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Abstract

Recent advances in sequencing allow population-genomic data to be generated for virtually any species. However,

approaches to analyse such data lag behind the ability to generate it, particularly in nonmodel species. Linkage dis-

equilibrium (LD, the nonrandom association of alleles from different loci) is a highly sensitive indicator of many

evolutionary phenomena including chromosomal inversions, local adaptation and geographical structure. Here, we

present linkage disequilibrium network analysis (LDna), which accesses information on LD shared between multi-

ple loci genomewide. In LD networks, vertices represent loci, and connections between vertices represent the LD

between them. We analysed such networks in two test cases: a new restriction-site-associated DNA sequence (RAD-

seq) data set for Anopheles baimaii, a Southeast Asian malaria vector; and a well-characterized single nucleotide

polymorphism (SNP) data set from 21 three-spined stickleback individuals. In each case, we readily identified five

distinct LD network clusters (single-outlier clusters, SOCs), each comprising many loci connected by high LD. In

A. baimaii, further population-genetic analyses supported the inference that each SOC corresponds to a large inver-

sion, consistent with previous cytological studies. For sticklebacks, we inferred that each SOC was associated with a

distinct evolutionary phenomenon: two chromosomal inversions, local adaptation, population-demographic history

and geographic structure. LDna is thus a useful exploratory tool, able to give a global overview of LD associated with

diverse evolutionary phenomena and identify loci potentially involved. LDna does not require a linkage map or ref-

erence genome, so it is applicable to any population-genomic data set, making it especially valuable for nonmodel

species.
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Introduction

Recent developments in next-generation sequencing

(Davey et al. 2011, 2013; Seeb et al. 2011) have opened up

a new era of population genomics in nonmodel species,

broadening the range of evolutionary and ecological

questions that can be addressed (Andrew et al. 2013;

Narum et al. 2013). A major aim in this field is to distin-

guish locus-specific effects (such as selection) from

genomewide effects (such as population structure and

demographic history). This is often achieved by identify-

ing outlier loci in empirical distributions of population-

genetic statistics such as polymorphism and divergence

(Gaggiotti et al. 2009; Fisher et al. 2011). Considering

loci separately like this ignores potentially valuable

information about alleles from multiple loci that may be

nonrandomly associated with each other, that is be in

linkage disequilibrium (LD; Hill & Robertson 1968;

Barton 2011).

LD exists when combinations of alleles across loci

deviate from well-mixed (statistical equilibrium) expec-

tations (Barton et al. 2007). Thus, any evolutionary

phenomenon that perturbs the system away from this
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equilibrium, such as population structure or selection,

will leave a signature of LD in the genome. Once LD

exists, any mechanism that modulates its decay (i.e.

affects the rate of recombination), such as chromosomal

rearrangements (Rieseberg 2001) or recombination cold/

hot spots (Maniatis 2002) will also leave its mark in pat-

terns of LD. Most notably, inversions strongly restrict

recombination in heterokaryotypes, in particular around

the inversion break points (Noor & Bennett 2009). LD

therefore has the potential to be informative about many

important evolutionary phenomena that affect genomes

(Ardlie et al. 2002; Slatkin 2008).

Many current methods to analyse genomewide mul-

tilocus LD require the genomic position of the loci to be

known (International HapMap Consortium 2005; Voight

et al. 2006; Falush et al. 2007; Kim et al. 2008; Kumasaka

et al. 2010; Lawson et al. 2012; Koch et al. 2013; Ralph &

Coop 2013) and are therefore limited to species with

well-annotated reference genomes. This is unfortunate

as the ability to gain information about LD associated

with important evolutionary phenomena does not cru-

cially depend on knowing where the loci come from in

the genome. The focus on using genomic location

means that while measures of LD may in principle be

applied to loci across the genome, they are frequently

only applied within chromosomes, or to specific subsets

of chromosomes (e.g. the MHC locus). This loses infor-

mation about LD among more widely scattered loci. To

address these issues, we develop here a network-analyt-

ical approach to identifying groups of loci with high in-

tragroup LD. It does not require knowledge of the

physical position of loci in the genome and can be used

for all loci from a population-genomic data set in a sin-

gle analysis. Appropriate population-genetic analyses of

the sets of loci identified by our approach may then

reveal their involvement in evolutionary phenomena,

enabling a novel global view of processes shaping the

genome.

Here, we will use networks to refer to the combina-

tions of vertices and edges which form the heart of math-

ematical graph theory. Network analyses have

successfully been used to study a diverse range of com-

plex biological processes (Mason & Verwoerd 2007;

Foote et al. 2009; Knight & Pinney 2009; Marbach et al.

2010). A central theme in network analyses is to identify

sets of vertices (clusters) that have more and/or stronger

connections between their members than to the remain-

der of the network (Newman & Girvan 2004; Leskovec

et al. 2009). In our network-analytical approach to

LD, the vertices in a network represent loci and the

edges between them represent LD. In this way, we will

use all pairwise LD values among loci to gain an overall

picture of LD within a given population-genomic data

set.

