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Abstract: Antifungal susceptibility testing (AST) has come to establish itself as a mandatory routine
in clinical practice. At the same time, the mycological diagnosis seems to have headed in the direction
of non-culture-based methodologies. The downside of these developments is that the strains that
cause these infections are not able to be studied for their sensitivity to antifungals. Therefore, at
present, the mycological diagnosis is correctly based on laboratory evidence, but the antifungal
treatment is undergoing a growing tendency to revert back to being empirical, as it was in the last
century. One of the explored options to circumvent these problems is to couple non-cultured based
diagnostics with molecular-based detection of intrinsically resistant organisms and the identification
of molecular mechanisms of resistance (secondary resistance). The aim of this work is to review the
available molecular tools for antifungal resistance detection, their limitations, and their advantages. A
comprehensive description of commercially available and in-house methods is included. In addition,
gaps in the development of these molecular technologies are discussed.

Keywords: antifungal resistance; molecular tools; intrinsic resistance; secondary resistance; Cyp51A;
FKS; Candida; Aspergillus

1. Introduction

Antifungal susceptibility testing is an essential tool in different clinical scenarios.
Standardized protocols (from the Clinical and Laboratory Standards Institute (CLSI)and
from the European Committee on Antimicrobial Susceptibility Testing (EUCAST)) and
commercially available methods (some of them automated) are able to detect resistant
fungal strains, to guide antifungal therapies, and to offer reliable epidemiological data on
antifungal resistance [1]. When these methodologies seemed to have come to establish
themselves as a mandatory routine in any clinical microbiology laboratory, the mycological
diagnosis seems to have headed in the direction of non-culture-based methodologies. These
techniques, which include serological and molecular-based tools, improve mycological
diagnosis in speed, sensitivity, and specificity. A proven invasive mycosis can be diagnosed
by amplifying fungal DNA from a paraffin-embedded tissue [2] or by detecting a fungal
antigen (e.g., Cryptococcus spp.) with a speed previously dreamed of [3]. Moreover,
there are commercially available molecular-based methods able to detect fungal DNA
with good sensitivity and speed [4]. The downside of these developments is that the
strains that cause these infections are not available to study their sensitivity to antifungals.
Therefore, at present, the mycological diagnosis is correctly based on laboratory evidence,
but the antifungal treatment is undergoing a growing tendency to revert back to being
empirical, as it was in the last century. Additionally, reports of clinical resistance to
antifungals are steadily increasing, leaving mycologists with the dilemma of having higher
rates of clinical resistance and fewer isolates to study. One of the explored options to
circumvent these problems is to couple non-cultured based diagnostics with molecular-
based detection of intrinsically resistant organisms and the identification of molecular
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mechanisms of resistance (secondary resistance). This idea would also overcome one of the
main drawbacks of conventional AST techniques, the time needed to get confident results
(>24 h) [5–8].

The aim of this work is to review the available molecular tools for antifungal resistance
detection, their limitations, advantages, and development gaps.

2. Intrinsic Resistance Detection

As with other microorganisms, antifungal resistance is a broad concept that can be
divided into clinical and microbiological resistance. The former was defined as the lack
of inhibition of a microorganism in the infection site and it is related to different factors
dependent on the drug, the patient, or both, rather than with the microorganism that causes
the infection [9,10]. On the other hand, microbiological resistance depends on the particular
characteristics of the microorganism and it can be subdivided into primary or intrinsic and
secondary or acquired resistance. The results obtained in the AST give an idea of both
microbiological resistance types.

Intrinsic microbiological resistance is the innate ability of a fungal species to resist the
activity of a particular antifungal drug due to its inborn functional or structural features
(e.g., absence of the drug target, inaccessibility of the drug into the cell). This resistance
is exhibited by all strains of the same species of a fungus and is not related to exposure
to the antifungal. On the other hand, secondary microbiological resistance is developed
after antifungal treatment (in vivo or after environmental exposure) and is observed in
particular strains of a normally susceptible species. These resistance phenotypes are due to
genetic alterations that are manifested in a stable or in a transitory way [11,12]. Intrinsic
and secondary resistance usually share the same molecular mechanisms. As an example,
we can state the intrinsic fluconazole (FLC) resistance in Aspergillus fumigatus due to the
naturally occurring T301I substitution at its Cyp51Ap [13] and the secondary mechanism
of FLC resistance in Candida albicans attributable to an equivalent substitution (T315A) at
its Erg11p [14].

Intrinsic resistance was defined by CLSI as “inherent or innate (not acquired) antimi-
crobial resistance which is reflected in wild-type antimicrobial patterns of all or almost all
representatives of a species. Intrinsic resistance is so common that susceptibility testing is
unnecessary” [15]. EUCAST lists a species as intrinsically resistant to an agent when “all
or a vast majority of their strains exhibit minimal inhibitory concentration (MIC) values
that are so high that the agent should not be considered for either therapy or clinical
susceptibility testing” [16]. These definitions coincide in that AST is not necessary to be
performed since all the strains of the species are resistant to that particular drug. Thus,
in some microorganisms/drug combinations, taxonomy would act as an AST subrogate
marker. On this topic, the CLSI already included in M60 document the sentence “Isolates
of Candida krusei are assumed to be intrinsically resistant to FLC, so their MICs should
not be interpreted using this scale.” (referring with scale to susceptible, susceptible dose-
dependent, and resistant) [17]. Moreover, other species as Aspergillus fumigatus or other
groups of fungi (Basidiomycetes and Mucorales) are being evaluated to be considered
intrinsically resistant to FLC and to echinocandins, respectively.

