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Abstract: A surface-enhanced Raman scattering (SERS) detection method for environmental copper
ions (Cu2+) was developed according to the vibrational spectral change of diethyldithiocarbamate
(DDTC) on gold nanoparticles (AuNPs). The ultraviolet-visible (UV-Vis) absorption spectra indicated
that DDTC formed a complex with Cu2+, showing a prominent peak at ~450 nm. We found Raman
spectral changes in DDTC from ~1490 cm−1 to ~1504 cm−1 on AuNPs at a high concentration of
Cu2+ above 1 µM. The other ions of Zn2+, Pb2+, Ni2+, NH4

+, Mn2+, Mg2+, K+, Hg2+, Fe2+, Fe3+,
Cr3+, Co2+, Cd2+, and Ca2+ did not produce such spectral changes, even after they reacted with
DDTC. The electroplating industrial wastewater samples were tested under the interference of highly
concentrated ions of Fe3+, Ni2+, and Zn2+. The Raman spectroscopy-based quantification of Cu2+ ions
was able to be achieved for the wastewater after treatment with alkaline chlorination, whereas the
cyanide-containing water did not show any spectral changes, due to the complexation of the cyanide
with the Cu2+ ions. A micromolar range detection limit of Cu2+ ions could be achieved by analyzing
the Raman spectra of DDTC in the cyanide-removed water.

Keywords: surface-enhanced Raman spectroscopy; plasmonic gold nanoparticles; diethyldithiocarbamate;
industrial electroplating wastewater; cyanide removal

1. Introduction

The resonant plasmonic enhancement of the local electric field on noble metal substrates could
provide a highly sensitive platform for achieving single-molecule label-free detection [1]. SERS has
been applied for detecting traces of organic compounds adsorbed on metal substrates [2]. A localized
surface plasmon band of AuNPs can be utilized as a platform for studying chemical and biological
reactions [3]. Plasmonic nanoparticles have been introduced to study heavy metal pollutants [4–6].
Detailed molecular interactions between organic compounds and metal atoms can be estimated with a
combination of quantum-mechanical density functional theory (DFT) calculations [7,8].

Developments in sensing, identifying, and detecting heavy metal ions in aqueous solutions
could contribute to the advanced treatment of wastewater [9]. The treatment of heavy metal ions in
wastewater has been a significant challenge for environmental scientists [10]. However, because of the
high toxicity of cyanide (CN) species, electroplating wastewater can be categorized into two kinds
of wastewater: cyanide and non-cyanide [11]. Chlorination in highly alkaline conditions can be an
efficient method for the reduction of cyanide ions in wastewater [12–15].
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Diethyldithiocarbamate (DDTC) has been known to bind with metal complexes [16–18].
Among the various metal ions, Cu2+ has been found to interact strongly with DDTC [19–22].
Plasmonic nanoparticle-mediated SERS has been employed to detect hazardous species, such as heavy
metal ions, in environmental samples [23]. The SERS spectrum of the DDTC-Cu2+ complex has recently
been reported in a combination of quantum mechanical calculations [24].

The development of new, convenient methods for the spectroscopic characterization of
contaminants in water effluent is still of significant importance in environmental fields [25,26].
Despite various methods for detecting ionic species [27] in aqueous solutions, there has been no report
of a Raman spectroscopy-based analytical approach to DDTC-correlated copper ion quantification in
real industrial wastewater samples. In this work, we found that SERS could be applied for detecting
Cu2+ ions with the micromolar sensitivity in non-cyanide wastewater samples. In the case of cyanide
presence in wastewater, samples need to be treated with alkaline chlorination before Cu2+ detection.
The potential application of this research is to develop a quick and easy spectroscopic tool to estimate
the toxic amounts of harmful chemicals in wastewater. Our work may also be used to detect the
presence of cyanide ions in wastewater samples before and after alkaline chlorination.

2. Materials and Methods

2.1. Materials and Preparation of AuNPs and DDTC-Metal Complex

Sodium diethyldithiocarbamate trihydrate ((C2H5)2NCSSNa·3H2O) and the metal ionic
substances were purchased from Sigma Aldrich (St. Louis, MO, USA). AuNPs were prepared by
the previous method [28]. Our quantification methods for Cu2+ ions were based on our recent
investigation [29].

We prepared AuNPs using a citrate reduction method. First, a triple-distilled water solution of
hydrogen tetrachloroaurate trihydrate was mixed, stirred, and heated to the boiling point of water.
Subsequently, sodium citrate was quickly added to this mixture and continuously stirred while the
mixture was boiling. Finally, the level of the reaction solution was always kept at the beginning levels
for 1 h by adding triple-distilled water slowly and continuously. The AuNPs were obtained at about
20 nm in diameter according to the measurements by Otsuka ELZ-2 and high-resolution transmission
electron microscope (TEM) (JEOL JEM-3100).