Any evolutionary phenomena that result in elevated

LD among multiple loci are expected to cause distinct

clusters in LD networks. Some examples, such as inver-

sions and selective sweeps, only affect localized genomic

regions within single chromosomes. Others involve loci

more widely spread in the genome, potentially spanning

several chromosomes. These include epistatic (nonaddi-

tive) fitness interactions among loci and population

admixture. Admixture LD can be natural, for example

the recent rejoining of allopatrically diverged popula-

tions; or it can be artificial, for example where the study

sample comprises individuals from two or more diver-

gent populations. In both cases, drift or selection, acting

independently in the ancestral or sampled populations

respectively, will result in sets of loci sharing high LD,

potentially scattered across the genome. When such

different evolutionary phenomena responsible for LD

co-occur and are sufficiently different from each other,

that is do not affect the same individuals or loci in the

same way, we expect each to generate a distinct cluster

in an LD network.

To identify clusters of loci that share high LD within

an LD network, we have developed linkage disequilib-

rium network analysis (LDna). We evaluate the LDna

approach by applying it to two study systems exhibiting

well-characterized evolutionary phenomena associated

with elevated LD among multiple loci: inversions, local

adaptation and geographic structure. The first of these is

Anopheles baimaii, a mosquito which is a major malaria

vector in Southeast Asia (Sinka et al. 2011; Sarma et al.

2012). Anopheles baimaii has a widespread distribution

extending from northeast India, through Myanmar and

into Thailand (Obsomer et al. 2012). Polytene chromo-

some studies have identified five large inversions, each

on a different chromosomal arm (2L, 2R, 3L, 3R and the

X-chromosome; Baimai et al. 1988a,b; Poopittayasataporn

& Baimai 1995). These inversions are polymorphic within

populations, occurring at varying frequencies across the

distribution of this species (Baimai et al. 1988a,b; Poop-

ittayasataporn & Baimai 1995). We thus predict that in a

population-genomic data set from this species, LDna will

identify distinct clusters of loci, each cluster correspond-

ing to an inversion.

The second system is the well-studied three-spined

stickleback (Gasterosteus aculeatus; Colosimo et al. 2005;

Jones et al. 2012). In this species, we expect, in addition

to three known inversions, local adaptation to marine

and freshwater habitats and geographical structuring

between the Atlantic and Pacific populations to be asso-

ciated with LD signals among multiple loci. Population-

genomic data from this species will enable us to evaluate

the extent to which LDna is able to detect distinct clus-

ters associated with the simultaneous presence of differ-

ent evolutionary phenomena.
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Materials and methods

Linkage disequilibrium network analysis (LDna) outline

An outline of LDna is given in Fig. 1. We start with a

matrix of pairwise LD values (Fig. 1A). LD was mea-

sured as the squared pairwise correlation coefficient

between loci, r2 (Hill & Robertson 1968), calculated using

the ‘LD’ function in the R package ‘genetics’ (Warnes

et al. 2013). These LD values were treated as weights for

edges that connect loci (vertices) in networks which were

constructed using the R package ‘igraph’ (Csardi &

Nepusz 2006). We generate a series of networks, each

using the subset of pairwise LD values above a particular

threshold. As LD threshold decreases, vertices become

increasingly connected in clusters that grow and eventu-

ally merge to form a single fully connected network.

This successive merging of clusters can be effectively

visualized as a tree (Fig. 1B), where branches represent

clusters and the joining of branches represents clusters

and/or individual loci merging (i.e. become connected

by at least one edge) at a particular LD threshold.

The change in LD when two clusters merge is mea-

sured by k (Fig. 1B,C). We calculated k for every cluster

in the tree, defined as: ð~xib � ~xiaÞ � nib, where ~xib is the

median of all intracluster r2 values for cluster i before

merger; after merger ~xia is the median of intracluster r2

values for those pairwise LD values involving at least

one locus from the premerger cluster i; and nib is the

number of loci in cluster i before merger. High values of

k indicate the merger of large clusters or strongly associ-

ated clusters, that is where intracluster pairwise LD val-

ues are high relative to intercluster LD values (Fig. 1B).

Any k value exceeding the median by a multiple φ
of the median absolute deviation and containing at least

|E|min edges is designated an outlier cluster (Fig. 1C).
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Fig. 1 Outline of linkage disequilibrium network analysis (LDna). (A) Starting from a pairwise matrix of LD values between loci, LDna

partitions all loci into clusters comprising vertices (loci) connected by edges that represent LD values above given thresholds. (B) The

order in which clusters merge with decreasing threshold can be visualized as a tree where only one connection between clusters is

required for clusters to be considered as merged. For each cluster in the tree, the change in median LD of all pairwise connections

between loci in a cluster at merger is measured by k (see Materials and Methods). (C) All lambda values plotted in order of increasing

value (Index). Clusters with exceptionally high values of k relative to the median across all the values in a tree (above the, user-con-

trolled, dashed line) are considered as outliers. In (B) and (C), red colour highlights clusters that do not have any other outlier clusters

nested within them (single-outlier clusters, SOCs), and blue highlights the outlier cluster that contains multiple SOCs (compound outlier

cluster, COC).
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The two parameters, φ and |E|min, allow the user to pick

out both ‘diffuse’ and ‘compact’ clusters as outliers. A

diffuse cluster can be made up of many moderately asso-

ciated and moderately connected vertices, while a com-

pact cluster has a few vertices with strong associations

and/or high connectivity. The purpose of these parame-

ters is to enable the identification of clusters representing

sets of loci that bear distinct evolutionary genetic signals

in the data. Approaches to parameter value choice are

explored in Results and in Appendix S1 and S2 (Support-

ing Information; these are also included as tutorials for

the R package ‘LDna’, see Data accessibility).