There are powerful tools able to accurately identify intrinsically resistant fungal
species from culture as Matrix-assisted laser desorption ionization-time of flight (MALDI-
TOF) [18–21]. However, the identification of filamentous fungi is often compromised by
difficulties in the extraction steps and by the fact that some cryptic resistant species are not
yet included in the databases. The first problem could be resolved by performing extended
extraction procedures [22] or using special culture media [23]. Despite the usefulness of
MALDI-TOF as a technique, molecular-based identification (DNA sequencing) is still the
gold-standard for fungal taxonomy [24].

Since the beginning, DNA-based identification methods in medical mycology faced
a huge problem: choosing a gene (or a portion of a gene or genome region) useful in a
clinical laboratory. To fulfill this objective, this hypothetical gen would have the following
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characteristics: it has to (i) have high inter-species and low intra-species variability, (ii)
have a short sequence with high discriminatory power, (iii) be unique for all fungal species,
(iv) make use of universal primers (same pair of primers for all species), and (v) be easily
amplified [24]. These five points were condensed on the DNA barcoding concept that was
aimed to allow accurate and fast species identification [25–30]. However, the truthfulness of
these molecular-based identification procedures depends on the correct previous taxonomic
classification of the used control strain [31]. This fact leads us to a paradox where molecular
taxonomy’s objective is to improve classical taxonomy, but the former needs the last to
achieve this goal.

There are several reports published regarding which gene to choose. However, any of
the described molecular markers fulfill all the described criteria. The one that came closest
to be the standard for fungi is the gene region known as ribosomal DNA internal transcribed
spacers regions (ITS) [26,32,33]. This region is being successfully used for Candida spp.
identification. Several reports used ITS-based PCRs to rapidly identify Candida spp. at the
species level, including intrinsically resistant (e.g., C. krusei/FLC) [34] and less susceptible
cryptic species [35–38]. Similarly, for Mucorales, ITS alone is a correct DNA marker with
enough discriminative power to identify the currently accepted morphospecies of Mucor,
Lichtheimia, and Rhizopus [39,40]. For other genera, ITS sequencing or ITS-based PCR
identification is not enough or is not the correct method. For Trichosporon spp., intergenic
spacer regions (IGS1) (and not ITS) sequencing unambiguously identify all Trichosporon
species [41], while for most pathogenic filamentous fungi, a multilocus DNA-barcoding
approach is needed [42,43]. Aspergillus spp. identification to sections/complexes level
is based on sequencing of ITS regions [44,45] but a secondary marker is needed to allow
the identification at the species level. For this genus, calmodulin (CaM), Beta-tubulin
(BenA), and the second-largest subunit of the RNA polymerase II (RPB2) were proposed
as taxonomy secondary markers. The last is quite difficult to amplify in certain species.
For BenA, a different number of introns and paralogous genes were described making the
amplification with one set of primers difficult. On the other hand, CaM can be amplified
easily with the same primer set in most of the species making this gene the proposed
secondary marker for Aspergillus spp. identification [46–48]. For Fusarium species, its
identification is based on the sequencing of the ITS regions plus RBP2 and a portion of the
translation elongation factor 1 alpha (TEF1) [49].

The described knowledge allowed the development of several techniques able to
identify intrinsically resistant and cryptic (less susceptible) species. Most of these tech-
niques and procedures designed to identify fungal pathogens were developed in research
laboratories (in-house PCRs) and were barely used in clinical settings. On the other hand,
there are few commercially available molecular-based methods in clinical use.

2.1. Intrinsic Resistance Detection by Commercially Available Molecular Taxonomy-Based Method

There are few FDA-cleared molecular-based methods capable of identifying fungal
pathogens [50]. Some of them are able to identify them directly from positive blood
culture bottles (e.g., FilmArray, Biofire–Biomerieux; Candida PNA FISH assay, OpGen;
T2Candida-Biosystems and SeptiFast-Roche) [51] or from other clinical samples [52]. The
major common limitation of these methods is the narrow coverage for fungal pathogens
and the low impact in the selection of specific antifungal treatment [4,51]. The newest
version of Biofire Filmarray is able to detect C. albicans, C. parapsilosis sensu stricto, C. glabrata
sensu stricto, C. tropicalis, C. krusei (intrinsic FLC-resistant), Cryptococcus neofromans/gattii
complex (intrinsic echinocandin resistant), and C. auris (multidrug-resistant). This last
species showed a high prevalence of FLC resistance (>90% of the strains are considered FLC
resistant). Despite that almost all C. auris strains show this phenotype, it was demonstrated
that this resistance is acquired [53]. T2Candida panel (Magnetic resonance-based from T2
Biosystems) and LightCycler® SeptiFast MGRADE system (Real-Time PCR from Roche
Diagnostics) are able to rapidly (<5 h) diagnose candidemia utilizing whole blood directly
from patients with a great level of detection (1CFU/mL for T2Candida) [54,55], a good
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specificity (>95% and >72%, respectively) and sensitivity (>60% and >90%, respectively)
in real-life clinical settings [56,57]. However, both methods are able to identify only the
most commonly isolated Candida spp. (C. albicans, C. tropicalis, C. parapsilosis, C. krusei, and
C. glabrata) and Aspergillus fumigatus sensu stricto (Septifast only) [52,57]. The described
diagnostic capability allows the clinicians to rapidly start an antifungal therapy helping
with antifungal stewardship but it gives false-negative results when none of the named
Candida spp. (or A. fumigatus) are the etiological agent of the infection (a huge problem
especially given the shift in Candida spp. epidemiology) [52]. Moreover, considering that
the current first-line treatment for candidemia are echinocandins, the identification to
species level of these five common Candida spp. has little impact on the choice of antifungal
treatment since none are intrinsically resistant to this class of antifungals (with the exception
of Biofire that can detect Cryptococcus spp.). However, the Infectious Diseases Society of
America (IDSA)guidelines propose echinocandins as the first treatment option for deep
Candida infections (including candidemias) caused by any species of this genus. [58]. This
guideline only suggests to study the echinocandin susceptibility of the strains isolated from
patients who had a prior echinocandin treatment and in those patients with C. glabrata
or C. parapsilosis infections. In this case, none of the described methods (filmarrays, T2,
Septicheck, etc) is helpful since no strain is available to perform the required AST (as they
are non-culture based methods). On the other hand, both methods are able to identify the
intrinsically FLC-resistant C. krusei (Biofire can identify C. auris also) and C. glabrata (higher
FLC doses as treatment).

