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Published online: 10 April 2019 . Determination of mechanical loading regimen that would induce a prescribed new bone formation rate

. and its site-specific distribution, may be desirable to treat some orthopaedic conditions such as bone

loss due to muscle disuse, e.g. because of space flight, bed-rest, osteopenia etc. Site-specific new bone
formation has been determined earlier experimentally and numerically for a given loading regimen;
however these models are mostly non-invertible, which means that they cannot be easily inverted to
predict loading parameters for a desired new bone formation. The present work proposes an invertible
model of bone remodeling, which can predict loading parameters such as peak strain, or magnitude
and direction of periodic forces for a desired or prescribed site-specific mineral apposition rate (MAR),
and vice versa. This fast, mathematical model has a potential to be developed into an important aid for
orthopaedic surgeons for prescribing exercise or exogenous loading of bone to treat bone-loss due to
muscle disuse.

Bone adapts to exogenous mechanical loading'. For example, bone in the playing arm of a tennis player may have
bone cross-sectional area as much as 35% more than that in the non-playing arm? Conversely, disuse of muscle
such as in space-flight can induce hip bone density loss up to 2% per month®. Mechanical strain engendered in
long bones of various species during normal physical activities is strikingly similar, namely in the range of 0-0.2%,
i.e. 0-2000 microstrain (pe)*. There exists an upper threshold of strain above which new bone formation starts to
keep up with the increased mechanical strain®. Similarly there is a lower threshold below which bone resorption
starts in order to optimize bone mass to the decreased level of mechanical loading®. With a plenty of experimen-
tal studies it has been established that new bone formation not only depends on the strain magnitude but also
on loading waveform, number of cycles, number of bouts and time between the loading bouts®°. Accordingly,
there have been efforts to numerically or parametrically relate new bone formation to loading parameters”'°-12,
The average bone formation rate (BFR) has been explicitly expressed in terms of the loading parameters in some
cases'"!2 Site-specific bone formation has been numerically modeled in other cases”'. There is, however, no
consensus regarding how exactly the new bone formation relates to the mechanical environment'’. Moreover,
existing numerical models for site-specific new bone formation are not invertible, which means loading parame-
ters cannot be easily determined for a desired average or site-specific bone formation rate.

The objective of this study is to develop a mathematical model of bone adaptation that can be easily inverted.
Most of the bone adaptation models are based on strain magnitude”'?, strain energy'®'®, fluid shear!®!* and
fatigue'! as mechanical stimuli. This work attempts to integrate most of these theories into one. In addition,
relevant biological factors such as bone cell network of osteocytes and osteoblasts have also been used to include
cell-to-cell communication resulting in intracellular calcium (Ca2+) signaling!>~*, as implemented by Srinivasan
et al.”*. It is well established that the molecular cascade that follows a mechanical loading has an important
role of Ca2+ as a secondary messenger in activation of the transcription factor NFAT (Nucleus Factor for
Activation of T-Cells), which has been implicated in new bone formation through Calcineurin (CaN), CAMK
(Ca2+/calmodulin-dependent protein kinase) and MAPK (Mitogen-activated protein kinase)'®. In the present
new model, biological signal transduction is purposefully much simplified in order to maintain invertiblity, and
communication between the cells along the cell network has been modeled as diffusion. The model is inherently
based on accumulated damage of material due to fatigue loading as a stimulus, and therefore automatically relates
stress amplitude and number of loading cycles to new bone formation rate. The effect of fluid flow on new bone
formation has been additionally captured through viscoelasticity-like macroscopic behavior of the bone tissue.
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Figure 1. A longbone loaded by a cyclic force, resulting strain at a cross-section of interest and the osteocyte-
osteoblast network. (A) Tibia fixed at proximal end and loaded at the distal end. (B) The periodic load F(t)

is composed of a number of cycles of a waveform (e.g. rectangular waveform as shown). (C) The idealized
mid-diaphyseal cross-section of tibia with its coordinate system. The bone cross-section used for this study is
adapted from Srinivasan et al.”. The outer and inner curves correspond to periosteal and endocortical surfaces,
respectively. The section corresponds to the mid-diaphysis of a 16 week old C57BL/6 mouse. Origin of the
Cartesian coordinate system (X, y) is at the centroid of the bone section. x and y axes are aligned with lateral and
anterior anatomical directions, respectively. (D) The strain induced by the cyclic loading has different waveform
than the loading waveform due to damping effects. (E) The osteocytes, through their processes, are connected
to osteoblasts. Strain above a threshold makes an osteocyte release calcium ions (Ca2+) in its cytoplasm. These
ions diffuse through the osteocytic processes to reach osteoblasts, which utilize Ca2+ for new bone formation.

Rest of this paper is organized as follows. Section 2 describes the methodology used for computation of overall
bone formation rate (BFR) and site-specific mineral apposition rate (MAR). Section 3 details the results, which
have been discussed in Section 4. Conclusions have been drawn in Section 5.