From the outlier values identified, we wish to deter-

mine the subsets that correspond to discrete evolutionary

phenomena. In practice, we observe that some outlier

clusters are nested within others. We designate any ‘tip’

cluster with no other cluster nested within it as a single-

outlier cluster (SOC, coloured red in Fig. 1). Any other

outlier we designate as a compound outlier cluster

(COC, coloured blue in Fig. 1). The set of SOCs identified

in this way represents mutually exclusive clusters, each

containing unique loci that share high LD. We hypothe-

size that each SOC corresponds to a distinct evolutionary

phenomenon acting in the population. If this is the case,

COCs may contain information about the relationships

among evolutionary phenomena. However, exploring

the interpretation of COCs is beyond the scope of this

study where we shall focus on testing the biological

interpretation of SOCs.

Population-genetic interpretation of LDna analysis on
simulated data

To illustrate how LDna may be applied to more realistic

data, we created a data set simulated under a scenario of

population structure using fastsimcoal2 (Excoffier & Foll

2011; Excoffier et al. 2013; see Appendix S3, Supporting

Information, for detailed methods). This involved an

ancestral population that split into three populations,

each with effective population size of 1000 diploid indi-

viduals, 1000 generations ago (Fig. 2A). These popula-

tions evolved through mutation, recombination and drift

only, without selection or migration (see Appendix S3,

Supporting Information, for details). LDna was applied

to 25 diploid individuals from each final population.

Populations were pooled prior to calculating LD,

thereby creating sample admixture LD. As expected for

three equivalent populations, LDna identifies three SOCs

at similar LD thresholds (Fig. 2B,C). Analysis of these

SOCs by PCA reveals that each SOC represents the

genetic distinction of each population from the other two

due to the unique trajectory of mutation and drift in each

population (Fig. 2D). This pattern, in which the number

of clusters corresponds to the number of comparisons

among populations, can be seen for other numbers of

simulated populations too (Appendix S3-Fig 2, Support-

ing Information). When we incorporate migration among

populations into these simulations, the resulting recom-

bination erases the LD clusters progressively with
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Fig. 2 LDna on data simulated for a subdivided population. (A) Outline of modelled scenario where an ancestral population splits into

three populations followed by 1000 generations of independent evolution. (B) Resulting LDna network showing clusters formed above

an LD threshold of 0.8 (C) Tree showing LD clusters across LD thresholds (comparable to Fig. 1B). LDna identified three SOCs, high-

lighted in red, at the parameter values shown. (D) PCAs for each of the three SOCs identified in (C). The amount of variation explained

is indicated on each axis.
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increasing migration rate (Appendix S3-Fig 3, Support-

ing Information).

Preparation of population-genomic data sets and
genome mapping

The preparation of a restriction-site-associated DNA

(RAD) population-genomic data set for A. baimaii and a

three-spined stickleback SNP data set is described in

Appendix S4 (Supporting Information). Note that when

many SNPs come from the same RAD locus, they may

themselves cause clustering in LDna, in particular when

parameter settings for |E|min and φ are set to low values

(see Appendix S2 for details). However, in practice, we

found that most RAD loci contained a single SNP (see

Results). The consensus sequences for each relevant RAD

locus were mapped against the A. dirus reference gen-

ome using BLAT (Kent 2002) run with the default param-

eters, and a P-value threshold of 1910-8 was used to

identify significant hits. Second, we mapped all our link-

age map RAD loci (as above) to the scaffolds from the

first step and used these to anchor the scaffolds to the

linkage maps. Sequences were aligned to the A. gambiae

genome using the BLAST algorithm through https://

(A)

(D)

(B) (C)

LD threshold = 0.55

779_0.47
(621_0.57, 638_0.56) 

926_0.38
(840_0.43, 779_0.47, 
621_0.57, 638_0.56) 1129_0.27

(927_0.38, 840_0.43, 779_0.47, 
621_0.57, 638_0.56)

839_0.43
(779_0.47, 621_0.57, 638_0.56) 

638_0.56

(621_0.57)

739_0.49

840_0.43

927_0.38

1128_0.27

100501 150
10

0
5

15
20

Index

λ

λlim = 3.36 1129_0.27
638_0.56
739_0.49
926_0.38
1128_0.27
839_0.43
779_0.47

927_0.38

840_0.43

ϕ = 7, |E|min = 20  ϕ = 7, |E|min = 20  

638_0.56
779_0.47
739_0.49

839_0.43

840_0.43
926_0.38

927_0.38
1129_0.27

1128_0.27

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
LD threshold

Fig. 3 LDna of Anopheles baimaii RAD sequence data set. (A) A clustering tree (cf. Figs 1B and 2C) of all pairwise r2 values from 3828

