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Abstract

The interaction among leukocytes is at the basis of the innate and adaptive immune-response and it is largely ascribed to
direct cell-cell contacts. However, the exchange of a number of chemical stimuli (chemokines) allows also non-contact
interaction during the immunological response. We want here to evaluate the extent of the effect of the non-contact
interactions on the observed leukocyte-leukocyte kinematics and their interaction duration. To this aim we adopt a
simplified mean field description inspired by the Keller-Segel chemotaxis model, of which we report an analytical solution
suited for slowly varying sources of chemokines. Since our focus is on the non-contact interactions, leukocyte-leukocyte
contact interactions are simulated only by means of a space dependent friction coefficient of the cells. The analytical
solution of the Keller-Segel model is then taken as the basis of numerical simulations of interactions between leukocytes
and their duration. The mean field interaction force that we derive has a time-space separable form and depends on the
chemotaxis sensitivity parameter as well as on the chemokines diffusion coefficient and their degradation rate. All these
parameters affect the distribution of the interaction durations. We draw a successful qualitative comparison between
simulated data and sets of experimental data for DC-NK cells interaction duration and other kinematic parameters.
Remarkably, the predicted percentage of the leukocyte-leukocyte interactions falls in the experimental range and depends
(>25% increase) upon the chemotactic parameter indicating a non-negligible direct effect of the non-contact interaction on
the leukocyte interactions.

Citation: Gritti N, Caccia M, Sironi L, Collini M, D’Alfonso L, et al. (2013) Modeling Leukocyte-Leukocyte Non-Contact Interactions in a Lymph Node. PLoS
ONE 8(10): e76756. doi:10.1371/journal.pone.0076756

Editor: Jason R. Lees, Uniform Services University of the Health Sciences, United States of America

Received March 14, 2013; Accepted August 28, 2013; Published October 28, 2013

Copyright: � 2013 Gritti et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been partially funded by the FP7 program ENCITE (grant agreement number 201842; http://www.encite.org) to FG and GC and by the
Regional Project of Regione Lombardia, ‘‘Accordo Quadro’’ 2009, to GC (http://www.formalavoro.regione.lombardia.it). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: giuseppe.chirico@mib.infn.it

Introduction

The Immune System defends our organism from pathogens via

innate and adaptive immune responses that are triggered by a

cascade of interactions between different leukocytes [1]. One of

the most known cell-cell interactions involves mature Dendritic

Cells (DCs) and T cells leading to the activation of adaptive

immunity. Recent reports showed clear evidence that DCs play a

major role also in the activation of Natural Killer (NK) cells. This

process involves direct DC-NK cell interactions [2–4] and release

of a number of cytokines [5].

The interactions between leukocytes have been visualized with a

number of imaging techniques [6]. Particularly effective to this aim

are recent Two-Photon Microscopy (TPM) studies. This approach

allows to quantify the cell diffusion coefficients, the statistics of the

cell motion [7] and the duration and distribution of cell-cell

interaction times [8–13]. The sensitivity and accuracy of the

algorithms employed to reveal the interactions between the

leukocytes have been specifically questioned recently [7]. The

two-photon in-vivo microscopy experiments provide a wide range

of parameters that characterize the cell diffusion and the cell-cell

interaction. However, several questions can be raised regarding

the operative definition of leukocyte-leukocyte interaction. The

detection of an interaction can be affected by methods used for the

image analysis. Often the detection of the interaction between

leukocytes is made by visual inspection of the acquired images, and

this may introduce unwanted bias to the data. Even when a

quantitative algorithm is employed [7], it is difficult to reduce the

complexity of the motion to a test of few selected kinematic

parameters. Additional problems arise from the limited observa-

tion time window and by the loss of tracking due to poor signal/

noise in the images [7].

These issues could be addressed with the help of numerical

simulations that should take into account a variety of processes. In

particular our thesis here is that leukocyte kinematics in vivo is

affected by membrane receptors mediated direct contacts, but also

by leukocyte-leukocyte signaling producing effective non-contact

interactions. Signaling among cells have been addressed in the

literature [14–16], but these studies were not widely applied to in

vivo two-photon microscopy data analysis. Intermittent directional

motion of the leukocytes [13] observed in-vivo are an indication of

non-contact interactions among leukocytes. These interactions

have also alternative sources, for example direct interaction with

the tissue in their motion, in addition to chemo-attraction

mediated by chemokines [17,18] or chemokinesis [15]. The
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outlined scenario is complex and the role played by non-contact

interactions is not easy to be discerned. We are not looking here

for a comprehensive model that describes such complex scenario

and would require further developments that take advantage of the

sophisticated models reported in the literature [19–24]. We

address instead the extent of the effect of non-contact interactions

on the observed kinematics of the leukocytes, primarily on the

interaction duration. To this purpose we will employ a simplified

mean field description of the leukocyte-leukocyte non-contact

interactions. Contact interactions will be accounted for in an a-

specific way by means of a space dependent leukocytes friction

coefficient.

We develop then a simple numerical algorithm that takes into

account the leukocyte diffusion and some sort of action at a

distance between the leukocytes, to simulate which we are inspired

by the general theoretical framework set up by Keller and Segel

[25] to treat chemotaxis. We derive a solution of the Keller-Segel

model for a simplified expression of the cell-cell interaction

potential in the presence of chemokines. This is based on the

assumption that the less mobile dendritic cells act as a slowly

varying source of chemokines that attract the highly mobile NK

cells. We apply this solution to an extensive numerical simulation

study with statistics comparable to that typically obtained by two-

photon microscopy experiments. Several other elegant applica-

tions and solutions of the Keller-Segel model have been reported

in the literature [14–16], also for the analysis of leukocytes motion.

However these works deal with in vitro studies, for example the

Millipore filter diffusion experiment [15] or the under-agarose

migration assay [26] or micro-organisms observations, such as

parasitoids aggregation in response to chemical signaling [14], and

in some cases report full simulative developments of the Keller -

Segel original model [25].

The relevant parameters of the Keller -Segel model are the

chemotaxis sensitivity parameter, x, the chemokine degradation

rate, k and chemokine source density J (r,t) (see Eq.9A, below).

The analytical expression of the effective attractive potential can

be obtained with the assumption that the chemokine production

time is much larger than their diffusion time over a distance of a

few cellular diameters. This solution is then employed in

numerical simulations of the chemokine mediated interaction

between the highly mobile NK cells and the DCs. In this way we

can predict several geometrical and dynamical parameters of the

leukocytes motion, the probability distribution of the duration of

the interactions between NK and dendritic cells and its

dependence on the sensitivity parameter. On this basis we can

draw qualitative comparison with experimental data.

Materials and Methods

Ethic Statement
We declare that all experiments were performed using protocols

approved by the University of Milano-Bicocca Animal Care and

Use Committee (also in agreement with the European rules, 86/

609/EEG and with the International Guiding Principles for

Biomedical Research Involving Animals, as developed by the

Council Organizations of Medical Sciences and the Guide for

the Care and Use of Laboratory Animals; http://ec.europa.eu/

environment/chemicals/lab_animals/revision_en.htm). Mice were

housed in containment facilities of the animal facility and

maintained on a regular 12:12 hour light:dark cycle with food

and water ad libitum.

