flux model of the mutation process, which we consider
the most reliable model since it reproduces the empirically observed flux between all pairs
of amino acids, this happens for both the MF and the WT model of natural selection (plots
C and D). All other studied proteins present the same trend (see Figs. S1 and S2), but for
large proteins the representation is less clear. When we model the mutation process at the
codon level through the model nuc_opt, whose parameters are separately optimized for
each protein, the differences between the two branches decrease considerably, in particular
when we apply the WT model of selection (Fig. 3B) and the trend may change from one
protein to the other, since different proteins evolve under different mutation processes,
in such a way that the buried branch may evolve faster than the exposed branch for some
protein, see Figs. S3 and S4.

Since sequence entropy is a measure of the selective constraints, this difference between
sites with equal sequence entropy must be attributed to the mutation process embodied in
the exchangeability matrix, not to natural selection. The explanation of this finding is based
on Eq. (10): polar amino acids tend to have higher mutational fluxes (P;n“tPgl“‘E;‘;“t) than
hydrophobic amino acids, therefore exposed sites in which polar amino acids have larger
site-specific selective factors F, ;el’iFgel’i tend to evolve faster than buried sites.

This result contradicts the expectation that the site-specifi substitution rates are
monotonic functions of the sequence entropy (Halpern ¢ Brumno, 1998): one can see from
Fig. 3 that sites characterized by lower entropy can substitute faster if they are exposed sites
occupied by polar amino acids.

One may note thatin Fig. 3 some white points with small number of contacts overlap with
the black points with large number of contacts. This is due to the fact that the number of
contacts is only an approximate predictor of the selective factors favoring hydrophobicity,
while better correlation with the average hydrophobicity is achieved using the principal
eigenvector of the contact matrix (Bastolla et al., 2005) or the effective connectivity profile
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Figure 3 Each point represents the substitution rate versus the sequence entropy for all sites of the ri-
bonuclease protein with PDB code 1pyl, which is representative of our data set and makes the figure
easier to interpret because of its small number of sites. One can spot two branches, corresponding to
sites that evolve faster and slower for the same sequence entropy. The two branches correspond to polar
sites with few contacts (white circles) and hydrophobic sites with many contacts (black circles), respec-
tively. The four plots represent various combinations of selection (MF, WT) and mutation (nuc_opt, flux)
models. (A) MF and nuc_opt. (B) WT and nuc_opt. (C) MF and flux. (D) WT and flux.

Full-size & DOTI: 10.7717/peerj.5549/fig-3

that generalizes it for multidomain proteins (Bastolla et al., 2008), which are not merely
local descriptors as the number of contacts but also represent the global topology of the
native contact matrix.

More hydrophobic proteins substitute more slowly, but mutation bias
towards hydrophobicity increases the substitution rates

After investigating the relationship between hydrophobicity and substitution rates
comparing individual sites, we perform the same analysis comparing different proteins.
For this purpose, we group the 213 proteins in our data set according to their predicted
average hydrophobicity under the same mutational process and compare the substitution
rates of groups characterized by different hydophobicity. In Fig. 4, each point represents a
group of proteins with similar mean hydrophobicity. Each curve is obtained for a different
mutation process with its background distribution P™" and exchangeability matrix E™".
One can see that, for the flux mutation process (black circles in Fig. 4), more polar proteins
tend to evolve more rapidly, consistent with what we observed for polar sites in Fig. 3.
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Figure 4 In this plot each point represents a group of proteins with similar mean hydrophobicity in
the evolutionary model, and each curve is obtained by varying the global mutational distribution and
exchangeability matrix, which represent the mutation process. One can see that, for the same mutation
process, more hydrophobic proteins tend to evolve more slowly, except when the mutation process in-
duces very high hydrophobicity, in which case the substitution rate becomes an increasing function of hy-
drophobicity. On the other hand, mutation processes with extreme properties (very high or very low hy-
drophobicity) tend to increase the substitution rate. The two plots represent the two selection models. (A)
MF. (B) WT. Each curve in the plots represent one mutation model: flux, nuc_opt, and five flavours of the
nuc_var model with different values of the equilibrium GC content.
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Once again, this behavior may be explained by considering that more polar amino acids
have higher mutational fluxes.