SNPs derived from a landscape genomics RAD sequence data set from A. baimaii. Branches corresponding to SOCs and COCs are indi-

cated in red and blue, respectively, throughout the figure. (B) All k values in increasing order with values above klim corresponding to

outlier clusters. Parameter values for φ and |E|min are shown above plots (A) and (B). See Fig. 6 and Appendix S1 and S2, Supporting

Information, for details of parameter value selection. (C) A snapshot of a full network at an LD threshold value just above that at which

any of the five SOCs merge. (D) Each SOC is shown at an LD threshold where it is joined by a single link to other loci, in decreasing

order of threshold from left to right, top to bottom. For each of these mergers, we have indicated, in brackets after the COC name, which

SOCs are nested within each COC. COCs are shown here but were not analysed further.
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www.vector/base.org/blast with default settings except

that the maximum E-value was set to 1910-3.

As a draft genome is only available for a close relative

of A. baimaii (A. dirus; estimated divergence time from

A. baimaii ~1 Mya; Morgan et al. 2010), we also produced

a linkage map for A. baimaii (described in Appendix S4,

Supporting Information). Each relevant locus was

mapped against the A. dirus reference genome using

BLAT (Kent 2002) run with the default parameters. A

P-value threshold of 1 9 10�8 was used to identify signif-

icant hits, and scaffolds with positive hits were then

anchored to the linkage map. Chromosomal rearrange-

ments are very common in Diptera, but chromosome

arms remain syntenic even between distantly related

species (Bolshakov 2002). Therefore, we also mapped all

relevant loci to the genome of A. gambiae (the closest well-

annotated reference genome to A. baimaii) using BLAST

(https://www.vectorbase.org/blast) with default settings

except that the maximum E-value was set to 1 9 10�3.

Population-genetic structure

Principal component analysis (PCA) and discriminant

analysis of principal components (DAPC) were imple-

mented in the R package ‘adegenet’ (Jombart & Ahmed

2011). For PCA, first, allele frequencies were scaled and

missing genotype data were replaced by the mean using

function ‘scaleGen’, and the PCA was performed with

function ‘dudi.pca’. For DAPC, the number of genetically

distinct groups (k) present was first identified by run-

ning the function ‘find.clusters’, in which the function

‘kmeans’ is run sequentially with increasing number of

groups and the different clustering solutions compared

using the Bayesian information criterion (BIC). The opti-

mal numbers of clusters were inferred visually by

inspecting how BIC decreased as the number of groups

increased following guidelines in the documentation for

Adegenet. All other basic population-genetic parameters

were calculated with functions from Adegenet.

Results

LDna reveals five clusters of high LD in Anopheles
baimaii populations

There are five known polymorphic inversions in Anophe-

les baimaii (see Introduction). Due to the restricted recom-

bination in heterokaryotypes, a polymorphic inversion

partitions the genetic information (created by mutation,

drift and/or a selective sweep) in that genomic region

into two groups: the ancestral and the inverted. Conse-

quently, each polymorphic inversion is expected to cre-

ate strong admixture LD among the inversion loci. We

therefore predict that any inversion for which different

karyotypes (hetero- or homokaryotypes) have been sam-

pled should give rise to a SOC in population-genomic

data. To test this hypothesis, we generated and analysed

a restriction-site-associated DNA (RAD) sequence data

set from 224 wild-caught individuals of A. baimaii, sam-

pled throughout its distribution range. Our RAD

sequence data set comprised 3008 loci from 184 individu-

als sampled from 91 geographical sites (Fig. S1). As r2

can only be calculated between biallelic loci, we

extracted all such SNPs from each RAD locus with a

minor allele frequency above 10%. The data set used for

subsequent LDna analyses comprised 3828 SNPs (med-

ian number of SNPs per RAD = 1, range 1–36).
Application of LDna to the above data set resulted in

the identification of five SOCs (Fig. 3A; Table 1). These

SOCs were named 638_0.56, 739_0.49, 840_0.43, 927_0.38

and 1128_0.27, where the numbers before and after the

underscore indicate a unique cluster number and the

highest LD threshold at which a SOC is present,

respectively. Figure 3B shows that each SOC constitutes

Table 1 Summary of single-outlier clusters (SOCs) identified by LDna of the population-genomic data sets from Anopheles baimaii and

three-spined stickleback

Data set SOC nloci |E| k Median LD (MAD)* Inferred cause

A. baimaii 638_0.56 40 388 4.24 0.554 (0.106) Inversion

739_0.49 29 68 6.30 0.334 (0.095) Inversion

840_0.43 67 936 22.3 0.389 (0.128) Inversion

927_0.38 101 925 19.1 0.227 (0.0919) Inversion

1128_0.27 46 364 8.96 0.211 (0.0940) Inversion

Stickleback 494_0.82 41 278 18.8 0.797 (0.0877) Inversion/local adaptation

495_0.82 343 2324 18.2 0.382 (0.153) Local adaptation

496_0.82 25 77 13.8 0.736 (0.0920) Inversion/local adaptation

618_0.79 235 1263 59.8 0.416 (0.123) Geographic structure

673_0.76 289 526 54.0 0.255 (0.123) Geographic structure

*Median of all intracluster pairwise LD values (r2); MAD is the median absolute deviation (unscaled).
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a clear outlier with respect to k. Figure 3C gives a snap-

shot of cluster formation at an LD threshold where all

SOCs are visible although some are small. Figure 3D

gives a network visualization of the successive merging

of the SOCs.