Free cell diffusion simulation
Langevin equation comprises an inertial, a dissipative and a

stochastic term. If we integrate the Langevin equation over times

much larger than the velocity relaxation time, we can get rid of the

inertial term. Within these assumptions the description of the

Brownian motion of a set of identical particles that move in a fluid

at thermal equilibrium can be obtained by the following equations:

[27–30].

cNK

d

dt
ri(t)~sCi(t)

SCi(tzDt)Cj(t)Tt~dijd Dtð Þ i,j~1,2,::::N

SCi(t)Tt~0

8>><
>>: ð1Þ

All symbols used in the equations are listed and defined in

Table 1. The stochastic forces sCi tð Þ have Gaussian distribution

with variance s. The symbol d Dtð Þ indicates the delta function

with argument equal to the integration time Dt. This stems from

the Markovian character of the process and accounts for the

complete decoupling of successive integrations steps [31].

The second line of Eq.1 states that the stochastic forces are

uncorrelated on the scale of the velocity relaxation time,

tVV ~m=c(0)
NK , where m and c(0)

NK are the mass and the friction

coefficient of the NK cell. We compute the cell frictional

coefficient, c
(0)
NK , as that of a rigid sphere of radius rNK >5 mm,

c(0)
NK~6pgrNK%94mg=s, and the diffusion coefficient from the

Stokes-Einstein relation, D(0)~KBT=c(0)
NK%0:045mm2=s. In these

relations g, T and KB are the solution viscosity and temperature

and the Boltzmann constant. With this choice, the velocity

relaxation time is few microseconds. Finally, the force variance is

related to the cell translational diffusion coefficient, D (0), and the

friction coefficient as:

D(0)~
1

2

s

c
(0)
NK

 !2

ð2Þ

The Langevin equation (Eq.1) corresponds to the Fokker-

Planck equation for the conditional probability of the NK cells,

f (ri,t; ri,0,0):

L0f (ri,t; ri,0,0)~
1

2

s

c
(0)
NK

 !2

LjLj f (ri,t; ri,0,0) ð3Þ

In Eq.3 and in the main text we use the notation,

Lf gj~0,::3~
L=Lt;

L=Lx; L=Ly; L=Lz

n o
, LjLj~L2

1zL2
2zL2

3~+2 and

in general we consider summed the repeated indices. The

integration time chosen here, Dt = 1s, is sufficiently larger than

the velocity relaxation time and allows us to integrate the

intracellular forces as detailed below. The Gaussian distributed

random variable Cj(t), is computed by means of a Box-Mueller

algorithm [32].

Free cell diffusion simulation
The Brownian motion of a set of identical Natural Killer (NK)

cells diffusing (diffusion coefficient D (0)) in a fluid at thermal

Non-Contact Interactions between Leukocytes
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equilibrium was simulated, for integration times Dt much larger

than the velocity relaxation time,[31] by means of the following

finite differences algorithm [28,29,33]:

ri(tzDt)~ri(t)z<i(t,Dt)

S<a,i(t,Dt)<b,j(t,Dt)Tt~dijdab2D(0)Dt

S<a,i(t,Dt)Tt~0 i,j~1,2,::::NNK; a,b~x,y,z

8><
>: ð4Þ

The above form is the integration of the Langevin equation

(Eq.1) as in the Euler-Maruyama algorithm and the stochastic

variables <i(t,Dt) are normally distributed. The diffusivity s (see

Eq.2) that appears in this equation is related to the random

displacement <a,i(t,Dt). The integration time was assumed Dt

= 1s throughout this study and the simulations included NNK

= 100 NK cells in a 5006500650 mm3 box and were run for a

total number of steps M = 107 with the following parameters (see

also Table 1):

Table 1. Parameters used in the derivation of the NK-DC simulations.

Parameter Description Range Eq.

Dt integration time step; 1 s 4

M Number of simulated steps 107 4

c(0)
NK

intrinsic friction, Natural Killer cells %94mg=s 2,5

cNK (r)~c(rNKi) space dependent friction coefficient, i-th NK cell 7

D(0)~
1

2
s
.

c(0)
NK

� �2 Intrinsic NK cells diffusion coefficient 0:045mm2=s 5,10

c (r,t) chemokine concentration 9,12,14

J (r,t) source of chemokines on the dendritic cell 9

Jinter:(r,t) chemokines source on the dendritic cell under interaction 11

Jnointer:(r,t) chemokines source on dendritic cell under no interaction 13

J0 Intrinsic source density on a dendritic cell 103–106 molecules/s 11,13

t Interactions’ activation/deactivation time 3600s 11,13

DCK chemokines’ diffusion coefficient 10 mm2/s 9

f r,t r0,t0jð Þ conditional probability for the NK cells 3, 9

R (t) = rNKi(t) position of the NK cell 8

s variance of dr (t)/dt, see Eq.2 1,2,3,10

sh variance of azymuthal angle for worm like chain model p=4 S2

<i(t,Dt) Gaussian distributed variable for NK cell Brownian motion 8

Ci(t)~C(t) Gaussian distributed variable with zero average and variance = 1 1,6

K characteristic degradation time of the chemokines 300–900 s 9

sc extension of the spatial dependence of the NK friction coefficient 25 mm 7

kc amplitude of the space dependence of the NK friction coefficient 10 7

A(r)2~
KBT

c(r)
~

KBT

cNK (r)

amplitude of the force induced by space dependence of cNK (r) 6

Fk(rNKi{rDCk ,t) force acted by the k-th dendritic cell on the i-th NK cell at time t 6

x Chemotactic parameter 0:1{1mg:mm5=s2 9

NCK Number chemokines produced by a dendritic cell 105

nCK Estimate of the CK number concentration 8.4–9.6 1011 cells/cm3

NNK Number of simulated NK cells 102 4

mNK Mass of a NK cell 800–1000 10212g

VDC Volume of the DC >6000–32000 mm3

rNK Radius of a NK cell 5 mm

a0 Minimum distance for interaction 25 mm

Tth Duration threshold for interactions 300–600s

T Bulk temperature 310 K 5

g Bulk viscosity g~0:001Pa:s; 5

List of the parameters used in the derivation of the simulations of the NK and dendritic cells with an indication of the value and the equation in which the parameter
was defined and/or used. When no number is given for the equation, the parameter was used for a direct estimate in the text.
doi:10.1371/journal.pone.0076756.t001
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T~310K;

g~0:001Pa:s;

rNK~5mm;

c
(0)
NK~94mg=s;

D(0)~0:045mm2=s~2:73mm2=min

8>>>>>><
>>>>>>:

ð5Þ

The NK cell friction coefficient, c
(0)
NK , was computed from the

cell radius, rNK, according to the Stokes-Einstein equation. The

Gaussian distributed random displacement, <a,i(t,Dt)f ga~x,y,z
i~1::NNK

,

defined by the first two moments in Eq.4, was computed as

detailed in File S1 (paragraph S1: ‘‘Test of the Random Number

generator’’). The periodic boundary conditions reproduced the

experimental situation in which the number concentration

(number of cells per unit volume) of leukocytes in a field of view

fluctuates around an average value with a Poisson distribution. For

sake of simplicity we kept constant the instantaneous number of

NK cells in the simulation box. If one of the NK cells exits from

the simulation volume at a specific time step, we assume that this

specific NK cell does not re-enter the volume: the track of this

specific NK cell will then be limited to this simulation frame. A

new NK cell is randomly located close to the box boundary at the

next simulation step (Fig 1A).

Tests of the numerical integration were run on the free cell

diffusion by computing the average mean square displacement,

D2 kDtð Þ~ 1

N{k

XN{k

i~1

S ri(tzkDt){ri(t)j j2Tt as a function of

time. From its slope we obtained the cell diffusion coefficient that

resulted always in good agreement (within 160.5%) with the input

value (see File S1, Fig S1 in paragraph S1: ‘‘Test of the Random

Number generator’’).