Another important development in fungal diagnostics is the real-time PCR kit, com-
mercialized by Pathonostics, designed to diagnose aspergillosis and to detect markers of
secondary azole resistance named AsperGenius®. The tests are divided into two panels,
one able to identify the etiological agent and the other to detect azole resistance. The first
panel identifies aspergillosis caused by A. fumigatus, Aspergillus terreus, and Aspergillus
spp. [59,60]. This test was evaluated clinically with good results in serum (sensitivity > 78%
and specificity of 100% for species with a limit of detection >10 genomic units of A. fumiga-
tus) [60], plasma (80% sensitivity and >77% specificity) [61], and in broncoalveolar lavage
(BAL) (>80% sensitivity and >90% specificity for hematological and ICU patients) [62,63].
The biggest advantage of this diagnostic kit is its ability to detect the intrinsic amphotericin
B resistant A. terreus and the fact that it has no false-negative results for aspergillosis
caused by non-A. fumigatus and non-A. terreus (other available kits are able to detect only
A. fumigatus) [64]. Moreover, and as an unexpected result since the kit was not designed
to do so, AsperGenius® can detect intrinsically azole and amphotericin B resistant cryptic
species of the Aspergillus section Fumigati as A. lentulus and A. felis. These results were
obtained by using the AsperGenius® resistance panel where the TR34 target (see details in
the next section) was negative for these two cryptic species and the melting curves for the
CYP51A mutations were also different [65].

After this short summary of the main commercially available molecular-based method
able to detect intrinsically resistant fungi, it is clear that a bigger effort is needed to include
more species to the existing panels or to design more comprehensive ones. Efforts should
be focused on the differentiation of the fungal groups of species with known intrinsic
resistance to certain antifungals directly from clinical samples. The main groups of fungi
to be differentiated in order to select a correct antifungal treatment and to have a real
impact on mortality [66] are: (i) ascomycetous from basidiomycetous yeasts, (ii) agents
of hialohifomycoses from Mucorales, and (iii) Candida spp. from filamentous fungi since
the last of each of these pairs of pathogens are intrinsically resistant to echinocandins,
voriconazole, and FLC, respectively (Figure 1). One promising tool able to fulfill at least
in part these requirement seems to be the PCR-electrospray ionization mass spectrometry
that is being tested for mycoses diagnostics [67–71].
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VRC: voriconazole. * Combined with AMB for Cryptococcus spp. ** FLC Susceptible Dose-Dependent/Resistant.

2.2. Intrinsic Resistance Detection by in-House Molecular-Based Method

Several reports of in-house PCRs demonstrated the feasibility and the practical poten-
tial of the different methods to uncover intrinsic resistant or less susceptible fungal species,
both starting from colonies and from clinical samples. Within the in-house methods devel-
oped, the ones that stand out are able to detect cryptic Candida spp. that showed reduced
susceptibilities to different antifungal agents as the C. glabrata, C. parapsilosis, and C. albicans
species complexes. Different formats were used including a multiplex PCR able to detect all
nine species (C. glabrata sensu stricto, C. nivariensis, C. bracarensis, C. parapsilosis sensu stricto,
C. orthopsilosis, C. metapsilosis, C. albicans, C. dubliniensis, and C. africana) [72], several multi-
plex PCRs for the detection of each species of one of the complexes [38,73,74], PCRs coupled
to restriction enzyme digestions [75,76], high resolution melting curves [77], a multiplex
real-time PCR using molecular beacons [75], etc. Some of these methods were successfully
used to evaluate the prevalence of these cryptic species in strain collections [36,78–80]. In
response to the need for molecular tools to identify C. auris due to its high FLC resistance
rate (>90%), a classical and a real-time PCRs based on ITS amplification were published.
The first included a one single tube PCR able to uncover C. auris and C. haeumulonii with an
internal reaction control [81] and a specific PCR for C. auris DNA amplification [82]. The
published real-time PCRs are capable to detect C. auris alone or C. auris, C. haeumulonii,
C. duobushaemulonii, and C. lusitaniae by analyzing melting curves [82].

Very recently, qPCRs (Sybrgreen and with TaqMan probes) targeting the C. auris ITS2
region were designed in order to detect C. auris DNA from skin and surveillance samples
(limits of detection of 4 and 1 C. auris CFU/PCR, respectively) [83–85]. Moreover, these
qPCRs can be coupled with a second panel of primers to uncover markers of secondary
resistance as ERG11 and FKS1 mutations responsible for FLC and echinocandin resistance,
respectively [86]. These C. auris detection tools are examples of the ideality of molecular
diagnostics of antifungal resistance using clinically important samples. They showed the
potential, sensitivity, and usefulness of these tools. However, as in many other molecular
tools, a suspicion of the presence in a sample of a particular species is needed in order
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to select the molecular method to detect them. Thus, these tools are useful in confirming
an infection or colonization caused by the suspected agent and have a great negative
predictive value.