Methods

The Average BFR Model.  In vivo experiments involve loading a bone (Fig. 1(A)) with a periodic force F(#),
composed of a number of cycles N of a loading waveform (Fig. 1(B)). This loading is repeated for a number of
days d every week and the loading is typically continued for a number of weeks, end of which bone formation rate
(BFR) or mineral apposition rate (MAR) is computed at a bone section (Fig. 1(C)) based on labeling and histolog-
ical techniques®”?!-%, The loading induces strain field £(x, y) on the section of interest (Fig. 1(C)). The strain ata
point on that section may have a different waveform than the force due to viscoelastic effects, e.g. arising because
of fluid flow (Fig. 1(D)). Some in vivo experiments are accompanied with strain-gauging and finite element analy-
sis (FEA) to ascertain global peak strain &, and its location on the section”2"2 If € .., is more than a threshold
strain e, new bone formation has been observed in the literature. We hypothesize that bone formation rate for
the section in consideration can be given by

Ae 8
B= p(Epeak - Ethres) #ENd for Epeak z Ethres
Epeak >
=0, otherwise. (1)
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where p, g, € and [ are the parameters to be determined. Ae,,, is the amplitude of oscillation of strain at that
point (Fig. 1(D)). For a given loading F(t), both €, and A, depend on the material properties of the bone, viz.
Young’s modulus E and effective viscosity 7 arising from the effect of interstitial fluid flow inside bone. E for bone
may be assumed to be 20 GPa?. 1) is the fourth constant to be determined. Using the beam theory and assuming
the bone to be a Kelvin-Voigt material, €, and A, may be easily computed, as given in the Supplementary
Methods available online, for any periodic loading. Calcein/alizarin labelling days have not been included in
equation (1) assuming BFR remains constant while new bone is being labeled. This assumption may not be valid
if labelling days are not appropriately chosen.

Equation (1) has been derived analogous to fatigue damage'! following fatigue failure theory see
Supplementary Methods). This equation can be mathematically fit to the BFR data found from an experiment
for different loading protocols, numbered /=1 to n,. For each loading protocol, bone formation rate may be
computed as follows:

25,26, (

! 3
Bl = p(speuk(n) - Ethres)gl(n)qudi 2)
1
where ¢ () = M, which is a function of viscosity 7.
Epeak(1)
Parameters pf Emress T» g and (3 can be obtained by minimizing the following error squared:

f(p’ 4> T Ethres> ﬂ) = Z[ril(BlO - Bl)2 (3)

The above equation (3) has been mathematically fit to the BFR data (Blo) reported by Srinivasan et al.’” for a
tibial section (1.8 mm proximal to tibia-fibula junction) of a 16-week old female C57BL/6 mice as a response to a
cantilever loading. The mathematical software SageMath Ver. 6.6%, in particular the “find_fit” function and
Levenberg-Marquardt algorithm?®%, was used to fit the data by minimizing mean square error between the math-
ematical model and the experimental data. Equation (2) will be referred to as “Average BFR Model’, results for
which is given in Section 3.1.1.

Note that the parameter p will be different for endocortical and periosteal surfaces, as endocortical surfaces
have relatively lower strain. p will also be different for different loading conditions (e.g. axial loading®*®3!, canti-
lever loading”*, three-point bending?"**, four-point bending®>*%), as different loading cases have different strain
distribution. A refined model is, therefore, needed which is valid for any loading case. Accordingly a “Site-Specific
Model” has been developed, which will use the other four parameters identified here, viz. .., 1, g and 3, as
described in the next section.

The Site-Specific Model. The stimulus at an individual osteocyte is computed similar to that in equation
(1) except that &, and Ag,,,, now correspond to the local strains experienced by the osteocyte in consideration.
Accordingly, stimulus at i-th cell is proposed to be

5= h(E}ieak - Ethres)g(n)quﬂ for Elieak
> €yres and if the i—th cell is an osteocyte,
= 0, otherwise or for an osteoblast, (4)

where ¢! cak = max(|e(x;, y, t)|) is the peak strain experienced by the i-th cell. (x;, y,) is the coordinates of the i-th
cell. h is a constant to be determined. Parameters Eimres 7> g and [ are already determined by the Average BFR
Model (Section 2.1).

The stimuli are proposed to diffuse through the osteocyte-osteoblast network (Fig. 1(E)). The stimuli finally
reach the osteoblasts, which in turn produce new bone proportional to the stimuli reaching them.

Assuming Ca*" to be the secondary stimulus as a response to mechanical loading’, & in equation (4) relates to
the increase in Ca** concentration in cytoplasm of osteocytes as a response to mechanical loading. Accordingly,
s; presents the ‘strength’ of calcium signaling, which is a function of strain and its number of cycles. The value
of h is not critical for this study as the value is not explicitly needed. One way to define /i, however, would be the
peak amplitude of Ca?* concentration spike with respect to the baseline, when bone matrix around the osteocyte
is loaded with a single square pulse of loading of 1s duration producing 1 pic more than the threshold strain for
bone formation. Then h can be roughly estimated by studying Ca*" response to a single cycle of loading such as in
Jing et al.'®, where applying 1546 jic to the bone matrix around an osteocyte results in rougly trianglular spike of
Ca2+ concentration in cytosol with respect to its baseline. This spike has approximate amplitude of 1.7 times the
baseline concentration. Assuming this baseline to be 50 nM (as for rat osteoblasts reported by Donahue et al.?),
the spike amplitude would be 85nM. £(r) = 1 approximately for this case because of rest-inserted loading, similar
to what is expected in case of a single pulse loading. / is thus simply the ratio of the peak concentration and strain
excess to the threshold (i.e., 1546-856ji€). The value of h would, therefore, be 0.123 nM/e.