Hypothesis that SOCs correspond to inversions in
Anopheles baimaii

To determine which, if any, of the five SOCs identified

above correspond to inversions, we applied conventional

population-genetic approaches. Lack of recombination

within inversion heterokaryotypes is expected to result

in genetic divergence at loci within the rearrangement,

particularly those near to inversion break points. If a

SOC marks an inversion, we therefore expect to be able

to identify three genetically distinct groupings corre-

sponding to the two alternative homokaryotypes and the

heterokaryotype. Further, we expect the heterokaryotyp-

ic genetic groups to be genetically intermediate to the

two homokaryotype groupings and to display a strong

excess of heterozygous genotypes.

Population-genetic analyses support the inversion
hypothesis

Analysis of the non-SOC loci showed strong support for

two genetically distinct groups (Fig. S2 and Fig. 4A).

This pattern serves as a null hypothesis to which popula-

tion structure at the SOCs can be compared.

Four SOCs (638_0.56, 739_0.49, 840_0.43 and 927_0.38)

all differed from the non-SOC loci in having strong sup-

port for three genetically distinct groups (Fig. S2 and

Fig. 4A). For these SOCs, DAPC found that a large

proportion of the variation between these groups

(>99.5%) was explained by the first discriminant func-

tion. As a result, for these SOCs, one group is intermedi-

ate between the other two. These intermediate groupings

all show a strong excess of heterozygotes as indicated by

highly negative values of the inbreeding coefficient, FIS
(Fig. 4B). In contrast, the distributions of FIS values for

the other two groups are centred close to zero. These

results are consistent with the inversion hypothesis such

that groups 1 and 3 for these four SOCs represent alter-

native homokaryotypes and group 2 for each SOC repre-

sents heterokaryotypic individuals.

SOC 1128_0.27 showed a different pattern to the four

described above. While there were still three major

groups (Fig. S2), the first discriminant function explained

much less of the variation among groups (77%). Four

groups better partitioned the variation in FIS and it is

therefore shown in Fig. 4. Similar to groups 1 and 2 of

the non-SOC loci, groups 3 and 4 have nonnegative FIS
values (Fig. 4B). In contrast, group 2 shows negative FIS
and is intermediate between group 1 and groups 3 and 4,

consistent with group 2 being heterokaryotypic. We

therefore hypothesize that SOC 1128_0.27 corresponds to

a relatively rare inversion where group 1 is the low-

frequency homokaryotype and groups 3 and 4 are the

high-frequency homokaryotype, detected as two groups

for some other reason, for example due to geographical

structuring.

Mapping locates inversions to different chromosomal
arms

The hypothesis that the five SOCs identified in A. baimaii

correspond to five large polymorphic inversions in this
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species (see Introduction) further predicts that all loci

from a given SOC will map together to distinct but large

genomic regions. We tested this using a linkage map for

A. baimaii (Appendix S5 and Fig. 5). Loci from the above

SOCs mapped to 17 different A. dirus scaffolds of which

15 could be anchored to the A. baimaii linkage map.

There is broad colinearity between the linkage map and

the scaffolds (Fig. 5). However, there may also be rear-

rangements between the species, suggested by the cross-

ing of lines between the linkage map and scaffold in

Fig. 5, particularly in the upper portion of linkage group

II.

Loci from each of the five SOCs mapped to between

two and four unique scaffolds (Fig. 5). Each SOC maps

to large but distinct genomic regions: two each on link-

age groups I and II, respectively, and one on the X-chro-

mosome (Fig. 5). Only one locus (1 of 46 in SOC

1128_0.27) mapped away from the other loci in its SOC.

For each of the five SOCs, between 96% and 100% of all

BLAST hits against the A. gambiae genome (n = 7–47 per

SOC) place each SOC on a different chromosome arm.

SOC loci could colocate to a genomic region for several

reasons, for example recombination cold spots such as

telomeres or centromeres following admixture. How-

ever, given the consistency with previous cytological

data (see Introduction), the observation that the SOCs

map to the five large chromosome arms adds further

support to the population-genetic analyses above in

favour of the inversion hypothesis.

Identification of SOCs is robust to parameter choice and
data set size

Identification of the SOCs above by LDna depends on

the particular data set and requires the choice of values

for two key parameters: |E|min (the minimum number

of edges required for a cluster to be considered) and φ
(which controls when clusters are defined as outliers).

To test the extent to which identification of the SOCs

associated with inversions above depends on the choice

of |E|min and φ, we repeated the above LDna analyses

with a wide range of parameter value combinations.

Details of the resulting SOC losses and gains are shown

in Fig. 6A. Two of the SOCs (1128_0.27 and 840_0.43)

were recovered from all of this parameter space. All the

five SOCs associated with inversions and no alternative

SOCs were recovered from a substantial region of

parameter space (white area in Fig. 6A).