For Mucorales, most of the in-house methods are designed to be used directly from
clinical samples since it is difficult to isolate these fungi from the culture [87,88]. The
usefulness of these molecular methods is that a positive result is the needed evidence to
start an antifungal treatment with amphotericin B. These methods are mainly based on
the amplification and subsequent sequencing of rDNA using total DNA isolated from
formalin-fixed and fresh tissues [89–93]. Moreover, there were reports of using different
molecular targets as a semi-nested PCR able to identify several Mucorales species [94], an
RFLP-PCR used in biopsies [22,95], a pan-Mucorales PCR based on the amplification of
the spore coating protein (CotH) [96], a qPCR able to detect Rhizomucor spp., Mucor spp.
Rhizopus spp. and Lichtheimia spp. in broncoalveolar lavage samples [97], a qPCR based on
ITS amplification [98], etc.

2.3. Is Species Identification Enough as Surrogate Marker of Intrinsic Resistance or Should We
Go Further?

There are some examples of fungal species that were divided into clades, varieties,
or types that showed differences in their antifungal susceptibility. One of the first noted
examples was the differences in 5-fluorocytosine (5FC) susceptibilities of different C. albicans
clades (resistance to 5FC seems restricted to clade I) [99]. Other clinically relevant examples
to be cited are Cryptococcus neoformans/gattii complex species, C. auris, and Trichophyton
mentagrophytes. The named basidiomyceteous yeasts are divided into genetic varieties that
have different epidemiological cut-off values for multiple antifungal agents [17,100,101].
C. auris was firstly considered intrinsically resistant to FLC (MIC > 64 µg/mL) but after
studying a more geographically diverse collection of strains it was established that this
phenotype was shown by strains of the clade I, III, and IV, while most of the strains of the
clade II showed lower FLC MICs [102,103]. Similarly, T. mentagrophytes was divided into
different genetic types. Type VIII isolates (from India) showed a high level of terbinafine
resistance [104].

Looking at this data, we can assume that the identification of clades, types, and
varieties of particular species showing reduced antifungal susceptibility would be a useful
surrogate marker of resistance. However, to do so, continuous antifungal surveillance
and molecular epidemiology studies are needed to increase the number of species to be
included in this list.

3. Secondary Resistance Detection

The number of described secondary antifungal resistance mechanisms differs between
drugs. For amphotericin B, there are few reports on secondary antifungal resistance. It is
so rare that it has raised questions about the ability of AST methods to detect it [105,106].
These secondary resistance mechanisms were described 40 years ago or were barely stud-
ied [107,108]. For azole drugs, there is a wide range of different mechanisms [10] while for
echinocandins, secondary clinical resistance seems mainly linked to amino acid substitu-
tions at its target (Fksp) [10,11]. It should be also stated that clinically important secondary
resistance is related to genetically stable mutants selected during treatment in a multistep
process. This process involves a cell stress step produced by the drug, followed by an
adaptation step that ends up in a stable escape mutant. These adaptation steps include the
overexpression of genes that compensate for the drug-produced alterations, overexpression
of stress response pathways, chromosome rearrangements, etc. These processes are usually
reversible if the drug pressure is reduced or is eliminated. On the other hand, stable escape
mutants retain the phenotypic traits that classified the strain as resistant (MICs surpassing
the clinical breakpoint) whether the drug pressure is maintained or not [109]. These last
kinds of mutants are the ones that shall be detected by molecular tools to confirm a resistant
phenotype and in some cases, its detection is considered an independent risk factor for
treatment failure [110,111].
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The ways in which fungi acquire the ability to escape the action of antifungals can be
divided into three groups of mechanisms: (i) alteration of drug-target interaction (target
modification and target hyper-production), (ii) reduction of the cytoplasmic concentration
of the drug (overexpression of efflux pumps and reduction of drug penetration), and (iii)
metabolic by-pass (Figure 2). The prevalence of each of these mechanisms depends on the
drug/fungi combination. Briefly, for azole agents, overexpression of efflux pumps followed
by mutations at the azole drug target (ERG11) and the overexpression of ERG11 are the main
resistance mechanisms in Candida spp. On the other hand, CYP51A substitutions followed
by CYP51A overexpression coupled with CYP51A substitutions are the main mechanisms
of azole resistance in Aspergillus spp. Conversely, Cryptococcus spp. azole resistance mecha-
nisms seem to be related mainly with ERG11 mutations and chromosome rearrangements
that lead to the overexpression of ERG11 and transcription factors genes that increase the
expression of efflux pumps. Turning to echinocandins, target modification (FKS mutations)
is the most important mechanism of echinocandin resistance despite the studied fungal
species. For a more detailed description of molecular mechanisms of antifungal resistance,
interested readers are referred to the following references [11,72,112–118].
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Alterations of the interaction drug-enzyme. (C) Mutation on the drug target (less efficient or non-interaction). (D)
Overexpression of the drug-target. In the box are the most commonly described mechanisms leading to overexpression.
(E,F) Reduction of the cytoplasmic drug concentration. (E) Overexpression of efflux pumps (e.g., CDRs) by different
underlying mechanisms (described in the box). (F) Impermeability. The drug is not trespassing the membrane (e.g., no
transporter available as happens with 5-fluorocytosine and Histoplasma capsulatum. (G) Metabolic bypass. Grey and black
and White pill symbols represent azole and echinocandin antifungals resistance mechanisms, respectively. Yeast and
Aspergillus graphics under each of the mechanisms represent the description of each particular mechanism in Candida spp.
and Aspergillus spp. respectively. The number of Yeasts and Aspergillus graphs show the relative prevalence of each of the
mechanisms in Candida and Aspergillus spp. clinical strains, respectively. DNA graphs represent molecular tools’ availability
to detect that particular mechanism in a drug/fungi combination.