The stimuli produced inside the cells are assumed to ‘diffuse’ through each of the one-dimensional osteocytic
processes and follow the FicK’s first law for steady-state diffusion:

_p%
dx (5)

where ] is the diffusion flux (mols of Ca2+ diffusing per unit area per unit time), D is the diffusivity (a constant,
which may be assumed to be 5.3 X 107 cm?s™! as measured by Donahue and Abercrombie!® for Ca2+ in vivo),

J=
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1 is the concentration of the stimulus (mols per unit volume) and x is the position along the cell process. This
differential equation may be solved using a finite element method and may be accordingly discretized as follows:

Q=KVv (6)

where Q is a vector containing stimulus flow rate (mols of Ca®* per unit time) at nodes and W is vector containing
the nodal concentration of the stimuli. ¥ includes the stimulus concentration computed earlier (s;) using equa-
tion (4), i.e. ¥;=s;. K is the diffusion stiffness matrix assembled from stiffness matrix of individual osteocytic
processes k;. ‘Stiffness’ of the jth process is taken as

k = %[ 1 - 1}
i _
L=t 1 7)
where A; and L; are cross-sectional area and length of jth process. It has been assumed that every osteocytic cell
process has a uniform cross-sectional area of A°=0.025pum?".

The stimulus should be fully ‘utilized’ by the osteoblasts to form new bone. The nodal concentrations of the
stimulus (¢);) at the osteoblasts are thus assumed to be zero. The corresponding stimulus flow rate (g;) at the oste-
oblasts will be negative as osteoblasts act like a sink for the osteogenic stimuli.

The mineral apposition rate (MAR) at an osteoblast is assumed to be proportional to the stimulus flow rate (g;)
at the osteoblast in consideration. In other words, MAR of i-th osteoblast is given by

m; = k g (8)

where k is the constant of proportionality to be determined by fitting this mathematical model to experimental
data. k is a negative real number as g; at osteoblasts is also negative. Due to linearity of equation (8) and propor-
tionality of s; to h, the stimulus flow rate g; will vary directly proportional to A, if other parameters are kept the
same. Similarly, g; is also directly proportional to D. The values of i and D are therefore not critical, as the process
of curve fitting will automatically find a suitable k to get the same m;. The value of k is that minimizes the follow-
ing error-squared function ¢(k):

o) = 30 (m — kq,)’ ©)

where m is the experimental mineral apposition rate (MAR) at i-th osteoblast and 1, is the total number of oste-
oblasts. The value of k is obtained by linear regression:
0
k= 2iLymi - 4,
2
20t (10)

If mi0 is not known and instead the overall (i.e. average) bone formation rate (B) for the section is given to be
B, then k can be computed by using the following relationship:

kg,
oo (11)

B

If n, number of loading protocols are used as mentioned in Section 2.2, the optimal value of k is obtained by
minimizing the following squared error:

2
®k) = S n Ko !
(k) § IIZI(BI0 - Bl)2 = ZL1 Blo i=19; ]

ny,

(12)

where qil is the stimulus flow rate at i-th osteoblast for I-th loading protocol. k is accordingly obtained as

_ “bZ;”: 1(BIOZ ,ni 1q,'l)
SH(Sm gy (13)

In absence of sufficient site-specific new bone formation data, the constant k has been determined using over-
all BFR data (Blo) given in Srinivasan et al.” for 16-week old wild-type (C57BL/6) female mice. This site-specific
model has been summarized in the flow chart given in Fig. 2. The results for this model are given in Sections 3.1.2
to 3.1.4 for different loading conditions.

The Inverted Model. The current model is invertible, i.e. if site-specific MAR is prescribed, it is possible to
easily find the normal force and bending moment (or alternatively strain distribution) at the section that would
give the prescribed site-specific new bone formation (Fig. 2). If m]p, j=1ton, < n, is the desired mineral appo-
sition rate at j-th chosen osteoblast, ; is the corresponding computationally obtained MAR; and BFR® and BFR
are the desired and computational bone formation rates, respectively, then the following error squared function
is to be minimized by varying amplitudes of normal force (FZO ), bending moment about medial-lateral axis (Mf )
and bending moment about anterior-posterior axis (M ;’) for a prescribed waveform of unit amplitude (u(f)) and
number of cycles (N) of this waveform:
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Figure 2. Flowchart of the site-specific model and its relation to the average BFR model and the inverted
model. Given the number of cycles of a loading waveform, the site-specific model computes site-specific
MAR distribution as well as average BFR at periosteal surface. The inverted model reverses the problem, i.e. it
finds the loading parameters needed to achieve a prescribed site-specific MAR distribution. The average BFR
model computes average BFR/BS at the section of interest based on loading parameters (including resulting
peak viscoelastic strain) without computing osteocyte-level stimulus and its diffusion in osteocyte-osteoblast
network.