Figure 6B shows trees resulting from particular

combinations of parameter values. Tree 1 (where φ = 7

and |E|min = 20) serves as a reference point, corre-

sponding to the tree used in the analyses above (Fig. 3A).
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There were three main reasons why a SOC in Tree 1 was

not identified when using different parameter combina-

tions. First, when |E|min is high, it can exceed the num-

ber of edges (|E|) for the cluster in question. For Tree 2,

in Fig. 6B (φ = 7, |E|min = 70), SOC 739_0.49 is lost for

this reason. Second, when φ was high, the associated klim
can exceed the k value of the SOC in question. For Tree 3

(φ = 10, |E|min = 20), SOC 638_0.56 is lost for this

reason. Third, when φ was low, the identification of

additional SOCs meant that a cluster appeared to be a

compound of more than one outlier cluster (COC,

see above). For instance, as shown in Tree 4, when φ = 5

(|E|min = 20), the additional identification of SOC

777_0.47 meant that SOC 927_0.38 was not identified.

Conversely, gains of SOCs tend to occur at reduced val-

ues of both parameters (the green area in A). For

instance, as shown in Tree 5 where |E|min = 5 and

φ = 5, an additional small SOC was identified (390_0.79).

Only when both parameter values were reduced to very

low levels, were many additional and potentially spuri-

ous SOCs gained (Tree 6). Thus, while it is important to

note that changes in |E|min and φ can lead to different

SOCs being identified, all the SOCs identified as corre-

sponding to inversions were to a large extent robust to

changes in these parameters.

Identification of the SOCs above by LDna could also

depend on size of the data set, as clusters of loci truly

sharing high LD will have fewer representatives in a

data set of reduced size. To explore the effect of data set

size, we carried out LDna on subsamples of the A. bai-

maii RAD sequence data set. We compared each SOC

identified in the subsampled data sets to the five SOCs

corresponding to inversions, here denoted ‘reference

SOCs’. We subsampled at random without replacement

50% (n = 1914) or 25% (n = 957) of all the available

SNPs from the full data set and analysed ten

replicates each. The parameter values used were as fol-

lows: |E|min = 16 and φ = 3 for the 50% subsampled

data sets; and |E|min = 14 and φ = 2 for the 25% sub-

sampled data sets. These parameter values were chosen

as they gave results similar to those obtained with the

full data set. In particular, φ was kept low enough to

avoid the identification of SOCs that included loci from

more than one reference SOC. From the 50% subsampled
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Fig. 6 The effects of parameter choice on

LDna. The two user-defined input param-

eters for LDna are φ, which controls when

clusters are defined as outliers, and

|E|min, the minimum number of edges

required for a cluster to be considered as

an outlier. (A) We used the results from

the original LDna analyses (that identified

five SOCs associated with inversions) as a

reference point ①. With respect to this

reference, we assessed how many of the

SOCs were not identified (losses), and

how many additional SOCs were identi-

fied (gains) by LDna. White indicates

parameter space where results exactly

matched the reference. In addition to the

reference (Tree ①), (B) shows five exam-

ples of LDna results (Trees ②–⑥) at dif-

ferent combinations of φ and |E|min as

indicated above the trees and in (A).
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data sets, we recovered SOCs corresponding to all five

reference SOCs from all replicates (Fig. S3A, Supporting

Information). With 25% subsampled data sets, LDna

failed to identify all the SOCs corresponding to the refer-

ence SOCs in 6 of 10 replicates (denoted by pink circles

in Fig. S3B, Supporting Information). In 2 of 10 replicates,

SOCs not corresponding to any reference SOC were also

recovered (denoted by red circles in Fig. S3B, Supporting

Information). Smaller data set sizes can therefore reduce

the ability of LDna to detect biologically relevant SOCs

and, in some instances, lead to the detection of spurious

SOCs. Nonetheless, as sequencing throughput is typi-

cally increasing, limited data set size seems unlikely to

be a major impediment to the application of LDna.

LDna can identify loci associated with local adaptation
and population-demographic history

We hypothesize that in addition to inversions, LDna can

be used to detect SOCs resulting from geographical

structuring and local adaptation. To test this, we applied

LDna to the three-spined stickleback (Gasterosteus aculea-

tus) system in which geographical structuring and local

adaptation have been well characterized (Jones et al.

2012). This data set comprises SNP data from 21

genomes from multiple pairs of two highly morphologi-

cally and genetically distinct ecotypes locally adapted to

marine and freshwater environments, from Pacific and

Atlantic populations. Three small inversions on chromo-

somes I, XI and XXI that differ in their frequencies

between the two ecotypes have previously been

identified from this data set (Jones et al. 2012). Thus,

in addition to finding SOCs corresponding to these

inversions, we predict that LDna will identify SOCs

resulting from population structure (Atlantic vs. Pacific)

and local adaptation (Saltwater vs. Freshwater).