3.1. The Bottlenecks of Secondary Resistance Molecular Detection

For intrinsic resistance detection, a wide range of taxonomy markers are available. As
mentioned, one of the most used is the ITS region which is a multicopy universal region
of the fungal genome. These characteristics imply that one pair of primers can be used to
detect multiple fungal species with high sensitivity (each fungal cell can carry between >10
to >1000 copies of this DNA region) [119]. Oppositely, for the case of resistance markers,
there are several bottlenecks in terms of sensitivity and methodological complexity. The
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first is obviously the low sensitivity since the genes to be evaluated are a single copy (two
in diploid organisms). The second is that we should uncover mutations in a gen rather than
detecting the presence of a gen. The third is that different mechanisms involving different
genes and/or mutations are responsible for similar or equal phenotypes. The fourth is
that in some cases we must evaluate overexpression and not just the presence and/or
existence of mutations. Fifth, in the case of diploid organisms, there are mechanisms that
are dominant (a mutant allele gives the phenotype) limiting the use of classic PCR. Sixth,
there are no universal primers (each species uses different oligonucleotides), so we must
identify the etiological agent before detecting resistance mechanisms. The seventh is that
some phenotypes are the result of a combination of mechanisms. The eighth is that we can
only detect known mechanisms, as opposed to phenotypic or whole-cell methods such as
MIC assessment that detect all mechanisms.

3.2. Available Molecular Tools. Which Secondary Mechanisms Are We Able to Detect?

Having in mind the described bottlenecks, in-house and commercially available
tools were designed to detect the mechanisms regarded as the unique responsibilities of
particular resistance phenotypes. Thus, most of the published tools are able to detect some
of the CYP51A and FKS mutations linked with triazole and echinocandin resistance in
Aspergillus fumigatus and Candida spp., respectively.

There are no standard methods to detect alterations on gene coding antifungal targets.
However, several methods were published to be used mostly from isolates. The first
reports simply used PCR amplification followed by sequencing [120–125]. Later specific
PCR-based methods designed for the detection of particular mutations were published
using different methods and formats (Tables 1 and 2).

3.2.1. Triazole Secondary Resistance in Aspergillus spp.

The development of molecular tools for the detection of triazole resistance mechanisms
in A. fumigatus was less complicated than for other fungal species since fewer mechanisms
were described. Resistance linked to mutations at CYP51A has been detected by in-house
classical PCRs (followed by sequencing, digestion, minisequencing-SnaPshot) [131–135],
astringent classical PCRs [139], real-time PCRs (coupled with taqman probes, molecu-
lar beacons probes, locked primers, sybrgreen followed by melting curves analysis and
FRET probes) [126–130,136], loop-mediated isothermal amplification (LAMP) [138], whole-
genome sequencing (WGS) [140], etc. The majority of these methods are able to detect
the most common mechanisms as the promoter alterations (TR34-L98H and TR46-Y121F)
(Table 1). The resistance mechanisms that include promoter alterations are also detected
by the two commercially available methods (not FDA approved yet) named AsperGe-
nius [61–63,141] and MycoGENIE [142]. Both diagnostic kits share the format (multiplex
real-time PCR) and the capacity of detection of TR34-L98H mutations. As described earlier,
AsperGenius is able to detect DNA of intrinsically resistant species while MycoGENIE is
able to detect only wild-type and resistant A. fumigatus sensu stricto isolates. AsperGenius
also covers the second most common mechanism of triazole resistance (TR46-Y121F-T289A).
One of the few molecular-based methods capable to detect other mutations (G54, M220,
and G138C) is an in-house real-time PCR coupled with molecular beacons designed in a
two-panel format. The first panel detects itraconazole or triazole cross-resistance while the
second panel can differentiate G54W (ITC-PSC cross-resistance) from other substitutions at
the residue 54 conferring ITC resistance. Moreover, in the same panel, molecular beacons
that confirm resistance mechanisms were included [126]. For less prevalent mechanisms,
quantitative real time PCRs and PCR followed by minisequencing were reported as feasible
tools to detect the overexpression of efflux pumps and the uncommon mutations at CYP51B,
respectively [129,144] (Figure 3).
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Table 1. Molecular tools for the detection of mechanisms of triazole resistance in Aspergillus spp.

Format Target and Technique
Characteristics Samples Detected Mechanism Points to Consider Reference/Publication

Year

Real-time PCR with
molecular beacons

Two panels of multiplex PCRs. The
first detects ITC and cross azole

resistance. The second detects PSC
resistance and confirms the

coexistence of TR and L98H.

Isolates strains

G54X (ITC-R), G54W
(ITC/PSC-R), M220X (ITC-R),

G138X/C * (Cross-R),
TR34-L98H (Cross-R)

60 strains (52 clinical and 8 lab
mutants) harboring G54X, M220X,
G138C, TR34-L98H, TR34 alone,

and L98H alone.

[126] 2008

Real-time PCR using
Taq-man probes CYP51A ORF and promoter

Formalin-fixed and
paraffin-embedded

tissue
TR34-L98H Only one patient [127]/2010

Nested 2 step PCR. Firstly
classical PCR in 2 tubes
(outer). Second PCR in
real-time format with

molecular beacons

CYP51A ORF (first classical PCR)
and promoter plus a partial ORF

amplification (second classical
PCR). Molecular beacons bind to

secondly amplified targets.

Sputum and BAL TR34-L98H
G54, G138, and M220.

DNA extraction using the MycXtra
fungal DNA extraction kit

(Myconostica Ltd.). 22 samples 5
proven and 17

probable aspergilloses.

[128]/2011

Real-time PCR–FRET probes
with melting curves analysis CYP51A ORF and promoter. Isolated strains (clinical) TR34-L98H

G54, G138, and M220.