To prepare the UV-Vis experiment with the DDTC-Cu2+ complex, all of DDTC (0.89 mM in
triple-distilled water, 500.0 µL) and Cu2+ (1.0 mM in triple-distilled water, 50.0 µL) were put into a
2.0 mL Eppendorf tube as a first step. This mixture solution (pH = 7.0) was stirred and kept stable
for 30 min at room temperature. In the second step, 450.0 µL of triple-distilled water was added into
this mixture to obtain 1000.0 µL solution of DDTC-Cu2+ complex with 50.0 µM final concentration of
Cu2+. After that, UV-Vis spectra of 1000.0 µL of DDTC-Cu2+ complex was recorded. Samples with
other metal ions were prepared by substituting Cu2+.

For the SERS experiment of DDTC-Cu2+ complex on AuNPs, in the first step, all of the DDTC
(8.9 mM in triple-distilled water, 50.0 µL) and Cu2+ (10.0 mM in triple-distilled water, 5.0 µL) was
put into a 2.0 mL Eppendorf tube. This mixture solution (pH = 7.0) was stirred and kept stable for
30 min at room temperature. In the second step, 445.0 µL of AuNP solution was added into this
mixture to obtain a 500.0 µL solution of the DDTC-Cu2+ complex on AuNPs with a 100.0 µM final
concentration of Cu2+. Then, SERS spectra of 500.0 µL of the DDTC-Cu2+ complex on AuNPs was
recorded. Samples with other metal ions were prepared by substituting Cu2+.

2.2. Instrumentations and DFT Calculations

UV-Vis absorption spectral changes of the DDTC-metal complexes before and after applying to
the AuNP colloidal solution were obtained with a 3220 PC spectrophotometer (Mecasys, Daejeon,
Korea). Atomic percentages in wastewater was obtained using a NEXION 350 D ICP-MS spectrometer
(Perkin-Elmer, Boston, MA, USA). DFT calculations [30] and potential energy distribution were
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performed using the previous literatures [31]. The Au6 cluster is one of the simplest models of gold
atoms. It includes calculations to predict the energetic stabilities and intramolecular interactions of the
adsorbates on Au surfaces. This model includes six gold atoms that can connect with each other to
generate the triangular geometry needed to form gold clusters.

All Raman data were obtained by using a Raman microscope system RM 1000 spectrometer
(Renishaw, Gloucestershire, UK) with a 632.8 nm HeNe excitation laser and a CCD camera. The SERS
spectra were recorded by using spectroscopic glass tubes after the preparation of the Cu2+ detection
samples. The integration time for SERS measurement was set up at 10 s per spectrum with a range of
200–3200 cm−1. Prior to performing SERS, the spectral positions were calibrated based on Si peak at
520 cm−1.

2.3. Preparation of Wastewater Samples and Removal of the Cyanide Species Using Alkaline Chlorination

The real water samples were obtained from the wastewater treatment center (Pusan, Korea).
The cyanide reactions could be derived from the previous literature [32]. Samples “S1” and “S2” were
obtained before and after the process of removing the cyanide species, respectively.

3. Results and Discussion

3.1. Adsorption of DDTC-Cu2+ on AuNPs

Scheme 1 is a diagram of our detection of Cu2+ ions with a complex of DDTC and subsequent
adsorption on AuNPs. As shown in Scheme 1a, our method would be able to detect Cu2+ ions not
only using the UV-Vis method, but, more importantly, also based on the SERS tool, which could
demonstrate a much higher selectivity and sensitivity capacity than the UV-Vis method.
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based on the results of UV-Vis and SERS in comparison with the S2 sample. 

Figure 1a shows a photo of DDTC-metal complexes. The Cu2+ ion exhibited a yellow color, which 
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Scheme 1. Schematic diagram of detection of Cu2+ ions with (a) a complex of DDTC and subsequent
adsorption on AuNPs and (b) in electroplating wastewater after alkaline chlorination under the
interference from the other ionic species.

In general, our method could be promisingly applied to wastewater samples in both the presence
of CN− and the absence of CN−. Under wastewater conditions without CN−, the results indicate
the ability for DDTC-Cu2+ complex detection via both the colorimetric indicator and the SERS
tool (as shown in Scheme 1b with the S2 sample). Moreover, in the case of the presence of CN−

(the S1 sample), our approach may also be useful as a quick and simple method to identify the cyanide
species in electroplating industrial water, since the copper cyanide complex cannot bind efficiently
with DDTC, based on the results of UV-Vis and SERS in comparison with the S2 sample.