We applied LDna to a high-quality subset of 5962

SNPs from the chromosomes with known inversions (I,

XI and XXI). Exploring variation across parameter val-

ues (as demonstrated in Fig. 6 and in Appendix S1 and

S2, Supporting Information) allowed us to identify five

SOCs (494_0.82, 495_0.82, 496_0.82, 618_0.79 and

673_0.76; Table 1) corresponding to each of the large

branches in Fig. 7A at |E|min = 10 and φ = 5.7. All loci

from SOC 496_0.82 mapped to the chromosome I inver-

sion, and all but four loci (4 of 41) from SOC 494_0.82

mapped to the chromosome XXI inversion. No SOCs

mapped specifically to the known inversion on chro-

mosome XI, probably because not all SNPs were used

(see Appendix S4) and the inversion is small. In con-

trast, the three remaining SOCs contain loci widely dis-

tributed across all three chromosomes. One of these

SOCs (495_0.82) contains loci across all three chromo-

somes in particularly high LD (>0.95, Fig. 7B). Conse-
quently, we infer that two SOCs correspond to two of

the three previously identified inversions and the three

remaining SOCs correspond to LD clusters arising from

other causes.

The association of each SOC with respect to popula-

tion structure (Atlantic vs. Pacific) and local adaptation

(marine vs. freshwater) was assessed by PCA. Three of

the five SOCs (494_0.82, 495_0.82 and 496_0.82), includ-

ing the two that correspond to inversions, broadly sepa-

rate freshwater and marine ecotypes (blue vs. red in

(B)(A)

0.0 0.2 0.4 0.6 0.8 1.0

ϕ = 5.7,  |E|min = 10

LD threshold

494_0.82 
(ChrXXI inversion)
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(ChrI inversion)

618_0.79
(Geography)

673_0.76 (Geography)

Fig. 7 LDna on population-genomic data from the three-spined stickleback. (A) A clustering tree of pairwise LD values among 5962

SNPs from combined freshwater and marine ecotypes from the Atlantic and Pacific oceans. The data set includes only SNPs from the

three chromosomes (I, XI and XXI) that contain known inversions. Clusters identified as SOCs by LDna (at the parameter values indi-

cated in the figure) are also shown with likely evolutionary cause indicated (see main text and Fig. 8 for details). (B) A full network for

LD threshold = 0.95. Each locus is coloured according the chromosome to which it belongs: green, red and blue for I, XI and XXI,

respectively. All large clusters (|E| > 10 at a threshold of 0.95) with loci from more than one chromosome are nested within SOC

495_0.82.
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Fig. 8A). This is consistent with these SOCs comprising

loci associated with adaption to freshwater or marine

habitats. In the case of 495_0.82, the separation is specifi-

cally between freshwater Pacific individuals and all oth-

ers. Loci from the remaining two SOCs (618_0.79 and

673_0.76) broadly separate individuals from Pacific and

Atlantic populations (open vs. filled in Fig. 8A). Overall,

these analyses reveal that LDna can identify LD clusters

associated with at least three different (and sometimes

overlapping) evolutionary phenomena: inversions, local

adaptation and geographical population structure.

Discussion

Here, we have developed and used LDna to detect multi-

ple linked and unlinked subsets of loci sharing high LD.

Analyses of these subsets of loci using a range of popula-

tion-genetic analyses then enabled us to infer how they

are involved in different evolutionary phenomena: inver-

sions, local adaptation and geographical structure. Below

we discuss the empirical findings, before turning to the

usefulness of LDna in the context of other methods avail-

able to study genomewide LD.

LDna and inversions

Through their effect on inhibiting recombination, inver-

sions play an important role in evolution, particularly in

local adaptation and speciation (Kirkpatrick & Barton

2006; Hoffmann & Rieseberg 2008; Lowry & Willis 2010).

Traditionally, studying inversions required cytological

studies (e.g. fluorescence in situ hybridization tech-

niques; Tang et al. 2008), BAC-clone sequencing (Tang

et al. 2008) and/or sequencing of full genomes (Corbett-

Detig et al. 2012). These are laborious and/or expensive,

particularly in nonmodel species. Here, we demon-

strated that LDna, coupled with population-genetic

analyses, can be used to identify loci putatively associ-

ated with inversions in both a timely and cost-effective

manner, even without mapping information. Such inver-

sions can be both large, as in Anopheles baimaii, and small,

as in the sticklebacks. Further, if there are SNPs within
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SOCs that are fixed (or almost fixed) between the inver-

sion karyotypes, these could potentially be used as inver-

sion markers to facilitate large-scale studies of inversion

polymorphism in natural populations. Thus, LDna opens

up the possibility of studying inversion polymorphism,

by relatively simple means, in any species for which a

population-genomic data set can be generated.

LDna and local adaptation

In the original generation and analysis of the stickleback

data set used here, Jones et al. (2012) used supervised

approaches to identify a large number of genomic

regions that were consistently associated with marine–
freshwater divergence. In contrast, LDna allows an unsu-

pervised approach to detect clusters of loci in high LD

across the whole genome, from any source in a single

analysis. Contrary to what might have been expected

from the original study, we did not find a unique SOC

that separated marine and freshwater individuals glob-

ally (i.e. regardless of which ocean they were sampled

from). Instead, we found one SOC (495_0.82) associated

with adaptation to freshwater in the Pacific only. It is

thus possible that a large part of the divergence between

marine and freshwater ecotypes observed in the original

study is driven by differences specifically between the

ecotypes in the Pacific. Such unexpected patterns may be

difficult to detect by supervised approaches (in which

groups between which differences are sought need to be

defined a priori) including standard divergence-based

outlier analyses. LDna, as an unsupervised approach,

can therefore provide a more nuanced view of loci

involved in complex adaptations.