The above also holds for the nuc_opt model, in which the mutation process is separately
optimized for each protein, but in this case when the WT selection model is used the
maximum of the substitution rate is achieved for proteins of intermediate hydrophobicity
(see red squares in Fig. 4B), consistent with the observation that with the nuc_opt model
the hydrophobic sites may evolve slightly faster than the polar sites in some proteins
characterized by a mutation process that favors hydrophobic residues, see Figs. S3 and S4).

We then consider the same mutation process for all proteins, parameterized by the
G+C content at the mutational equilibrium (nuc_var model). Since Thymine at second
codon position almost always codes for hydrophobic amino acids, there is a negative
correlation between G+C content of the mutation model and the average hydrophobicity
of the protein sequence. Varying the mutation bias we construct different sets of model
proteins that present varying hydrophobicity and are characterized by different mutational
fluxes. In this way, we can investigate how the mutation bias influcence the biophysical
properties (hydrophobicity) and the evolutionary properties (substitution rate, sequence
entropy) of an evolving protein. When the GC content is high and the hydrophobicity is
low (GC > 0.35 with the MF model, Fig. 4A and GC > 0.5 with the WT model, Fig. 4B)
more polar proteins tend to evolve faster, as we observed with the flux model. However,
when the mutation process induces high hydrophobicity (GC = 0.2 in Fig. 4A and GC
<0.5 in Fig. 4B), the substitution rate becomes an increasing function of hydrophobicity.
This is easily rationalized by the fact that, when the background distribution P™"" is biased
towards hydrophobic amino acids, the mutational flux P"P;" El* is higher between
pairs of hydrophobic residues, and the other way round.
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Figure 5 Each point represents a set of protein sites with similar average hydrophobicity in the evolu-
tionary model. The sequence entropy has a universal shape as a function of the average hydrophobicity,
with a maximum at 0.14, which is the mean hydrophobicity of the uniform distribution of amino acids.
Changes in the background distribution mostly shift the sequence entropy curves without changing the
position of the maximum, but they affect the values of entropy. The largest entropies are obtained for the
mutation model optimized for each protein sequence (thick black line) and for the mutation bias with
GC content equal to 0.40, which yield only slightly hydrophobic sequences. The two plots represent the
two selection models. (A) MF. (B) WT. Each curve in the plots represent one mutation model: nuc_opt,
and five flavours of the nuc_var model with different values of the equilibrium GC content. The mutation
model flux gives in this case exactly the same curve as nuc_opt and it is not represented.
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Different G+C content in Fig. 4 represent different mutational processes, which may
be interpreted as bacterial species characterized by different GC bias. For the MF model
(plot A), one can see that mutational processes with extreme bias (very high or very low
G+C content and hydrophobicity) tend to increase the average substitution rate, while for
the WT model (plot B) mutational processes biased towards hydrophobic residues such
as GC = 0.2 have higher substitution rates. Therefore, although hydrophobicity is nega-
tively correlated with the substitution rate when we compare different proteins evolving
with the flux mutational process (black points in Figs. 4 and Figs. 3C and 3D) or with
mutational processes with high G+C, the correlation becomes positive if we compare
different mutational processes.

Influence of the mutation bias on sequence entropies
Next, we study how the shape of the entropy-hydrophobicity curve depends on the mutation
bias. In Fig. 5 each point represents a set of protein sites with similar hydrophobicity in the
stability-constrained evolutionary model. The sequence entropy has an almost universal
bell shape as a function of the average hydrophobicity of the site, with a maximum when
the average hydrophobicity is approximately 0.14, which is the average hydrophobicity of
the uniform distribution of amino acids. This result is of course not surprising, since sites
with very high or low average hydrophobicity have distributions that favor only the most
hydrophobic or polar amino acids, while all amino acids are allowed when the average
hydrophobicity equals the one of the uniform distribution.