215 [129] and 103 [130] A. fumigatus
sensu stricto included. TR34-L98H

(n = 4) was the only detected
mechanism. There were no G54,
G138, and M220 mutations (only

wild type confirmation)

[129,130]/2010 and 2012

Classical PCR and nested
PCR followed by sequencing.

3 individual PCRs able to amplify
CYP51A promoter and fractions of

its ORF

Isolated strains [131]
and clinical samples

(BAL and tissue) [132]
TR34-L98H and M220

Developed using strains and
clinical samples [131] and tested in

a clinical setting [132].
[131,132] 2012/2014

PCR-RFLP (amplification
followed by AluI digestion)

A promoter and a CYP51A ORF
fragment (289 bp) [133]. Later, a
bigger fragment was used [134].

Isolated strains (clinical
and environmental)

TR34-L98H [133] and
TR34-L98H and

TR46-Y121F-T289A [134]

Good correlation with MIC but
false negative (isolates harboring

other mechanisms)
[128,130] 2014 and 2017

Single tube PCR followed
by minisequencing

A multiplex classical PCR followed
by purification and detection of 21
SNPs at CYP51A and CYP51B by

single-base extension reaction
(SNaPshotTM) using a

Sanger-based sequencer.

Isolated strains

TR34, G54, L98, G138, M220,
S297, G448, and 12 CYP51A

polymorphisms. Two
CYP51B polymorphisms

were also included.

79 clinical and 21 environmental
isolates. No resistant mutants but

several with CYP51A and
CYP51B polymorphism.

[135] 2015



J. Fungi 2021, 7, 197 10 of 22

Table 1. Cont.

Format Target and Technique
Characteristics Samples Detected Mechanism Points to Consider Reference/Publication

Year

Real-time PCR with locked
nucleotide probes

Partial CYP51A ORF amplification.
Detection of both wild type and

mutant (L98H and Y121F) alleles.
Isolated strains

TR34-L98H and
TR46-Y121F-T289A. It only
detects the mutation in the

ORF, not the
promoter alteration

Detection of 6 L98H mutants/166.
No Y121F mutants were detected. [136] 2016

Quantitative real-time PCR
with sybrgreen Different efflux pump genes. 10 clinical strains with

high azole MICs.
Detection of overexpression

of efflux pumps
80% of the strains showed > 5 –fold
increase of cdr1B gene expression. [137]/2013

Loop-mediated isothermal
amplification (LAMP) TR34 promoter alteration Clinical strains Detection of TR34 alone. Rapid (<25 min) High sensitivity

(10 genomic copies). [138]/2019

Classical PCR using
astringent conditions TR34-R65K-L98H Clinical strains Detection of R65K mutation

and TR34.

Low-cost detection of a
triazole-cross resistance (TR34) and

pan azole resistance (R65K)
[139]/2020

Whole-genome sequencing Complete genome

Isolates from sequential
clinical samples from

two patients (one
Aspergilloma and one
invasive aspergillosis)

P216L
Complex to perform in a clinical
setting. Potential to uncover any

mechanism after analysis
[140]/2014

AsperGenius multiplex
real-time PCR assay.

Two panels. The first is a taxonomy
panel (based on 28S rDNA). The

second is A. fumigatus sensu
stricto resistance detection (melting

curve analysis).

Isolated strains (n = 131)
[63] were used for

validation. Clinical
samples. BAL (n = 22)

[63] (n = 201) [62]
(n = 124) [61] (n = 100)

[141] were used for
clinical evaluation

(most from proven and
probable

invasive aspergillosis).

Detects intrinsic resistant
species (A. terreus and cryptic

species of the Fumigatii
section) and the following

secondary resistance markers
separately: TR34, L98H,

Y121F, and T289A.

Some cross-reactivity
(false-positive results) were
obtained when R. oryzae (R.

arrhizus) and P. chrysogenum DNA
is present at high concentrations.

During validation, high sensitivity
and specificity were proved (both
>80%) [62]. TR34-L98H was the

most prevalent mechanism
[61,62,141]

[61–63,141]/2017–2015-
2016–2016

MycoGENIE multiplex
real-time PCR assay.

Identification of A. fumigatus sensu
stricto (based on rDNA sequence)

and TR34-L98H detection
Clinical samples

Possible false positive when
aspergillosis is caused by

non-Aspergillus fumigatus species.
[142]/2017

ITC: itraconazole. PSC: posaconazole. –R: resistance. X: any amino acid. SNPs: Single nucleotide polymorphisms. * mutations other than G138C have never been described, cross azole-R phenotype is known for
G138C. BAL: Bronco-alveolar lavage.
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Table 2. Molecular tools for the detection of mechanisms of azole and echinocandin resistance in Candida spp.

Organism Format Target and Technique
Characteristics Samples Detected Mechanism Points to Consider Reference/

Publication Year

Candida glabrata

Asymmetric real-time
PCR coupled with

molecular beacons with
melting curve analysis

FKS1 and FKS2 hot spot
1 regions. Isolated strains

Echinocandin resistance. 4
amino acid substitutions at

Fks1p (F625, S629, D632, and
I634) and 2 at Fks2p (F659 and
S663). Melting curve analysis

can differentiate different
nucleotide substitutions in the
same position (8 at FKS1 and 7

at FKS2).

Tested with a blinded panel of
188 strains. 100% concordance

with sequencing.
[143]/2016

Classical PCR with
astringent conditions

FKS1 and FKS2 hot spot
1 regions. Isolated strains

Echinocandin resistance. 3
amino acid substitutions at

Fks1p (F625, S6229, and D632)
and 2 at Fks2p (F659 and S663).