g(E M, M) = XB° — B + 3 (m? — m)) (14)

-
Il
_

where m; = kq; is obtained by solving equation (6), i.e. Q=K. Stimulus concentration matrix W, stiffness matrix
K and stimulus flow rate Q, are computed as described earlier. ¥ is composed of s; computed as per equation (4),
where h, €4,,.., 7, q and B are known constants from the Site-Specific Model (Section 2.2). Number of cycles, N, is
to be prescribed. B is computed using equation (11). X is a Lagrange multiplier, which can be chosen based on
relative weightage of the overall BFR equality constraint, i.e. B= B°. If BY is not known, then A =0. As there are
three unknowns, at least three of B° and m"s should be known/prescribed for a unique solution. Since the unit
waveform (u(f)) is prescribed, F,, M,, and M, are given by:

E(t) = Flu(t) (15)
M(t) = Mu(t) (16)
M, () = Myu(t) 17)
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Figure 3. Comparison between the mathematical model and the in vivo experiment for new bone formation.
Relative periosteal bone formation rate (rp.BFR/BS) obtained by the mathematical model (black bars) is
statistically equal to that obtained by in vivo experiments for each of the 10 protocols used by Srinivasan et al.”.

The objective function g(F,, M,, M,) may be minimized by using a standard optimization method with a rea-
sonable initial guess for on R MB and M, whose optimal values are obtained after a number of iterations. We used
the mathematical software SciLab*, in particular the “Isqrsolve” function to get the optimal values for F?, M and
M }(,) using Levenberg-Marquardt algorithm?>*°. One example has been solved using this inverted model and the
corresponding results are shown in Section 3.1.4.

Statistical Tests. The new bone formation predicted by the developed mathematical model has been eval-
uated with respect to experimental findings by two statistical tests, viz. Student’s t-test and Watson’s U? test**7.
A one-sample two-tailed t-test has been used to compare the average bone formation rate per unit bone surface
(BFR/BS) values, while a circular goodness-of-fit test viz. Watson’s U? test has been used to compare site-specific
MAR. Watson’s U? test is used to compare two circular probability distribution functions®**?’. Probability distri-
bution function (PDF) for the experimental results is assumed to be proportional to experimental MAR distribu-
tion. Similarly, PDF for the mathematical model predictions is assumed to be proportional to the predicted MAR
distribution. Both t-test and Watson’s U test have been done using Scilab®® programming. The Watson’s test has
been done based on works by Watson® and Stephens?®.

Results

Lamellar Bone Adaptation at Periosteal Surface. The Average BER Model: Cantilever Loading. The
developed theory has been tested for cantilever bending”*> In particular, periosteal in vivo data for tibia of 16
week old female C57BL/6 mice for the ten loading protocols obtained from Srinivasan et al.” have been used to
calibrate the developed model. The loading waveform used in the original in vivo study was trapezoidal, starting
from 0 to the peak in 0.1 s, holding at the peak for 0.8 s and decreasing linearly to 0 in 0.1s. In some of the pro-
tocols, there was 10's rest given between two loading waveforms. The peak strain varied (viz. 1000 pe, 1250 pe,
1600 pe) among the protocols and so did the number of cycles (viz. 10, 50, 250). The loading was given three
alternate days in a week, for 3 weeks. All mice received calcein labels on days 10 and 19 (day 1 corresponded to
first loading). Values of mid-diaphysis section properties - A, I,, I, and I, have also been taken from Srinivansan
et al.”. After curve fitting according to equations®’~%, the parameters that fit the BFR data in Srinivasan ef al.” at
mid-diaphyseal cross-section 1.8 mm proximal to tibia-fibula junction are as follows: p.d”=1.06859 x 10~*}um/
day/pe, g=0.404736, r=27n/E=0.436235s, and €;,,,, = 856.126 pe. As d =3 for all protocols, 3 could not be
separately determined and hence the value of p.d” has been computed. As shown in Fig. 3, the model BFR/BS
values are found to be not significantly different from the mean experimental values (p > 0.48 for every protocol).

Site-Specific Model: Cantilever Loading.  Using the same in vivo data used in Section 3.1.1, the site-specific model
has been established by finding k according to equation (13). The locations of osteocytes and osteoblasts on the
tibial cross-section and their network have been taken from the same source. The value of the product of k, h,
D, A and d° has been approximately found to be khDA’d’ = —1.8563 x 10> um? day 'ue~! (where d=3) i.e.
khDA®= —1.8563 x 1073/3%um? day 'pe . As compared in Fig. 4(A), the BFR/BS predicted by the site specific
model is not significantly different from the in vivo data (p > 0.15 for every protocol; average p-value =0.576 for
the ten protocols).