Interacting cells diffusion algorithm
We consider the interaction of a set of mobile NK cells with

immobile dendritic cells that act as a center of chemokine

production. The situation is modeled by assuming that a source of

chemokines, fixed in space and variable in time, acts as chemo-

attractant for the NK cells. This action is represented by a

deterministic force that depends on the distance between the

dendritic and the NK cells and the time: F (rNK{rDC ,t). We need

to take into account also other major features of the leukocyte

dynamics in our simulations: their interaction with the lymph node

tissue and the contact antigen recognition that occurs between NK

cells and dendritic cells. We assume that the overall effect of these

interactions can be captured by slowing down the NK motion

while approaching the dendritic cells and simulated via a space

dependent friction coefficient (see Eq. 7), c(r), whose spatial

extension is <10–15 mm (sc in Eq. 7). The finite difference

Langevin equation (Dt .. tVV, the velocity correlation time, see

Materials and Methods) becomes then [28,29] (Fig 1B):

c(rNKi)
d

dt
rNKi(t)~

X
k~inter DC

Fk(rNKi{rDCk,t)zsCi(t)z

�
P

k~
inter NK

A(rNKi{rDCk)
L
Lr

A(rNKi{rDCk)

SCi(tzDt)Cj(t)Tt~dijd Dtð Þ
SCi(t)Tt~0 i, j~1,2,::::N

A(r)2~
KBT

c(r)

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð6Þ

The sum in Eq. 6 runs over all the dendritic cells that interact

with the selected (i-th) NK cell. The position of the i-th NK cell

and of the k-th dendritic cell are rNKi and rDCk, respectively. The

term Fk(rNKi{rDCk,t) in Eq.6 is the force acting on the i-th NK

cell due to its interaction with the k-th dendritic cell. The friction

coefficient of the NK cells, c rNKð Þ, in the proximity of the

dendritic cells is described by a Gaussian function of the type

(Fig 1C):

c(r)~c(0)
NK 1zkc

X
k~inter DC

exp {
r{rDC,kj j2

2s2
c

" #( )
ð7Þ

This friction coefficient corresponds to a reduced diffusion

coefficient, D(rNK ,i)~2s2=c2(rNK ,i) in the proximity of the

dendritic cell, and the space dependent term in the Langevin

equation (A(r)
L
Lr

A(r) in Eq.6) can be assimilated to an attractive

force. The range of the effect of the contact interactions is set to

sc~25mm from the centroid of the dendritic cells (according to

microscopy images of the dendritic cells [1]) and the amplitude to

kc = 10 (see Fig 1D). The space dependence of the friction

coefficient induces a slight slowing down of the NK cell in

proximity of the attracting dendritic cell where the interactions

mediated by chemical signals are most effective (see below section,

Metropolis algorithm for interactions). The specific value of the

amplitude kc, in the range 1# kc #20, does not markedly affect

the result of the simulations discussed in the Results.

The integration of Eq. 6 was performed by sampling three

Gaussian stochastic variables, <x (t), <y (t), <z (t), according to

[28,29,33]:

rNKi(tzDt)~rNKi(t)z

z
Dt

c(rNKi)

X
k~
inter: DC

Fk(rNKi{rDCk,t)

2
64

3
75

{Dt A(r)
L
Lr

A(r)

����
r~rNKi{rDCk

" #
z<i(t,Dt)

S<a,i(t,Dt)<b,j(t,Dt)Tt~dijdab2D(rNKi(t))Dt

S<a,i(t,Dt)Tt~0 i, j~1,2,::::N a, b~x,y,z

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð8Þ

In our model the interaction forces F (rNK{rDC ,t) are due to

the chemotactic action of the chemokines emitted by the dendritic

cells. We will describe such a contribution within the framework of

the Keller-Segel model of chemotaxis (see Results) [25].

Two-photon microscopy
A direct optical microscope (BX51, Olympus) was used to follow

the interactions between dendritic and NK cells in lymph nodes.

The infrared laser source (Mai Tai HP+DeepSee, Spectra Physics,

USA; with pulses of 120 fs full width at half maximum and

80 MHz repetition frequency, DeepSee pulse width compensator)

is coupled to the microscope through the FV300 (Olympus, Japan)

scanning head. All the images were acquired under two-photon

excitation at 800 nm through a 20 X, 0.95 NA, 2 mm WD,

Olympus objective (XLUMPlan FI, Olympus, Japan). The

fluorescence signal is directed to a non-descanned unit and split

into three channels (blue, green and red channel) by two dichroic

Non-Contact Interactions between Leukocytes
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beam splitters [34]. The acquisition is performed through the

Olympus Fluoview acquisition program with an extension to a

three channel board (Olympus, Japan). Additional details on the

setup and its optical characterization can be found in [34].

The leukocyte interactions data were acquired on explanted

lymph nodes. All mice were sacrified via cervical dislocation. The

animals from which we explanted lymph nodes were CD11cDTR

mice on BALB/c background [35]. These mice express GFP

under the control of the CD11c promoter, a dendritic cell specific

marker. Therefore GFP is expressed exclusively by dendritic cells.

Lymph nodes were analyzed ex-vivo by keeping them in complete

IMDM medium (IMDM-10 complete medium: IMDM, 10%

heat-inactivated FBS (EuroClone), 2 mM L-glutamine, 100 U/ml

penicillin, 100 mg/ml streptomycin, 50 mM 2-mercaptoethanol

(Sigma-Aldrich)) saturated with oxygen [34].

NK cells were purified from RBC-lysed splenocytes by MACS

positive selection using CD49b (DX5), microbeads (Miltenyi

Biotec, D). Purity was assessed by FACS and was routinely

between 93% and 96%. Cells were labeled with 1 mM CMPTX

(Invitrogen, NL), according to Invitrogen recommendations. NK

after labeling with CMPTX were injected i.v. (tail vein), 10

millions per mouse, 24 hs before the experiment. The fluores-

cently labeled cells were found in the popliteal and brachial lymph

nodes about 24 hours after injection. Their localization persisted

for at least 72 hours. In order to stimulate the dendritic cells we

employed lipopolysaccharide (LPS). This compound was injected

sub cute in the mouse footpad, 1 mg per mouse.

For microscopy experiments on explanted lymph nodes, the

entire microscope is surrounded by a custom made thermostatic

cabinet in which the temperature is kept at 37uC (air thermostat-

ing by ‘‘The Cube’’, Life Imaging Services, Basel, CH) and

physiological conditions are guaranteed during the experiments by

flowing 37uC buffer solutions saturated with a mixture of 95% O2–

5% CO2 in the lymph node chamber on the objective plane. The

lymph-nodes were oriented suitably in order to decrease optical

depth due to undesired fat layers and kept in position by a small

drop of agarose gel [34].

Several tests were performed to validate the ex-vivo analysis of

the data. The motility and distribution of NK cells within the

lymph nodes were evaluated on 2-photon microscopy images and

movies both intravitally and in explanted lymph nodes [34,36]. In

order to set up the ex-vivo microscopy analysis, imaging was first

performed intravital in live animals and ex vivo on explanted

lymph nodes [34,36,37]. The endogenous and exogenous NK cells

were found mainly at the border of the T cell area in both

intravital analyses and explanted lymph nodes (in agreement with

[12]). Non-activated NK cells were highly motile in steady-state

conditions and the mean 3-dimensional (3D) velocities of

transferred NK cells, as measured in vivo and ex vivo experiments,

agreed with data available for endogenous NK cells [12]). Finally

T cells showed an average instantaneous speed of 1262 mm/min

[37] in agreement with available data [11].