Tested with a blinded panel of
50 strains. Not able to detect

F659del mutants [144].
It was tested later and showed a
99.25% concordance with MIC

values. One strain was
misclassified as resistant due to

a silent mutation [145].

[36,144]/2014
and 2017

High-throughput
microsphere-based assay

using the Luminex
MagPix technology

FKS1 hot spot 1 and hot
spot 2 regions. Strain collection

Echinocandin resistance. It
potentially can detect all the FKS

mutations.

Screen a collection of
1032 strains. [146]/2014

Candida albicans Classical PCR
with astringent

FKS1 hot spot 1 and hot
spot 2 regions. Isolated strains

Echinocandin resistance. It
detects 8 different substitutions
at 5 Fks1p residues. Four at hot
spot 1 (F641, S645, D648, P649)
and one at hot spot 2 (R1361)

96% sensitivity. It can detect all
the homozygous mutants
included. Heterozygous

mutants give false susceptibility
due to method-inherent

limitations of the classical PCR.

[147]/2015

Candida albicans Allele-specific real-time
PCR molecular-beacon FKS1 hot spot 1

Laboratory
mutants generated
by CSF pressure.

Echinocandin resistance. It
detects 4 substitutions at the

residue S645.

It was the first published
method. It gave the proof of
concept that it is possible to

detect FKS mutations.
Currently outdated.

[148]/2006
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Table 2. Cont.

Organism Format Target and Technique
Characteristics Samples Detected Mechanism Points to Consider Reference/

Publication Year

Candida albicans,
Candida glabrata and
Candida parapsilosis

NGS

6 genes linked with
antifungal resistance
(ERG11, ERG3, TAC1,

CgPDR1, FKS1,
and FKS2)

Isolated strains.
For validation,

resistant strains
with known

mechanisms. Then,
clinical resistant

strains.

Azole and echinocandin
resistance. New mechanisms

were uncovered including one
gain-of-function and one
loss-of-function CgPDR1

mutations responsible for azole
resistance and

hypersusceptibility, respectively.

It demonstrates that a mixed
population (mutated and WT)

would be isolated from a patient
during caspofungin treatment.

It gave the proof of concept that
it is possible to use NGS for

extensive assessment of
mutations responsible for

antifungal resistance

[149]/2015

Candida albicans and
Candida glabrata

WGS and Sanger
sequencing

Sanger sequencing of
FKS hot spot regions and

WGS for azole
resistance markers

Isolated strains
FKS, ERG11, ERG3, UPC2,

MDR1, MRR1, TAC1, CDR1,
and CDR2.

Strains showing echinocandin
and/or azole high MIC values

were studied. Used as a research
tool and not as a diagnostic tool.

[150]/2017

Candida auris WGS Isolated strains ERG11 mutations

Worldwide strains were divided
into 4 clades and each clade

showed differential FLC
susceptibility (Clade II lower
MIC- no ERG11 mutations)

[102]/2017

Candida auris

Asymmetric real-time
PCR coupled with

molecular beacons with
melting curve analysis

One FKS1 and two
ERG11 mutations. Isolated strains

Echinocandin and FLC
resistance. It can detect the main
mechanisms of azole resistance
(Y132F and K143R in Erg11p)
and echinocandin resistance

(S639F in Fks1p) in this species.

Some strains belonging to clade
IV (South America) would be

identified as false FLC
susceptible since the most

prevalent mechanism of FLC
resistance is the substitution

I466M [151].

[152]/2019

CSF: caspofungin, FLC: fluconazole. NGS: Next-generation sequencing. WGS: Whole-genome sequencing.
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blue arrow and black heads represent single-nucleotide mutations detected by RT-PCR coupled with molecular beacons
(RT-PCR MB) and whole-genome sequencing (WGS).

Another point to consider is that five out of 15 (33%) described methods were tested
using clinical samples (sputum, BAL, Formalin-fixed, and paraffin-embedded tissues). Two
of them are commercially available methods (see Table 1).

3.2.2. Azole Resistance in Candida spp.

Turning to Candida spp., the panorama is different. Molecular mechanisms of azole
resistance in Candida spp. are relatively well studied. However, its detection is complicated
since each species can have different mechanisms and because an individual mechanism is
not always strictly correlated with strain´s MIC. Firstly, some Erg11p amino acid substi-
tutions in Candida spp. were described but not validated as exclusive causatives of azole
resistance [125,153]. Secondly, in the majority of the cases, the resistance phenotype is
due to a combination of mechanisms. They can include two or more of the following: (i)
mutations at different genes of the ergosterol biosynthesis pathway (especially in ERG11
but also in ERG3) [125,153,154], (ii) overexpression of ERG11 due to the gain of function
mutations in transcription factors or due to aneuploidies (complete or partial chromosome
duplications) [155,156], overexpression of efflux pumps [157], etc. (Figure 1). Additionally,
it was demonstrated that aneuploidies can lead to tolerance or resistance to multiple unre-
lated drugs [158]. This multiplicity of mechanisms makes the use of a multiplex format
mandatory for the molecular detection of resistance to azoles in Candida spp., meaning, the
sequencing of several genes coupled with the expression evaluation of others.

Some of the latest proposed approaches are the use of next-generation sequencing
(NSG) and whole-genome sequencing (WGS) to detect several mutations in different genes
of the ergosterol biosynthesis pathway (ERG11 and ERG3) and transcription factors that reg-
ulate efflux pump expression (e.g., TAC1 and PDR1) together with FKS mutations [102,149].
These techniques are able to detect novel DNA alterations but they are limited to reference
labs due to their high cost (equipment, reagents, and the complexity of data analysis) [149].
In the few published reports that used NGS, strain collection was studied, but standardized
AST was firstly used as a screening tool. Thus, NGS was used to uncover the mechanism
responsible for the already known resistance phenotype and not as a diagnostic tool of
antifungal resistance [102,150].