The in-vivo new bone formation is approximately as shown in Fig. 4(B) for loading protocol no. 6 of
Srinivasan et al.”. This loading protocol has peak strain (€,.) of 1600 g, rest of 10s and number of cycles (N)
of 50. The corresponding periosteal osteogenesis predicted by the site-specific model for the same loading pro-
tocol is shown in Fig. 4(C). The total BFR/BS is 0.436 pm®/pm?/day, which is close to the experimental value of
0.377 £ 0.084 (SE) pm*/pum?/day (p = 0.51, t-test). The predicted MAR distribution is also significantly close to
that of the experimentally obtained new bone distribution (p = 0.99 for Watson’s U? test*).

Site-Specific Model: Axial Loading. Example 1: The first axial loading example solved is that from Weatherholt
et al.*!, where tibia of 16 week old female C57BL/6 mice underwent axial loading of 7N magnitude having 360
cycles of 2 Hz haversine waveform for 4 weeks at the rate of 3 days a week. Strain distribution is kept similar to

SCIENTIFICREPORTS| (2019) 9:5890 | https://doi.org/10.1038/s41598-019-42378-5 6


https://doi.org/10.1038/s41598-019-42378-5

www.nature.com/scientificreports/

A 05
H Model
E [ invivo
~ 0.375
: |
=1
~
£
5 o T -
wv
2
& L
g 0.125 T u
0 | |
1 2 3 4 5 6 7 8 9 10
Loading Protocol No.

C

Figure 4. Comparison of new bone formation between the site-specific model and the in vivo experiment. (A)
Periosteal bone formation rate obtained by the site-specific mathematical model (black bars) is not significantly
different from that of in vivo experiments for each of the 10 protocols used by Srinivasan ef al.”. (B) In vivo
distribution of new bone formation for Protocol 6 is shown in green, which is adapted from Srinivasan et al.”.
(C) Outer boundaries of periosteal and endocortical osteogenesis predicted by the mathematical model for
Protocol 6 are shown as dashed line.

Weatherholt et al.*! (e.g. 1833 e at medial side). The model parameters i.e. k, h, D, A® and d? have been kept
the same as that in the cantilever loading example (Section 3.1.2). The experimental and predicted new bone
formations are shown in Fig. 5(A,B), respectively. The predicted BFR/BS is 1.63 pm®/pum?/day, which is not sig-
nificantly different from the experimental value of about 1.5 & 0.17 (SE) pm®/pm?®/day (Fig. 6(A), p=0.456). The
predicted site-specific MAR distribution (Fig. 5(B)) on the periosteal surface is close to that in the experimental
case (Fig. 5(A)) (p=0.997).

Example 2: The second axial loading example solved is from Mahaffey et al.”®, where 16 week old female
C57BL/6 mice were loaded with 60 cycles of 2 Hz haversine waveform of 5N magnitude for 2 weeks at the rate of
3 days per week. The strain distribution is kept similar to that of the experimental study™®, e.g. the strain is about
1200 pe at anteromedial aspect of mid-diaphysis. The new bone formation experimentally obtained and that pre-
dicted by the model are shown in Fig. 5(C,D), respectively. The BFR/BS predicted by the model is 0.26 pm?/
pm?/day, which is close to the experimental value of 0.27 & 0.12 pm?*/pm?/day (Fig. 6(A)) (p=0.936). The pre-
dicted MAR distribution (Fig. 5(D)) is not significantly different from the in vivo study (Fig. 5(C)) (p=0.994
for Watson’s U? test). Some difference in MAR distribution may be attributed to the difference in shape of the
cross-section.

Example 3: Another axial loading example is taken from the work of Willie et al.*°, where tibiae of 26 week
old female C57Bl/6] mice were loaded with 216 cycles of 4 Hz triangular waveform with 11N peak compressive
load for 2 weeks at the rate of 5 days per week. The waveform had a 5s rest period inserted after every 4 cycles.
The strain distribution is similar to that in the original experimental study®, e.g. the peak tensile and compressive
strains are approximately 1080 and —1695 i, respectively. The model parameters k, h, D, A® are the same as that
in Examples 1 and 2 in this section, whereas 3= 0.465 has been used in accordance with Section 3.1.4. The pre-
dicted BFR/BS (0.27 pm®/um?/day) is close to that experimentally obtained value of 0.33 £ 0.12 (SE) (Fig. 6(A))
(p=10.63 for t-test).

1.39

Site-Specific Model: Four-Point Loading. Examples 1 and 2: The site-specificity of the model was further tested
for the four-point bending case reported by Turner et al.?. The original study was for tibia of 9-month-old female
Sprague-Dawley rats. The loading waveform was sinusoidal with 2 Hz frequency, applied for 36 cycles a day
for 14 days. The rats received calcein label on days 5 and 12 (day 1 corresponds to the first day of loading). The
study lasted for 14 days. The force amplitudes were 27 (Example 1) and 33N (Example 2), which resulted into
peak strains of 1404 and 1484 e, respectively. Applying these loading protocol including the strain distribu-
tion, the mathematical model was fitted to experimental BFR. The corresponding khDA’d” value is found to be
—2.7527 x 1073 (where d=7) i.e. khDA® = —2.7527 x 103/7°pm? day'pe~'. Equating khDA° for the cantilever
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A