Volocity (Perkin-Elmer Inc.) was used to analyze recorded

movies. The extracted traces were then analyzed for the measure

Figure 1. Sketch representing the main features of the simulation algorithm. Panel A: implementation of the boundary conditions. When a
NK cell (red dots) exits the simulation volume, another NK cell enters it from a random location. The dendritic cells are represented as fixed green

circles and the solid arrow indicate the chemotactic force x
L
Lr

c(r,t). Panel B sketches action at a distance acted by a dendritic cell that is simulated as

a source of chemokines whose spread is represented by dashed circles and dotted arrows. The red lines represent the actual movement of NK cells
that is largely determined by the Brownian component. Panel C represent the space dependent NK cell diffusion coefficient DNK (r) normalized to the

intrinsic NK cell diffusion coefficient,D(0)~
1

2

s

c
(0)
NK

 !2

.

doi:10.1371/journal.pone.0076756.g001
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of the interaction time by means of a specifically designed MatLab

(MathWorks Inc.) code.

The simulation code developed here and used to run the

simulations reported in the results section can be downloaded from

http://moby.mib.infn.it/,chirico/.

Results

The simulation of the NK motion around dendritic cells was

developed within the simplified framework described in the

Introduction. We started from freely diffusing NK cell. Then we

implement the interactions of these cells with the tissue by means

of a Worm like chain method [38]. Finally we implement the

interaction field between the NK cells and the dendritic cells,

which is derived from the Keller-Segel model [25]. This model

was developed in the 970s to describe the chemotaxis of bacteria

particularly in the process of the slime molds aggregation [39].

Keller and Segel takes the cellular motion essentially random with

a flux that is composed of two terms. The first term corresponds to

a chemotactic flux that in analogy to the Fourier’s law of cooling is

proportional to the gradient of the chemo-attractant. The second

term is the random diffusion of the cells. The equation is closed by

providing a diffusion equation for the chemo-attractant with a

degradation term.

The parameters employed in this derivation and their range are

listed in Table 1 and a sketch of the major features of the

algorithm used is reported in Fig 1B and in Fig 2.

Modeling of the interactions between NK and dendritic
cells

The modeling of a lymph node (LN), that is already a very

complex system, or even the whole immune system, has been

addressed in the literature with elegant methods [19–24]. This is

not our aim here. We want instead to estimate the effect of non-

contact interactions among leukocytes under the action of an

external stimulus that simulates the presence of a pathogen. We

will assume a well studied model to describe non contact

interactions, the Keller-Segel model [25] of chemotaxis. This

choice must be taken more than an inspiration and a mathemat-

ical tool than the actual description of the variety of possible

leukocyte-leukocyte interactions acting at a distance.

However, we first need to develop a minimal model that

describes the major characteristics of leukocyte dynamics even in

the absence of the stimulus. As discussed in File S1 (S2: Un-

stimulated lymphocyte stochastic motion within a lymph node’’ in File S1) a

model that qualitatively represents the behavior of the correlation

functions of the instantaneous speeds of the leukocytes (measured

on the images time series), the deviation angle of their trajectory

and their square displacement [10,11,23] is the Brownian

Wormlike chain. In this model the single step azimuthal angle of

the trajectory, h (see Fig 3A), is distributed according to a

Gaussian law with standard deviation sh, assumed to be sh~p=4
throughout the following studies of the leukocytes interactions.

This is not the only model that can be adopted for the statistical

description of the leukocyte motions in the absence of a stimulus.

Alternatives to the WLC are, for example, the Ornstein-

Uhlenbeck [40] and the Keller-Segel models [25]. All the studies

presented in this report were performed by assuming a WLC-

model for the un-stimulated leukocytes.

In the effort to simplify the extremely complex interplay of

chemokines and their receptors, we assume that no chemokines

are secreted by un-stimulated dendritic cells and that a single class

of chemokines (CKs) is secreted under the action of an external

microbial stimulus, such as CpG DNA or lipopolysaccharide.

Representatives of this chemokines are CXCL9 and CXCL10

[17], two kinds of CXCR3 ligands. CXCR3 is a receptor

expressed primarily on activated T limphocytes but also on the

NK cells [17]. However, the interactions between the two classes

of leukocytes, dendritic and NK cells, are actually much more

complex than the picture depicted above. It is known, for example,

that dendritic cells are made competent for the activation of NKs

by a number of cytokines whose production is triggered by the

external stimulus and also by feedback loops between NK and

dendritic cells [5,41]. The dynamics of these signal channels is

simulated here by a smooth time variation of the secretion of

chemokines by dendritic cells.

In summary, the whole process of interaction between NK and

dendritic cells is studied here within a Brownian Dynamics

approach. The NK cells diffuse around fixed DCs under the action

of a mean field leukocyte-leukocyte interaction force, indicated as

Fk(rNKi{rDCk,t) in Eq.8. These forces are derived from a model

that describes the production, the diffusion and the degradation of

the chemokines (Fig 3B and Fig 2). One of the aims and the

results of this report is the analytical formulation of this interaction

force derived under suitable approximations and implement it in a

mixed Brownian Dynamics/Monte Carlo algorithm (see Fig 2).

To this purpose we work on the Keller-Segel model [25] with

time dependent sources and show that, since the chemokine

production by dendritic cells [1,41,42] and the chemokine

diffusion occur on widely different time scales (few hours

compared to minutes), the chemokine concentration can be

written in a space-time separable form that can be used in simple

Brownian Dynamics simulations.

In the Keller-Segel model one assumes that the cell dynamics is

determined by an effective potential originated by the action of the

chemokines, whose concentration is c (r,t), with efficacy measured

by the chemotaxis sensitivity parameter, x [25]. Within these

assumptions the complete Fokker-Planck equation of a NK cell

that diffuses under the action of the chemokines secreted by an

immobile DC, acting as a chemokine source with current

densityJ(r,t), is [25,27] (see Fig 1B):

L
Lt

f r,t r0,t0jð Þ~{Lj {DNK rð ÞLjz
x

cNK

c(r,t)Lj

� �
f r,t r0,t0jð Þ

L
Lt

c(r,t)~ DCKLjLj{
1

k

� �
c(r,t)zJ(r,t)

8>>><
>>>:

ð9AÞð9BÞ

The function f r,t r0,t0jð Þ represents the probability to find the

NK cell at the distance r from the dendritic cell at time t, when it

was at the distance r0 at the time t0. The chemokines diffuse with

the diffusion coefficient DCK. The aim of these coupled equations

(Eq.9) is to describe the motion of the NK cells as pure random

diffusion in the presence of a drift force that depends on the

gradient of the chemo-attractants. Eq.9B closes the system by

describing the evolution of the chemo-attractants as determined by

random diffusion (with diffusion coefficient DCK) superimposed to

a degradation process with characteristic time k. A variety of

functional forms for x and k have been proposed and adopted for

applications in the case of bacteria motility [43]. We assume here

for simplicity that the chemokines’ degradation rate, 1/k, is

independent of the cell concentration (correct in the limit of low

concentration of the dendritic cells or low inflammation condi-

tions) and that the chemotactic parameter x does not depend on

the chemokine concentration c (r,t). This assumption is valid here

and for a production of chemokine that is about one order of

magnitude larger. In fact, by taking 10 dendritic cells per box,

(9A)

(9B)
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5006500650 mm3 in size, an average value NCK >105 of

chemokines per dendritic cell (see Table 1) and k values in the

range 300–600 s the concentration of CKs is approximately nCK

= 1.4 nM. The encounter rate of the chemokines on the NK cells

can be computed by means of the relation [44] c~4pDCK nCK r2
NK

(DCK is the diffusion coefficient of the chemokines, nNK is their

concentration, and rNK is the NK cell radius, see Table 1). With

the values adopted here for DCK = 10 mm2/s and rNK = 5 mm we

compute a maximum chemokines consumption rate of approxi-

mately 0.2 s21. This rate is two orders of magnitude less than the

average rate of production of the chemokines, as estimated from

NCK/t >105/(300 s) >330 s21. Therefore our assumption that

the degradation rate is not dependent on the cell concentration

can be considered valid here and for dendritic cell concentrations

at least one order of magnitude larger.