The most important exception to what was stated is the detection of the FLC resis-
tance mechanism in C. auris. Unlike other Candida spp., FLC resistance in C. auris was
linked only to a limited number of Erg11p substitutions (mostly Y132F, K143R, F126T,
I466M, and Y501H). The prevalence of these mutations is different in each of the described
4 geographical clades of C. auris and some substitutions are almost exclusively found in
one clade (e.g., I446M in clade IV–South American) [102,151]. This fact makes feasible the
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detection of C. auris resistant strains by molecular tools. Xin Hou et al. reported an asym-
metric real-time PCR coupled with molecular beacons able to identify Y132F and K143R
Erg11p substitutions together with an FKS mutation (S639F) responsible for echinocandin
resistance [152].

3.2.3. Echinocandin Resistance in Candida spp.

As for C. auris, the molecular detection of echinocandin resistance in Candida spp. can
be performed using relatively simple methods. This detection is aided by the fact that resis-
tance to echinocandins has two fundamental characteristics: it is almost exclusively linked
to a limited number of mutations [11,159] and its presence is an independent risk factor for
echinocandin therapy failure [111]. Although echinocandin resistance was described in
several Candida spp., its prevalence is higher in C. glabrata and in C. albicans. This fact is
reflected in the published technological developments. The reported molecular tools for
the detection of C. glabrata and C. albicans FKS mutants include classical PCRs [36,144,147],
Sanger [150], and next-generation sequencing for both species [149]. There are methods
designed exclusively for the detection of C. albicans FKS mutants as a real-time PCR coupled
with molecular beacons [148]. On the other hand, asymmetric real-time PCR coupled with
molecular beacons with melting curve analysis [143], Luminex Mag-Pix assay [146], and
whole-genome sequencing were used to detect C. glabrata FKS mutants [145]. More details
on the methodologies including their limitations are described in Table 2.

Most of the described tools detect the most prevalent mutations that are responsible
for the most pronounced phenotype (e.g., at the residues S629 and S663 in C. glabrata
Fks1p and Fks2p). On the other hand, the two reported classical PCRs are also able
to detect less common mutations that showed lower MIC values as the substitutions at
the residues D648, P649, and R1361 at C. albicans Fks1p and D632 at C. glabrata Fks1p.
However, these methods showed intrinsic limitations of classical PCRs as their inability to
detect heterozygous mutants [36,144,147]. All PCR-based methods (classical and real-time)
have common problems with the design of primers and allele-specific probes. The first
is the presence of synonymous or silent polymorphisms at C. albicans and C. glabrata FKS
hot spots that were partially fixed by the introduction of a wobble base in the probe (or
degenerated probe) [148] while others designed multiple primer combinations trying to
avoid the residues where polymorphisms were reported [144,147].

4. Conclusions

The clinical predictive value (or lack thereof) of the uncovering of a molecular re-
sistance mechanism may be relative. The “90–60 rule” applies to both molecular and
whole-cell antifungal susceptibility evaluation. This “rule” roughly states that ~90% of
infections due to susceptible isolates respond to the correct antifungal treatment, whereas
~60% of the infections caused by resistant isolates (or infections treated with an incorrect
drug) respond to therapy [160].

Molecular methods can be used to detect intrinsic and secondary resistance. There
are in-house and commercially available methods. The major common limitation of these
methods is the narrow coverage for fungal pathogens and the low impact in the selection
of specific antifungal treatments.

The commercially available diagnostic tools have a low impact on the selection of
specific antifungal treatments. A bigger effort is needed to include more species in the
existing panels. Efforts should focus on the differentiation of the fungal groups of species
with known intrinsic resistance to certain antifungals directly from clinical samples.

The rDNA (ITS) is a good marker for intrinsic resistance detection for Mucorales and
for Candida spp. On the other hand, for most pathogenic filamentous fungi, a multilocus
DNA-barcoding approach is needed.

As in any other molecular tools, a suspicion of the presence of a particular species in a
sample is needed in order to select a particular molecular method. Thus, these tools are
useful in confirming an infection or colonization and have a great negative predictive value.
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The identification of clades, types, and varieties of particular species showing reduced
antifungal susceptibility would be a useful surrogate marker of resistance.

There are more bottlenecks in terms of sensitivity and methodological complexity for
the detection of secondary than for intrinsic resistance by molecular methods. These limita-
tions include single copy vs. multiple copy genes, mutation detection and or expression
evaluation vs. presence of a gene, several mechanisms with the same phenotype vs. one
gene same diagnosis, no universal primers vs. universal primers, etc.

Molecular methods can only detect known mechanisms, as opposed to phenotypic or
whole-cell methods such as MIC assessment that detect all mechanisms.

There are no molecular methods able to detect amphotericin B (AMB) resistance.
It is difficult to detect azole resistance in Candida spp. due to the multiplicity of

mechanisms involved. NSG and WGS were used in reference labs to confirm and study
already known resistance phenotypes.

Most of the published secondary resistance detection tools are able to detect some
of the CYP51A and FKS mutations linked with triazole and echinocandin resistance
in Aspergillus fumigatus and Candida spp. (specially C. albicans, C. glabrata, and C. auris), respectively.

A. fumigatus triazole resistance molecular diagnosis is mostly limited to the detection
of CYP51A promoter alterations (TR34 and TR46).

There are multiple technological options to detect echinocandin resistance mechanisms
in C. albicans and C. glabrata.

There are clinical settings where resistance mechanism detection would be valuable
as places where triazole resistance in A. fumigatus prevalence surpass 10%, high use of
empirical treatment, etc.
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