There are several distinct subclusters visible within

SOC 495_0.82 (Fig. 7A), comprised of a surprisingly

large number of loci spread across all the three chromo-

somes analysed here (Fig. 7B). It is likely that only a few

loci in SOC 495_0.82 are directly involved in local adap-

tation (either due to selection acting in parallel in differ-

ent freshwater systems or epistatic fitness interactions;

Hohenlohe et al. 2012). Instead, the large number of loci

in this SOC likely result from divergence hitchhiking

(Via 2011) coupled with the reduced effects of recombi-

nation due to geographical structuring. Loci within a

SOC that are not physically colocated can provide good

candidates for loci directly associated with parallel selec-

tion or epistatic fitness interactions. These include the

individual loci in exceptionally high LD across chromo-

somes as indicated by clusters with a mix of loci from

different chromosomes in Fig. 7B. The four loci in the

SOC associated with the chromosome XXI inversion

(494_0.82) that map outside it are good candidates. In

particular, the one with the highest LD to the rest of the

cluster falls within the predicted gene ENSG-

ACT00000014703 on chromosome I, encoding a protein

homologous to the dynein light chain, involved in intra-

cellular vesicle transport. This gene is known to be sig-

nificantly associated with marine–freshwater divergence

(it has a colocated peak in the ‘Marine-Freshwater Clus-

ter Separation Score’, one of 174 with a genomewide false

discovery rate of P < 0.05; Jones et al. 2012).

LDna and geographical structure

We found two SOCs (618_0.79 and 673_0.76) associated

with Atlantic–Pacific structuring in the sticklebacks. Clo-

ser examination of the allele frequencies at these loci

(Fig. S4) shows highly contrasting patterns. For SOC

673_0.76, many loci that are heterozygous in the Pacific

are homozygous in the Atlantic. This is consistent with a

founder event following the spread of this species from

the Pacific to the Atlantic (Colosimo et al. 2005), with the

associated drift resulting in the loss of genetic diversity

in the Atlantic population. In contrast, in SOC 618_0.79,

the allele frequency differences are far more divergent

between the oceans (FST = 0.64 vs. 0.10 for SOC

673_0.76). In other words, this SOC comprises the most

differentiated loci between the oceans – those that are

either fixed or nearly fixed between them (Fig. S4). Inter-

estingly, within 618_0.79, the PCA also identified some

differentiation between freshwater and marine environ-

ments for Atlantic individuals (Fig. 8A) indicating that

some of these loci may also be involved in marine–fresh-
water divergence, specifically within the Atlantic. Over-

all, this demonstrates that LDna can separate different

evolutionary phenomena even when they are associated

with the same historical separation event.

Approaches to the study of genomewide LD

Typically, LD declines quickly over short physical dis-

tances in wild populations (Kim et al. 2007; Slate & Pem-

berton 2007; Gray et al. 2009). Despite this, LD can span

large contiguous genomic regions within chromosomes,

as has been well documented in humans (e.g. Conrad

et al. 2006). Several methods have been developed to

characterize and utilize this information on LD. These

include the integrated haplotype score (iHS) test (Voight

et al. 2006) and the cross-population extended haplotype

homozygosity (XP-EHH) test (Sabeti et al. 2007) that

detect extended haplotypes that indicate the action of

natural selection. Other methods have accessed such

information on haplotypes and correlated allele frequen-

cies to increase the power to make inferences of popula-

tion structure, admixture and demography (Falush et al.

2003; Lawson et al. 2012; Ralph & Coop 2013).

It is becoming increasingly clear that LD can also

occur among noncontiguous regions of the genome, even
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between chromosomes, in many taxa including humans

(Wilson & Goldstein 2000; Hohenlohe et al. 2012; Koch

et al. 2013; Schumer et al. 2014). Approaches to under-

stand cross-genome (rather than localized) patterns of

LD tend to focus on pairwise comparisons between loci/

haplotype blocks. While the LDna approach also relies

on a matrix of pairwise estimates of LD, its use of net-

works goes beyond pairwise comparisons to identify sets

of loci sharing high LD. This potentially enables LDna to

capture information about high-order LD within the

genome.

Conclusions

The insights provided by LDna are possible in any popu-

lation-genomic data set, but are likely to be particularly

valuable for nonmodel species where a global view of

the genomic architecture is otherwise difficult to gain.

We were able not only to detect potentially unexpected

signals of LD (such as those caused by inversions), but to

partition loci into sets affected by different evolutionary

phenomena. This gives confidence that LDna will also

provide insights in other situations where a complex LD

signal involving noncontiguous parts of the genome is

expected (e.g. assortative mating, epistatic interactions

among multiple loci and species introgression). LDna

could also be used to separate clusters of loci in high LD

with the purpose of removing ‘outliers’ prior to studies

that require neutral markers, for example to estimate

population structure and population history. This broad

applicability is coupled with access to a global view of

evolutionary phenomena affecting genomes and the pos-

sibility of reasoned partitioning of loci within them,

without prior assumptions. Together, these features

make LDna an excellent exploratory tool for any popula-

tion-genomic data set.
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