The chemotactic sensitivity, x, is a measure of the effect of the

chemical gradient on the cell motion [25,45], and it can be positive

(chemo-attraction) or negative (chemo-repulsion). In the limit DNK

0, i.e. for vanishing diffusion of the NK cells, the Keller-Segel

model describes a chemotactic collapse leading to aggregates or

Dirac peaks. Here we want to describe instead a dynamic

equilibrium in which NK cells follow the chemical gradient but are

also able to escape the dendritic cell attraction basin.

Under the assumption that the NK distribution function

derivatives are much smaller than the corresponding spatial

derivatives of c (r,t), the Langevin equation that corresponds to

Eq.9A is (see also Eqs. 1, 2):

c
(0)
NK

L
Lt

r(t)~x
L
Lr

c(r,t)zsC(t)

1

2

s

c
(0)
NK

 !2

~D(0)

8>>><
>>>:

ð10Þ

The term x
L
Lr

c(r,t) plays the role of an effective conservative

force that corresponds to the potential function U(r,t)~{xc(r,t)
and equals therefore the force term F(rNK{rDC ,t) in the full

dynamic equation (Eq. 6). The chemokine concentration is then

the fundamental function to be computed since it determines the

effective potential and the NK cell motion. Conversely, its

evolution is determined by the chemokine source term, J(r,t).
Therefore we first search for solutions of Eq.9B under different

functional forms of the chemokine source term, J (r,t).

Interacting dendritic-NK cells. Two possible cases can be

envisioned in which the emission of the chemokines by the source

(the dendritic cell), characterized by the current density J(r,t), is

decreasing (interacting case) or increasing (noninteracting case) in time.

This can be due to feedbacks in the chemokines production by the

dendritic cells interacting (abbreviated to ‘‘inter.’’) or non interacting

(abbreviated to ‘‘non-inter.’’) with NK cells. In order to ensure the

convergence of the solution, we have also to assume that the

source is adiabatically switched on at t = 0 with a time constant t.
This parameter acts both as a mathematical tool and as the

characteristic time response of the dendritic cell to the stimulus.

For the non interacting case we write the current density as:

Jinter:(r,t)~
J0d rð Þ

1z
t

t

� �2
ð11Þ

The solution of Eq.9B with this source term can be obtained by

Fourier Transform methods (see paragraph S3,‘‘FT solution of the

KS equation’’ in the SI) and it is:

cinter:(r,t)~

J0pt
H tð Þ

4pDCK tztð Þð Þ3=2
exp {

rj j2

4DCK tztð Þ{
tzt

k

" #
ð12Þ

The function H tð Þ is the Heaviside function and the variance of

this function increases as 4DCK tztð Þ. The concentration is

decreasing with the functional form &
exp { t

k

� �
4pDCK tztð Þð Þ3=2

from

the maximum value

cinter:(0,0)&J0pt 4pDCK tztð Þð Þ{3=2exp {
t

k

h i
(see Fig 4).

When the dendritic and NK cells are not interacting, the source

term decreases and it can be written as:

Jnon{inter:(r,t)~d rð Þ J0{
J0

1z
t

t

� �2

2
664

3
775 ð13Þ

Figure 2. Flowchart of the mixed Monte Carlo-Brownian
Dynamics algorithm for the simulation of the leukocyte-
leukocyte non contact interactions.
doi:10.1371/journal.pone.0076756.g002
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The solution of Eq.9B with this source term can be found by

considering only the time varying part of Eq. 13, by applying the

Fourier Transform to Eq. 9B and by restoring the positiviness of

the solution by adding the concentration value at the source at

t = 0. As a final result (see paragraph S3, ‘‘FT solution of the KS

equation’’ in File S1 for details), we can write the chemokine

concentration for the non-interacting case as:

cnon{inter:(r,t)~

J0pt
H tð Þ

4pDCKð Þ3=2

exp {
t

k

h i
tð Þ3=2

{
exp {

tzt

k

h i
tztð Þ3=2

8><
>:

9>=
>; exp {

rj j2

4DCK tztð Þ

" #
ð14Þ

With this assumption, the maximum value of the chemokine

concentration starts from 0 and follows an increasing exponential

trend up to a plateau value, J0pt 4pDCK tð Þ{3=2
exp {

t

k

h i
, as

shown in Fig 4.

The solutions given in Eq.12 and Eq.14 can now be used to

derive the effective chemotactic interaction force, x
L
Lr

c(r,t), to be

used as force (F (rNK{rDC ,t)) in Eq. 6. A critical point to this

issue is that the chemokines concentration suffers two relaxation

processes due to the diffusion of the chemokines themselves and to

the variation in time of the source, J (r,t). This implies that in the

solution of Eq.9A the diffusive motion of the chemokines is

coupled to that of the NK cells.

Constant source of chemokines
We first focus on the case of constant source of chemokines.

This is an artificial situation in which there is no feedback between

the two classes of leukocytes (here NK and dendritic cells). We

want to develop a fast algorithm to simulate long trajectories of

dendritic and NK cells. In order to avoid the integration of Eqs.9
along with the Brownian dynamics steps of our algorithm we

derived an approximated analytical expression for the chemokine

concentration (see File S1, Eqs. S24 and S25 in paragraph S5:

‘‘Numerical Approximations’’). With these approximations we can

perform long numerical simulations of the interactions between

NK and dendritic cells and study the effect of the chemotactic

term x
L
Lr

c(r,t) (see Eq. 6). Several simulations were run with

different values of the dendritic cell sensitivity parameter x and of

the NK cells density (4000–8000 cells/mm3; 500x500x50mm3

simulation box volume) with integration time step Dt = 1 s. The

following additional parameters were also assumed (see also

Table 1):

Figure 3. Sketch of the NK cell motion. The NK cell is sketched as a red-orange circle: the brightness of the red color codes for increasing
simulation time. Panel A: h is the deviation angle sampled to implement for the Worm Like Chain model for the diffusion of the NK cell in the tissue.
Monte Carlo algorithm for the cell-cell interactions: definition of the displacement parameter, Dd, used for the Metropolis test for the interaction
onset. The symbols in panels B and C are: c0~cMAX , c1~cinter:(0,t{t0)and c2~cnon{inter:(0,t{t1). Panel B reports an example of the interaction_start

test. The root mean square displacement is d1BD~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DNK Dt

p
%0:3mm. Depicted are two cases corresponding to cMAX%cnon{inter:(0,t{t0) and

cMAX wwcnon{inter:(0,t{t0). In the first case Eq. 17 is satisfied even if Dd?0{, in the second case Eq. 17 is satisfied only if Ddvv0. Panel C reports
an example of the interaction_stop test. In this case when cMAX wwcinter:(0,t{t0) Eq.18 is satisfied even if Dd?0z while when cMAX%cinter:(0,t{t0)
Eq.18 is satisfied only if Ddww0.
doi:10.1371/journal.pone.0076756.g003

(14)
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D(0)~0:045mm2=s;

t~3600s;

J0~106molecules=s;

DCK~0:5mm2=s;

k~600s

8>>>>>><
>>>>>>:

ð15Þ

As discussed in File S1 (paragraph S5, ‘‘Numerical Approxima-

tions’’) this choice of parameters implies a >0.2% error on the

chemokine concentration, due to the first order approximation

derived in Eqs. S24 and S25 (in paragraph S5: ‘‘Numerical

Approximations’’ of the SI).