Figure 5. Comparison of site-specific new bone formation between experimental and mathematical models
in axial loading cases. In vivo bone section showing new formation in green which has been adapted from (A)
Weatherholt et al.*! and (C) Mahaffey et al.*. Dashed lines in (B) and (D) respectively show the corresponding
new bone formation predicted by the mathematical model.

and four-point bending cases, we get 3=0.465, which is slightly more than the value of g (=0.405) given in
Section 3.1.1. Based on the estimated values of ki, D, and A° given earlier, the value of k would accordingly be
7.908 x 10°pm/nmol. The corresponding BFRs computed by the model are 0.330 and 0.396 pm?®/pm?/day, respec-
tively, which are close to the experimental values 0.321 +0.058 (SE) and 0.408 & 0.065 pm?/um?/day (Fig. 6(B))
(p=0.875 and 0.858, respectively). Unfortunately, no histological section showing lamellar new bone formation
or site-specific MAR data are available for these loading cases, so the predicted site-specific MAR could not be
tested against the experimental values.

Example 3: This 4-point bending example is taken from the work of Kuruvilla et al.**, where tibiae of 16 week
old C57BL/6] mice were loaded with 99 cycles of 2 Hz haversine waveform per day for 3 weeks at the rate of 3
days a week. The strain distribution is also kept similar to that in the experimental study*’, e.g. approximately
2000 e at the lateral surface of tibia. The predicted BFR/BS is 0.853 pm®/jum?/day, while the experimental value
is 0.745 £ 0.076 pm*/pm?/day (Fig. 6(B)) (p=0.195). The predicted new bone formation primarily at the lateral
surface of the section is in accordance with the incomplete histological section shown by Kuruvilla et al..

The Inverted Model: Axial Loading. The average BFR is invertible as it is an explicit algebraic function (equation
(1)). The peak strain required to achieve a desirable overall BFR may be given by:

_ B
pEN’ (18)

The site-specific osteogenesis can also be easily inverted using optimization methods?®**?>. As the axial load-
ing on mouse tibia has been extensively studied earlier®!#3%31:41-44 the inverted mathematical model has been
tested for the axial loading case, viz. with respect to the in vivo studies by Willie et al.*. The corresponding exper-
imental new bone formation shown in Fig. 7(A) is for 10-week-old female C57BL/6 mice. The loading waveform
used for this study was the same as that given in Section 3.1.3 (Example 3).

We prescribed periosteal MAR values approximately similar to that (relative to experimental control) in Willie
et al*, as roughly shown in Fig. 7(A). In particular, one osteoblast at the posterior-medial vertex, one at posterior
side and one at posterior-lateral vertex of the bone cross-section are prescribed MAR of 0.9, 2.7 and 0.9 pm/day,
respectively. Additionally, one osteoblast each at the lateral side, anterior vertex, and medial side is also prescribed
MAR of 0 pum/day. The waveform is kept approximately the same as that for corresponding in vivo study, except
that the amplitude of the waveform is unity. The number of cycles N is also kept the same (216 per bout). After
optimization, we get the sectional forces (F., M” and M) that produce peak tensile and compressive strains of
1127 and —2563 g, respectively, which are close to 1174 £ 140 (SE) and —2410+£ 500 e (Fig. 7(C)) (p=0.743
and 0.766, t-test), respectively resulting from F? = 11N of axial loading. The site-specific bone formation due to
the predicted loading is shown in Fig. 7(B), which is site-specifically, approximately similar to that of the in vivo

5peak = Eihres T
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Figure 6. Comparison of relative periosteal bone formation rates (rp.BFR/BS) between model predictions and
actual experimental values. (A) Axial loading examples 1, 2 and 3 have been taken from Weatherholt et al.’!,
Mahaffey et al.** and Willie et al.**, respectively. (B) Four-point bending examples have been taken from Turner
et al.?? (examples 1 and 2) and Kuruvilla et al.** (example 3).

case (p > 0.99 for Watson’s U? test). The BFR/BS computed by the model (0.884 pm?/pm?/day) is also close to the
experimental value 0.930 = 0.145 pm?*/pum?/day (p = 0.760). The predicted neutral axis is approximately horizontal
(tan~'(M?/M?) = 3°) as also evident in the original in vivo study®® and other works in the literature involving
axial loacﬁng of mouse tibia®*.

Lamellar Bone Adaptation at Endocortical Surface. Cantilever Loading. Although the endocortical
bone formation data are not studied in Srinivasan et al.”, the comparison has been approximately made to only
one section shown there. Based on the model parameters given in Section 3.1.2, the predicted new bone distri-
bution at the endocortical surface is also shown in Fig. 4(C), which is not significantly similar to the experimen-
tal distribution (p = 0.89 for Watson’s U? test). The predicted BFR/BS is 0.132 pm?®/pm?/day, which is less than
estimated experimental BFR/BS of 0.5 pm®/pum?/day. This is in accordance with the literature that endocortical
surface is more mechano-responsive than the periosteal surface due to extra recruitment of osteoblasts from bone
marrow!%3%4446 Ag such, endocortical surfaces remodel differently'®*’ e.g. endocortical remodeling depends on
age of animal more than periosteal remodeling does*:. The periosteal new bone formation is, therefore, more
consistent than endocortical new bone formation, as also evident from other works of Srinivasan et al.*>*°. The
current model does not take into account of such differences between the two surfaces.