Changes in the mutation bias do not change the position of the maximum, but they
strongly shift the sequence entropy curves in the vertical direction. The largest entropies are
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obtained for the mutation model nuc_opt optimized separately from each PDB sequence
(thick black line) and for the mutation bias with G4C content equal to 0.40, which
has a small bias towards slightly hydrophobic sequences. Extreme mutation bias both
towards hydrophobic (low GC) and polar (high GC) amino acids yield very reduced
sequence entropies, which means that selection must impose stronger constraints in order
to preserve the average hydrophobicity needed for stable proteins. This result is consistent
with the finding that, for equal population size, the average fitness achieved in evolution
has a maximum as a function of the mutation bias, and it is low for extreme mutation
bias either toward hydrophobic or towards hydrophylic sequences (Mendez et al., 2010;
Bastolla, Dehouck ¢~ Echave, 2017).

Influence of hydrophobicity on substitution rates

We now study the relationship between site-specific hydrophobicity and site-specific
substitution rate. As in the previous figure, also in Fig. 6 each point represents a set of
protein sites with similar average hydrophobicity in the stability-constrained evolutionary
model, and we plot the average substitution rate versus the average hydrophobicity.
Different from the shape of the sequence entropy, the shape of the substitution rate curve
clearly depends on the mutation bias. The average hydropobicity at which the maximum
substitution rate is achieved decreases with the G+C content or, equivalently, it increases
with the average hydrophobicity of the mutation process. In other words, when the
mutation process favors the exchange of hydrophobic amino acids, the maximum of the
substitution rate is achieved at sites that are more hydrophobic, as expected on the basis of
Eq. (10) that suggests that sites where the site-specific selective factors are correlated with
the mutational flux have higher substitution rates. This result confirms that the mutation
process has a strong influence on the substitution rates.

Consistent with Fig. 4, the substitution rate at the maximum tends to increase for
mutation processes that favor higher hydrophobicity (lower G+C bias), but for the MF
model (plot A) they also increase for extremely polar mutation bias (G4C content 0.8).
Consistent with the results reported in Fig. 2, the flux model of the exchangeability matrix
(thick black line) predicts higher substitution rates than the nuc_opt model (red) when
applied together with the MF model (Fig. 4A), but when it is applied together with the
WT model it predicts lower substitution rates at hydrophobic sites with many contacts
(Fig. 4B), suggesting that the WT model is effective at removing the effect of selection from
the flux model at these buried sites.

DISCUSSION AND CONCLUSIONS

Here we studied how the evolutionary variability of proteins is influenced by the underlying
mutation process, adopting a model of stability-constrained protein evolution with
selection on the stability of the native state against both unfolding and misfolding.

We found that the sequence entropy and the substitution rate are not equivalent
measures of the evolutionary variability of the protein sites, as it was expected based on
the arguments presented in the seminal paper by Halpern ¢ Bruno (1998). These two
measures are positively correlated, as seen from Fig. 2, which shows that the substitution
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Figure 6 Each point represents a set of protein sites with similar hydrophobicity in the evolutionary
model. The substitution rate shows a maximum whose position depends on the mutation process. The hy-
dropobicity at which the maximum rate is achieved increases with the mean hydrophobicity of the muta-
tion process (lower GC content). The substitution rates tend to increase for mutation processes that yield
higher hydrophobicity (lower GC content), but for the MF model (plot A) they also increase for extremely
polar mutation bias (GC content 0.8). The two plots represent the two selection models. (A) MF. (B) WT.
Each curve in the plots represent one mutation model: flux, nuc_opt, and five flavours of the nuc_var
model with different values of the equilibrium GC content.

Full-size & DOI: 10.7717/peerj.5549/fig-6

rate tends to increase for sites with higher sequence entropy. Nevertheless, sites with
the same sequence entropy are characterized by different substitution rates, which are
systematically higher for polar sites than for hydrophobic sites (Fig. 3). This difference is
not due to different selective constraints, which are quantified by sequence entropy, but
it is due to the different exchangeability of polar and hydrophobic amino acids, which
does not influence the sequence entropy but influences the substitution rate according
to Eq. (10). This equation shows that the substitution rate is larger at sites where the
site-specific selective factors are correlated with the global mutational flux. In particular,
at exposed sites polar residues have higher selective factors, and under the flux model
these residues are characterized by high mutational fluxes, which explains why exposed
sites tend to evolve faster than buried sites with the same sequence entropy. This result is
independent of the protein structure and robust with respect to changes of the selection
model (WT or MF). As a consequence, more polar proteins are predicted to evolve faster
than proteins with large mean hydrophobicity (Fig. 4).