The chemotactic parameter x can vary widely depending on the

specific system. The chemotactic attraction can indeed change by

a factor as large as 102 [18] varying from T cell (low x) to dendritic

and B cells (high x), and corresponds to an average velocity
x

c

L
Lr

c(r,t)%10{100mm=sfor in-vitro chemotaxis experiments

such as the ‘‘under-agarose cell migration’’ experiments [26,46].

However, the units of ½x�~mg:mm5=s2~10{36J:m3 suggest us to

obtain an estimate of x from the average kinetic energy per

volume according to the following scheme:

dL~Fdr~xdc(r,t)%x

ffiffiffiffiffiffiffiffiffiffi
NCK

Vcell

r

? x~Vcell
m

2
Sv2T

dL~
m

2
Sv2T

8>>>>><
>>>>>:

ð16Þ

where NCK is the average number of chemokines produced per

dendritic cell, mNK is the NK cell mass and VDC is the dendritic

cell average volume (see also Table 1). The typical experimental

value of the average value of the NK speed computed over time

steps >1 s, is 0.2 mm/s [8–13,37]. If we further assume an average

value of chemokines per cell, NCK <105, we obtain for the

chemotactic parameter the estimate x%0:2mg:mm5=s2. We have

therefore decided to assume the range x~0:1{1mg:mm5=s2 in the

following explorative simulation study.

For constant sources of chemokines (J (r)), the only relevant

effect of the chemotactic term is on the RMS displacement (see

Fig 5) that acquires the characteristic upward curvature also

observed in the experiments [10–11,23]. The curvature effect

shown in Fig 5 is overestimated since we are not allowing

leukocyte-leukocyte interactions that would imply an alternating

increase and decrease in the source strength, J (r) (see next

paragraph), which is instead held fixed during the simulation. In

the absence of leukocyte-leukocyte interactions, the chemotactic

force contributes therefore with some additional directional

motion of the NK cells, that is largely accounted for in our

simulation procedure by the Brownian Worm like chain model

(see S2,‘‘Un-stimulated lymphocyte stochastic motion within a lymph node’’

in File S1).

Metropolis algorithm for interactions
We now takes into account the feedback between the NK and

dendritic cells. This is accounted for by modulating the production

of chemokines by the dendritic cell based on the interaction with

approaching NK cells. The chemotactic force,x
L
Lr

c(r,t), changes

in time because of the diffusion of the chemokines away from a

central dendritic cell and of the time behavior of the source (the

dendritic cell). The production of the chemokines by the dendritic

cell is inhibited by the contact with NK cells or stimulated by the

absence of such interactions. This interplay of interaction and

activation and de-activation of dendritic cells, is simulated by

defining an interaction probability that is based on the distance

between dendritic and NK cells and on the directionality of NK

cell motion. This is a critical point of our study that we approach

by devising a Monte Carlo test on a minimal condition

represented by the direction of relative motion between a NK

cell and the central dendritic cell.

The interaction (an attraction more than a direct contact) can

occur only when the cells are within a threshold radius. This is a

sensible assumption that is also motivated by the need to reduce

the computation time. However, the probability of the interaction

depends on the instantaneous concentration of the chemokines

compared to its maximum value and it can occur also at a distance

between dendritic and NK cells.

The basic idea on which we build the interaction algorithm is

that a dendritic cell produces chemokines when it has not activated

recently a NK cell. Otherwise the chemokine concentration

around the dendritic cell decreases. The second basic idea is that

the NK cell that approaches the dendritic cell feels the chemokine

gradient formed around the dendritic cell (see Eqs. 12 and 14) or

not, depending on the size of the displacement of the NK cell

towards the central dendritic cell. The lower is the chemokine

concentration around the dendritic cell, the larger must be the

approaching leap of the NK cell towards the dendritic cell. The

whole process is a feedback loop. When a NK cell starts an

interaction, the chemokine concentration decreases around the

dendritic cell. Therefore the probability that the dendritic – NK

cell interaction comes to an end, increases. In this case the test on

the interaction stop is made on the size of the NK leap away from

the dendritic cell. The larger is the chemokine concentration on

the dendritic cell, the larger must be the NK jump away from the

dendritic cell in order that the interaction stops.

Taking into account these considerations we have built the

following Metropolis algorithm.

On each time step the interaction test is run only for distances

between NK and dendritic cells that are lower than a0 = 25 mm. If

this condition is fulfilled, we compute Dd~{DrNK
: rDC{rNKð Þ=

rDC{rNKj j, where DrNK~rNK (tzDt){rNK (t) is the displace-

ment of the NK cell on the simulation step, and consider two

possible situations (see Fig 3B, C).

1. Interaction_start. If the interaction is not active, the chemotactic

term is x
L
Lr

cnon{inter:(r,t{t0), where t0 is the time at which the

previous interaction was stopped. The interaction begins at

time t1, only if (we recall that cMAX ~cinter:(0,0))

exp {
Dd

d1BD

� �
w

cMAX

cnon{inter:(0,t{t0)
§1, ð17Þ

where d1BDis the root mean square displacement with diffusion

coefficient DNK: d1BD~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DNKDt

p
%0:3mm. In this test the

random variable is represented by the displacement Dd that

contains the Gaussian distributed displacement of the NK cell.

In such a case, from this time step on, the chemotactic term will

be computed as x
L
Lr

cinter:(r,t{t1).
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2. Interaction_stop. If the interaction is active, the chemotactic term

is x
L
Lr

cinter:(r,t{t1), where t1 is the time at which the

interaction started. The interaction is interrupted only if

exp {
Dd

d1BD

� �
v1{

cinter:(0,t{t1)

cMAX

ƒ1: ð18Þ

It is noteworthy that if the NK cell is moving away from the DC,

an interaction cannot be initiated because Ddw0, the Metropolis

term is exp {
Dd

d1BD

� �
v1v

cMAX

cnon{inter:(0,t{t0)
and the probabil-

ity for the interaction to be stopped is determined by the

chemokine concentration, via the term 1{cinter:(0,t{t1)=cMAX .

Symmetrically, if the NK cell is approaching a dendritic cell, an

ongoing interaction has no chance to be interrupted since Dd

v0 and the Metropolis term is exp {
Dd

d1BD

� �
w1w1{

cinter:(0,t{t1)

cMAX

. The probability for an interaction to be started

in the case Ddv0 is proportional to the chemokine concentration,

cMAX=cinter:(0,t{t0).

Eqs. 17 and 18 represent a Monte Carlo sampling in which the

random number is embedded in the displacement Dd towards the

dendritic cell. In this way we weigh the probability that an

interaction starts on the direction of motion, i.e. whether NK cells

are approaching a dendritic cell or not.