Four-Point Loading. In continuation to and for the model parameters given in Section 3.1.4, the endocortical
BFR/BS computed by the model are 0.080 pm?*/pm?/day (p=0.92) and 0.112 pm?/pum?/day (p =0.01), respec-
tively. The corresponding experimental values are 0.085 £ 0.052 (SE) and 0.041 +0.019 pm?/um?/day, respec-
tively?. This discrepancy between model prediction and experimental values may be due to the bone resorption
at endocortical surfaces in adult rodents**, similar to that observed in human adults as well®. The current model
does not take into account for the natural bone resorption at the endocortical surfaces.

Woven Bone Adaptation. Four-Point Loading. Turner et al.? show a section corresponding to 64N load
which induces 3010 pe peak strain and results in woven bone formation at periosteal surface (Fig. 8(A)). Note
that the current model does not account for woven bone formation, which is regulated by a different osteogenic
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Figure 7. In vivo osteogenesis due to axial loading versus that predicted by the inverse model. (A) For axial
loading condition®*'~%, in vivo new bone formation is roughly shown in green, which is adapted from Willie
et al.®. (B) The computational new bone formation corresponding to the forces predicted by the ‘inverse’
mathematical model is shown by dashed lines. (C) The peak magnitude of tensile and compressive strains
predicted by the mathematical model have been compared to the respective experimental values.

mechanism and results in elevated bone formation®**>°!. Hence, based on the model parameters given in Section

3.1.4 (Examples 1 and 2), the predicted periosteal new bone formation (1.768 pm?/pum?/day) is very less than the
estimated experimental elevated BFR/BS of 8.563 pm?/jum?*/day. The model’s site-specificity prediction is shown
in Fig. 8(B). Both (the in vivo experiment and the model) have new bone formation at the lateral and medial sides.
The in vivo case additionally has woven bone formed as anterior-medial side, which is also present in the sham
loading case. The new bone distribution relative to the sham loading was found to be close to that predicted by the
present model (p > 0.99, Watson’s U? test).

The endocortical new bone formation rate (BFR/BS) for 65N load is predicted to be 0.916 pm?/um?/day, which
is significantly less than the experimental value of 2.466 + 0.173 um?/um?/day (p < 0.001) due to woven bone for-
mation. The predicted MAR distribution is similar to that of experimental distribution (p > 0.99).

Three-Point Loading. The original in vivo study reported by Sakai et al.*! is for 3-point loading of tibia of
10-week-old male C57BL/6 mice. The loading waveform was rectangular pulse of 6N amplitude and 0.5 s duration
followed by 39.5 s rest. The tibia was loaded for 36 cycles each day for three alternate days in the first week only.
The peak strain was 2100 pie. There was no loading in the second week. The mice received Calcein labels on days
—2,3, 8,and 13 (day 0 being the first loading day). The study was conducted only for 2 weeks. The corresponding
site-specific new bone formation is shown in Fig. 8(C). Note that the shown section has woven bone formation,
which has not been incorporated in the current model. Keeping the same peak strain, orientation of the neutral
axis and loading waveform as that of the in vivo study, the developed model predicts site-specificity as shown in
Fig. 8(D), which is approximately similar to that of the in vivo bone formation (p > 0.99, for both periosteal and
endocortical surfaces for Watson’s U? test). Both have new bone formation on medial and lateral sides.

Summary of Results and Future Work.

o  The newly developed mathematical model is able to predict lamellar periosteal BFR/BS and site-specific MAR
for not only cantilever loading but also for axial loading cases, as evident from Section 3.1.1 to 3.1.3.

«  For four-point loading case (Section 3.1.4), the model also works for predicting lamellar periosteal BFR/BS,
while site-specificity could not be tested due to unavailability of data.
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Figure 8. In vivo new bone formation for 4-point and 3-point bending versus that predicted by the model. (A)
The in vivo new bone formation for 4-point loading condition is shown in solid black, which is adapted from
Turner et al.?2. (B) For 4-point bending?>**, periosteal and endocortical new bone obtained from the model

is shown with dashed lines. (C) The in vivo new bone formation for 3-point loading is shown in green, which
is adapted from Sakai et al.?!. (D) For 3-point bending condition?"**, periosteal and endocortical new bone
formation predicted by the model is shown by dashed lines.

o Asdemonstrated in Section 3.1.5, the inverted model predicts the strain distribution that would produce the
prescribed site-specific lamellar periosteal MAR and thus the force required for the desired new lamellar bone
formation.

o Asdescribed in Section 3.2, the current mathematical model is unable to predict BFR/BS and site-specific
MAR at endocortical surfaces. There are three reasons for that - (i) the endocortical surfaces respond differ-
ently than periosteal surfaces'®***, (ii) there is a continuous age-dependent bone resorption at endocortical
surface in normal adults*#*, and (iii) endocortical surfaces are more responsive to exogenous loading than
periosteal surface®*4*¢, These have not been implemented in the current model and this has been acknowl-
edged as a limitation.

o Asdiscussed in Section 3.3, the model is also unable to predict woven BFR/BS and site-specific MAR at either
of periosteal and endocortical surfaces. This is because the woven bone is formed by a different osteogenic
mechanism than that of lamellar bone formation?24°!,

o Assuch, new bone formation at endocortical surface is more complex than that at periosteal surface. Math-
ematical modeling of endocortical new bone formation itself would be more difficult and therefore has been
taken as future work.

o Similarly, developing a model of woven bone adaptation itself would be a major task and hence would be
taken as a future work.