When we apply the nuc_opt codon mutation model based on nucleotide frequencies
separately optimized for each protein, we still observe that sites with the same entropy
evolve with different rates depending on whether they are exposed or buried, but the
differences decrease (Fig. 3) and, for some proteins, buried sites may evolve faster than
polar sites with the same entropy (Figs. 53 and 54), although there is still a negative
correlation between the substitution rate of a protein and its hydrophobicity (Fig. 4). This
is consistent with the observation that, for low G4C mutation bias that favor hydrophobic
residues, the correlation between the substitution rate and the hydrophobicity of proteins
becomes positive (see Fig. 4), as expected based on Eq. (10).
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We then compare different mutation biases applied to all proteins of our data set. The
average substitution rates tend to be larger for mutation bias favoring hydrophobic residues
(low G+C) (Figs. 4 and 6). Thus, the comparison of proteins with different hydrophobicity
under the same mutation model and the comparison between different mutation processes,
such as those happening in different bacterial genomes, yield contrasting results for the
substitution rates: substitution rates tend to be higher for more polar proteins evolving
under the same mutation process, but they tend to be higher in organisms with mutation
bias towards A+T that favor hydrophobic residues, such as intracellular bacteria. Note that
the substitution rates also increase for mutation bias favoring very polar amino acids (high
G+C), but the latter happens only when the MF model of selection is applied.

As Eq. (10) shows, the higher substitution rate for equal sequence entropy observed
at exposed sites is attributable to the higher exchangeability of polar residues, which is a
property of the mutational process. In contrast, the differences in substitution rates that we
observe for proteins evolving under different mutational processes (Fig. 6) is likely to be
caused at least in part by natural selection. In fact, buried sites are characterized by lower
entropy than exposed sites (Fig. 5), which indicates that they experience stronger selective
constraints and their selective factors F3°# are more skewed towards hydrophobic residues.
When the mutation bias towards A+T increases, the mutational flux P P"™ER™ of
hydrophobic residues increases and the site-specific substitution rate given by Eq. (10)
increases at buried sites characterized by skewed F:¢'% more rapidly than it decreases at
exposed sites, as one can see from Fig. 6 that shows a large increase of the substitution rate
at buried sites with large average hydrophobicity while the substitution rate at exposed
sites depends little on the mutational bias.

Therefore, the substitution rate is systematically influenced by the mutation bias (Fig. 6),
in such a way that when the mutation bias favors more hydophobic proteins (low G4-C) the
substitution rate increases and its maximum is achieved at sites that are more hydrophobic,
as expected from Eq. (10)). On the contrary, the curve of the sequence entropy versus
the average hydrophobicity has a shape that does not depend on the mutation bias. In
particular, the position of the maximum always coincides with the value 0.14, which is
the average hydrophobicity of the uniform distribution of amino acids. As a consequence,
the site-specific average hydrophobicity at which the sequence entropy is maximal does
not coincide in general with the average hydrophobicity at which the substitution rate is
maximal, and this discrepancy becomes larger when the mutation bias is more extreme,
causing larger differences between the two measures of evolutionary variability.

Finally, changes of mutation bias severely affect the selective constraints imposed on
the protein sites, attaining maximum values of the entropy when the mutation bias is
G+ C=0.40 and decreasing the site-specific sequence entropies when the mutation bias
becomes more extreme both towards hydrophobic and towards polar residues (Fig. 5). The
sequence entropy of exposed polar sites decreases with the mutation bias more strongly
than the entropy of buried hydrophobic sites, where the different curves in Fig. 5 tend to
collapse. Thus, exposed sites are affected by weaker selective constraints than buried sites
(they have higher entropy, see Fig. 5), but these selective constraints become more severe
when the mutation bias becomes extreme.
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