The overview of the proposed mixed Brownian Dynamics and

Monte Carlo algorithm is shown in Fig 2. We test now the

proposed solution of the KS model for the NK and dendritic cells

in terms of number and duration of specific interactions.

Simulation of the interactions between NK and dendritic
cells

We consider two experimental situations that refer to the

stimulated or unstimulated healthy murine system. Various types

of stimuli can be applied to the organism to trigger the initiation of

an immunoresponse to an antigen [47]. One of the most effective

ones is the lipopolysaccharide, a component of the external wall of

gram-positive bacteria [1]. This compound is recognized by the

receptor complexes, including TLR4, CD14 and MD2, and elicits

the production by DCs of several types of chemokines, including

CXCL9 and CXCL10. We consider here for simplicity a single

class of chemokines, though the whole simulation algorithm could

be easily extended to a more complex situation. The dendritic cell

activation time, t in Eqs. 12, 14, could be modulated, in a more

refined algorithm, by cytokines expressed also by NK cells such as

TNFa [42,48]. The diffusion parameter ensures that the average

range of activity of the chemokines in the lymph node isffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6DCK t

p
%450mm.

We have first run 10 simulations of non-stimulated dendritic

cells (100 NK cells per simulation, x= 0) and focused our analysis

on the number and duration of the interactions as provided

directly by the Monte Carlo tests (Eqs. 17, 18). The histogram of

the interactions’ duration (Fig 6A) decreases rapidly with the

duration: more than 90% of the interactions last for less than 300s.

When stimulated dendritic cells are simulated under high

chemotaxis conditions (x%1mg:mm5=s2), the distribution of the

interactions’ duration (Fig 6B) is much wider and only 60% of the

durations last for less than 300 s.

A small systematic increase of the interaction probability is

found at durations that are correlated to the value of the

chemokines’ degradation times k: the position of the secondary

component at 440s–480s (Fig 6) changes slightly with the value of

the degradation time, k, as can be judged from Fig 7. The position

of the secondary peak in the distribution of the interaction

durations moves to >580640 s for k = 900 s (Fig 7, densely

hatched bars and dashed red line). The width of this component

Figure 4. Evolution of the chemokine concentration. Current
density J(r,t) that describes the chemokines production by the
dendritic cell when interacting (panel A, Eq.11) or non interacting
(panel B, Eq.13) with a NK cell. Panels C and D report the time
evolution of the spatial distribution of the concentration of the
chemokines in the two cases of interacting (panel C) and non
interacting (panel D) leukocytes. The chemokine source parameters
were: J0 = 1000 mol/s; k = 600 s; t = 3600 s; DCK = 10 mm2/s (Eq.12, 14).
doi:10.1371/journal.pone.0076756.g004

Figure 5. Autocorrelation functions for the NK cells under
constant chemotactic force. Panel A: square displacement

S r(t){r(0)j j2T. Panel B: the single step deviation angle Scos h(t)ð Þ:
cos h(0)ð ÞT. Panel C: the velocity autocorrelation function Sv(t):v(0)T.
The results are averaged over 100 NK cells. The simulation parameters
are reported in the text (Eq.5 and Table 1). The increasing values of

the chemotactic parameter are x= 0.1, 0.2, ….. 0.9, 1.0 mg:mm5=s2 .
doi:10.1371/journal.pone.0076756.g005
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also increases substantially with the degradation time and for

k = 1200 s it is already not possible to visually single out a defined

cell population with long interaction durations at finite values of

duration times (Fig 7, sparsely hatched bars and dotted green

line), though the presence of long interacting cells is evident from

Fig 7 for any value of k. On the other hand, in the case of very

rapid (k,50–60 s) degradation of the chemokines we expect that

the effect of non-contact interactions on the interaction duration

would vanish.

We focus then our attention on the percentage of the NK –

dendritc cell interactions with durations above a threshold value,

Tt,, as done in most of the experimental studies [9,12,37,49] and

perform a simulation study as a function of the chemotactic

parameter. This procedure allows us to model an increasing

efficiency of the chemokines to attract NK cells and to study its

effect on the number of long lasting interactions. In fact these

interactions are likely related to the chemokine mediated

recognition between leukocytes. From the distributions shown in

Fig 6, 7 it is reasonable to set the threshold value for the long

lasting interactions at Tth = 600s, the position of the secondary

peak in the distribution of the duration times.

The total number of NK – dendritic cell interactions and the

number of interactions with duration above Tth, as a function of

the chemotactic parameter x, are summarized in Fig 8. The

increase of the interactions’ duration (total and long lasting

interaction duration) with x observed in Fig 8 indicates that there

is a definite relation between these two parameters and suggests

that there is an effect of non-contact interactions between

leukocytes on the measured interaction duration, typically taken

as a fingerprint of ongoing contact interaction [8–13]. From a

physical point of view it is clear that a central attraction towards

the dendritic cell is required to sustain the touch and go behavior

observed in most two-photon excitation in-vivo investigations of

the leukocytes interaction [13,37]. Considering the extremely high

dilution of cells within a lymphoid organ, the absence of such a

central attraction would determine a drift of a NK cell away from

the central dendritic cell as soon as an interaction stops, therefore

not allowing for a sustained patrolling of the dendritic cell surface

in a quest for specific recognition.

The simulated values of the total number and of the long

duration interactions agree qualitatively with experimental values.

These were obtained from NK – dendritic cell interaction

experiments in ex-vivo mice lymph nodes (Fig 8) under no

stimulus (black horizontal lines) and when the mice are stimulated

4 hours in advance with lipopolysaccharide (red horizontal lines;

see also Materials and Methods). By visually inspecting the

intersection between the interpolating sigmoidal functions in

Fig 8 with the experimental values we can estimate two values

of the chemotactic parameters, x > 0.1560.15 mg:mm5=s2 and x

> 0.560.2 mg:mm5=s2 that describe simultaneously the long and

total number of interactions under no stimulus and when

lipopolysaccharide was injected in the mice.

Discussion

The mean field model of non-contact interactions developed

here indicates clearly some direct effect of these interactions on the

interaction duration. But this main result might be invalidated by

major flaws arising from the crudeness of our approximations. We

have then carried out a validation of the numerical model

employed here by comparing simulated and experimental data on

an extended set of additional geometrical and kinematic param-

eters of the NK cells motion. To this purpose we have selected

three parameters, namely the confinement ratio of the NK cell

Figure 6. Distribution of the duration times of the interaction
between NK and dendritic cells. Distribution of the duration times
for the case of no chemotaxis (x= 0, panel A) and of high chemotactic
effect of the chemokines on the NK cells (x%1mg:mm5=s2 , panel B). The
results are obtained from the analysis of the interactions of 10
independent simulation runs (100 NK cells per simulation). The error
bars are uncertainties obtained by 10 different simulations.
doi:10.1371/journal.pone.0076756.g006

Figure 7. Dependence of the duration times of the interaction
between NK and dendritic cells on the degradation time.
Distribution of the duration time of the NK – dendritic cell interaction,
as a function of the chemokines’ degradation time, k: k = 600 s (open
black bars, black continuous best fit line); k = 900 s (densely hatched red
bars and red open squares best fit line) and k = 1200 s (sparsely hatched
green bars and green filled triangles best fit line). The chemotactic
parameter was set to x%1mg:mm5=s2 . The lines are best fit to the trial

functionA exp½{t=t1�zB exp { t{t0ð Þ2=s2
h i

. Best fit parameters are: A

(600s) = 803628, t1 (600s) = 7066s, B (600s) = 7862, t0 (600s) = 45066
s, s (600s) = 250614 s for k = 600s; A (900s) = 859637, t1 (900s)
= 7066s, B (900s) = 3862.5, t0 (900s) = 570630s, s (900s) = 380640s
for k = 900s and A (1200s) = 980670, t1 (1200s) = 6666s, B (1200s)
= 3863, t0 (1200s) = 6306200s, s (1200s) = 550690s.
doi:10.1371/journal.pone.0076756.g007
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trajectory (CR, defined as the ratio of the distance run by a NK cell

divided by the trace length), the instant 3D velocity (V3D) of the

NK cells and the length of the cell trajectory (Ltraj). Details on the

experimental conditions and the analysis of the experimental and

simulated data are reported in File S1 (see paragraph S4 ‘‘Analysis

of dendritic and NK cells interactions’’ in File S1).