Discussion

The results establish that there are four main mechanical factors on which new bone formation depends. The
first is how much the induced normal strain is above the threshold value (gy,.). This factor is responsible for why
there is no bone formation when induced strains are within the threshold value. The second factor is the ratio of
trough-to-crest amplitude of normal strain and the maximum magnitude of normal strain. This ratio brings out
the difference between loading waveforms with and without rest inserted between two consecutive waveforms.
Assuming bone to be simply elastic does not differentiate between these two kinds of loading waveforms, whereas
assuming bone to be viscoelastic does. This emphasizes the role interstitial fluid flow plays in new bone formation.
This accounts for why rest-inserted loading is more osteogenic than a loading without any rest. The third factor
is the number of cycles of a waveform. Larger the number of loading cycles, the more is the new bone formation;
however, the osteogenic potential of each loading cycle is less than that of the previous cycle. This is akin to the
fatigue damage accumulation and hints at possible role of micro-cracks in new bone formation. The fourth factor
is the number of days of loading per week. Larger the number of days, the greater is the new bone formation;
however, osteogenic potential of each day of loading is less than the previous one. Factor § being slightly larger
than the factor g indicates that daily loading is better than the same total number of cycles spread over less num-
ber of days.
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The main feature of the developed model is that it is invertible, i.e. load magnitude and directions or alter-
natively, strain distribution on the cross-section can be found out that would induce a desired site-specific new
bone formation. The ‘average BFR model, ‘site-specific model’ and the ‘inverted model’ developed here may be
extended for clinical purposes. For example, the magnitude and direction of mechanical loading may be in future,
prescribed by orthopaedic surgeons for a desired overall or site-specific new bone formation. Researchers can also
estimate loading for a desired BFR.

The average BFR model can be established for any kind of loading condition - cantilever, 3-point, 4-point or
axial loading. For a given loading condition, there are five variables - peak strain, unit waveform, rest between
two loading waveforms, number of cycles everyday and number of days of loading every week, out of which the
peak strain can be found out applying equation (18). Alternatively, the number of cycles can be determined if the
other four are prescribed along with the desired BFR.

For the given unit loading waveform, rest between two waveforms, the number of cycles everyday and the
number of loading days per week, the inverted model is able to find the normal force (F?) and bending moments
(M, M )(,) ) at the section that would get the desired new bone formation. This inverted model can be used when a
given site-specific new bone distribution is desired. A small normal force will indicate no axial loading and the
neutral axis in that case will pass approximately through the centroid of the section. The angle tan™ (M ;)/Mf ) is

the approximate orientation of the neutral axis to the medial-lateral direction. In order to get the given
site-specific MAR, a bone is loaded such that the net normal force is on , bending moment is /(M}? Y + (M }? )? and

the neutral axis is approximately oriented tan™ '(M?/M_) angle to the medial-lateral direction.

In general, the developed mathematical modef,approximately predicted periosteal lamellar bone formation
both in terms of the average BFR and site-specific MAR distribution. Some differences may be attributed to the
difference in age, section shapes, calcein labeling days, and coordinates of osteocytes and osteoblasts. The model
does not incorporate woven bone formation, age-related bone resorption and enhanced response of endocortical
surface to exogenous loading, and, therefore, cannot predict woven bone formation rate and endocortical remod-
eling. The site specificity can, however, still be predicted for woven bone, as evident from the 3-point and 4-point
loading cases described in Section 3.3.

Conclusions

In summary, the elegant mathematical relationships developed here are robust as they approximately hold true
for diverse loading conditions. These relationships are also invertible, which implies that it will make possible for
the orthopaedic surgeons to readily compute and prescribe an exercise that would lead to a desired new bone for-
mation. The current model can be improved further by incorporating natural endocortical resorption and woven
bone formation at elevated strain environment. Even for lamellar bone formation, the model can be made more
robust by taking into account the age of the mice, calcein labeling days, total weeks of loading, and also testing it
for a large number of cases. For that, however, a very large number of experimental data will be needed covering
variety of loading conditions, peak strains, loading waveforms, rest periods, number of cycles per loading bout,
number of bouts per week, total number of loading weeks, period of calcein labeling, age of animals etc. In spite
of unavailability of such large data in the literature, the current model attempts to connect presently available data
for diverse loading conditions into a single mathematical model.

Data Availability

All experimental data used in this work (such as the shape of bone cross-section, the locations of osteoblasts and
osteocytes on the section, bone formation rate (BFR), site-specific MAR etc.) are from publicly available literature,
as mentioned in the manuscript.
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