Interactions on the experimental images were detected by

requiring that (1) the distance between NK and dendritic cells is

less than 25 mm, (2) the confinement ratio is decreasing during the

putative interaction duration and (3) the instantaneous speed is

below a threshold computed as the average of the instantaneous

speed of all NK cells over all frames considered in a field of view

(see paragraph S4,‘‘Analysis of dendritic and NK cell interactions’’

in File S1). Interactions on the simulated data were detected as

from the Monte Carlo tests (see Eqs. 17, 18). The result of this

procedure, applied to >250 experimentally tracked NK cells and

an equal number of simulated cells, is summarized in Fig 9 for the

stimulated (x ?0) and un-stimulated (x= 0) case and for the

subpopulations of interacting and non-interacting cells.

The confinement ratio accounts for the overall volume spanned

by the NK cell during its motion and DC-NK cell interactions lead

to its reduction (Fig 9A, B). The experimental data show wider

distributions and a slightly higher average value than the simulated

ones. However the relative interacting/non-interacting and

stimulated/non-stimulated changes are similar in the simulated

and experimental data. The lower simulated values may arise from

a slight overestimation of the chemotactic parameter (see Fig 8)

that in Fig 9 is kept at x~1mg:mm5=s2.

Regarding the NK cell velocity (Fig 9C, D), the simulated

interacting NK cells again show narrower distributions than the

experimental data but the average values, ,v3D., of the NK cell

velocity are very well reproduced. The average values ,v3D.

under no external stimulus are instead slightly larger than the

experimental ones (Fig 9C, D), indicating that additional

interactions of NK cells with the lymphoid tissue without any

stimulus should be accounted for in a more refined model.

The trajectory length of the simulated NK cells provides an

indirect estimate of the duration of the confined motion. The

interacting NK cells spend much more time in patrolling the

dendritic cell and in so doing drive longer paths. The presence of a

very long tail in the trajectory length distribution is an indication of

the overestimation of the chemotactic parameter assumed in Fig 9
and/or an underestimation of the chemokine degradation rate k.

However, the observation of longer trajectories for the stimulated

NK cells, together with their lower average velocity, is an

indication that our numerical mean field model grasps the main

features of the intermittent interaction between NK cells and DCs,

as found experimentally [13,37]. The simulated non-interacting

NK cells have instead a much shorter trajectory length, an

indication of quasi-directional motion: simulated and experimental

non-interacting NK cells display very similar distribution and

average values of the trajectory length.

In summary, the aim of this study was to ascertain the possible

effect of non-contact interactions between leukocytes on the

leukocyte-leukocyte interaction duration under pathogenic stimuli.

To this purpose we have focused ourselves on the recent report

[50] of interactions between dendritic and NK cells. We have

chosen to model the non-contact interactions between leukocytes

by means of the chemotactic potential proposed by Keller and

Segel [25]. Starting from their formulation, we have devised a

space-time separable analytical approximated functional form for

the chemotactic attraction potential and used it in numerical

simulations of the interaction between leukocytes under the action

of chemokines. In order to obtain the overall behavior of NK cells

and DCs under the action of chemotactic (or a generic non-

contact interaction) and contact interactions, we have further

assumed to describe contact leukocyte interactions as a reduction

of the diffusion coefficient of NK cells that approach DCs.

The analysis of the simulations and their comparison to

experimental data, indicates that the mean-field description

adopted to describe the non-contact and contact interactions

allows us to grasp the main features of the observed NK cell

motion within the lymph node and to bring into evidence the

possible effect of non-contact interactions on the geometrical and

kinematic parameters.

In particular, our simulations indicate that the number of

interactions is well described by a smooth sigmoidal trend as a

function of x. The overall fractional increase in the number of

interactions is only 1.4 for the long interactions and it saturates as

the chemotactic parameter increases above x >0.7mg:mm5=s2.

Such an increase is probably difficult to be detected on in-vivo or

ex-vivo data also due to the experimental uncertainties and the

intrinsic variability of the tissue surgical preparation. It is

nevertheless a clear indication of a direct effect of non-contact

interaction on the parameters typically measured to bring into

evidence leukocyte-leukocyte contact interactions.

The analysis reported here suggests also that the discrimination

between interacting and non-interacting leukocytes might be

revised by taking into account also geometrical and kinematics

Figure 8. Dependence of the duration times of the NK –
dendritic cell interaction on the chemotactic parameter.
Percentage of the interacting cells computed on a set of 10
independent simulation runs. The percentage of all the interacting
cells (filled squares) and of the long interacting cells (open squares;
interaction duration larger than Tth = 600s) are reported. The lines are
the sigmoidal fits to the data (y = 74–33.5/(1+ exp ((x20.54)/0.108)),
solid line; y = 53–31/(1+ exp ((x20.674)/0.127)), dashed line). The
horizontal lines indicate the experimental percentage of the NK cells
interacting with dendritic cells: total number of interactions (dashed
lines) under no stimulus (black) and under the action of lipopolysac-
charide stimulus (red); long duration interactions (Tth = 600s) (solid
lines) under no stimulus (black) and under the action of lipopolysac-
charide stimulus (red). The vertical arrows indicate the most probable
values of the chemotactic parameter as visually obtained from the
intersection of the interpolating sigmoidal curves and the horizontal
lines. The horizontal dotted arrows indicate the range of variability of
the chemotactic parameter. The experimental data were obtained from
experiments in ex-vivo lymph nodes from mice not treated with the
lipopolysaccharide stimulus (black horizontal lines) and from mice
treated with the lipopolysaccharide stimulus 4 hours in advance (red
horizontal lines; see also Materials and Methods).
doi:10.1371/journal.pone.0076756.g008
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parameters that are not related only to the leukocyte-leukocyte

distance and therefore to their contact.

Finally, it is noteworthy that the reciprocal activating crosstalk

between dendritic and natural killer cells has received recent

attention in the literature [51]. Much interest has been focused on

functional dendritic – NK cell crosstalk and its role in immune

regulation [41,52,53]. For example, mature dendritic cells can

activate NK cell cytotoxicity and IFN-c production [42].

Conversely NK cells can enhance dendritic cell maturation and

immune-stimulatory capacity. In particular several studies have

reported that NK cells markedly increase their capacity to produce

proinflammatory cytokines [3]. Therefore dendritic and NK cells

seem to guide each other’s functions not only through cell–cell

contact but also through the release of soluble factors, including

cytokines [51]. To this regard the possibility to study in vivo or ex-

vivo in lymph nodes the role of the chemokine mediated

interactions is becoming increasingly important.

Supporting Information
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