Figure 1a shows a photo of DDTC-metal complexes. The Cu2+ ion exhibited a yellow color,
which was supported by the UV-Vis absorption spectra of DDTC-metal complexes, as shown in
Figure 1b. The inset in Figure 1b shows the UV-Vis absorption spectra, as well as a photo of DDTC-Cu2+
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corresponding to various concentrations of the Cu2+ ion. The absorption bands of DDTC-Cu2+

exhibited prominent bands at ~450 nm, which is in different from other tested ions as previous
reported [21]. The band at 520 nm is the spectrum of the pristine AuNPs just after synthesis, without
any DDTC complexes. In Figure 1c, upon adsorption on AuNP surfaces, the plasmonic bands of
initial AuNPs at 520 nm became considerably redshifted to ~700 nm, indicating the aggregation of
AuNPs due to the strong binding of sulfur atoms in DDTC on Au. Although we found that the
aggregation-induced color and UV-Vis spectral changes after adsorption upon AuNPs in Figure 1d did
not depend on the metal ionic species, presumably due to the strong binding of the sulfur atoms in
DDTC on Au, the strong binding of the Cu2+ ions with DDTC as shown in Figure 1a,b may change the
minute adsorption characteristics on AuNPs. Despite the extensive aggregation of AuNPs, regardless
of the complex types of DDTC with different ions as indicated in Figure 1d, SERS may exhibit minute
spectral changes depending on the binding modes. As listed in Table 1, our DFT calculations predicted
that the ν(N=C) mode at 1490–1520 cm−1 for DDTC could be sensitively changed on Au atoms,
depending on the binding modes and the presence of Cu(II) ions. To find any different interfacial
interactions, we performed Raman spectroscopy.
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3.2. Raman Spectra of DDTC-Cu2+ on AuNPs 
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+, K+, Ca2+, Mg2+, Cd2+, Pb2+, Hg2+,
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complexes. The inset shows the absorption bands at ~450 nm and the photo of DDTC-Cu2+ complex
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3.2. Raman Spectra of DDTC-Cu2+ on AuNPs

Figure 2a exhibits normal Raman (NR) for the solid state of DDTC, and the SERS spectra of DTTC,
DDTC-Zn2+, and DDTC-Cu2+ on AuNPs. Our spectra appear consistent with that in the previous
report [24]. Notably, the vibrational band at ~1490 cm−1 was prominently blueshifted to ~1504 cm−1,
as marked in red arrows in the case of DDTC-Cu2+. Such spectral changes were not observed for the
SERS spectra of DDTC-metal complexes on AuNPs, as illustrated in Figure 2b. The difference may be
due to the exceptionally high binding energy of the Cu2+ ion to DDTC. To explain the spectral changes,
the quantum mechanical DFT calculations were introduced to better assign the Raman peaks of DDTC
with a complex of the metal ion in a free and adsorbed state on Au6 cluster atoms. An appropriate
vibrational assignment is summarized in Table 1.
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Figure 2. (a) Normal Raman (NR) for the solid state of DDTC and SERS spectra of DDTC, DDTC-Zn2+,
and DDTC-Cu2+ on AuNPs. In the case of the DDTC-Cu2+ complex, the vibrational band at ~1490 cm−1

was prominently blueshifted to ~1504 cm−1, as marked in red arrows. (b) The SERS spectra of
DDTC-metal complexes on AuNPs for Cu2+, Zn2+, Pb2+, Ni2+, NH4

+, Na+, Mn2+, Mg2+, K+, Hg2+,
Fe2+, Fe3+, Cr3+, Co2+, Cd2+, and Ca2+.

Table 1. Spectral data and vibrational assignments for DDTC and DDTC-Cu2+ on Au.

NR of
DDTC

a DFT
DDTC-Au6

SERS on
Au

a DFT
Cu(DDTC)2-Au6

SERS on
Au

b Assignments Based on PED
Calculations

— — — 268 268 β(C–N–C) + β(N–C–S)
350 329 — 345 367 ν(Cu–S) + β(S–C–S)
426 415 435 407 434 β(C–C–N) + ν(S–C) + γ(N–S–S–C)
567 523 552 523 547 ν(S–C) + γ(N–S–S–C) + β(C–N–C)
775 756 — 756 — ν(N=C)(CH2)
835 849 — 841 — δ(H–C–C–N)
910 935 902 942 885 ν(C–C)

1003 997 1005 997 998 ν(N=C)(CH2) + ν(S–C) + ν(C–C)
1074 1051 1080 1043 1075 ν(N=C)(CH2) + ν(C–C)
1131 1144 1144 1152 1147 δ(H–C–C–N)
1261 1292 1270 1276 1270 ν(N=C)(CS2) + δ(H–C–N–C) + β(H–C–C)
1367 1354 1350 1354 1366 δ(H–C–N–C) + β(H–C–H)(CH2)
1412 1416 1423 1447 1432 ν(N=C)(CS2) + β(H–C–H)(CH2)
1449 1462 1454 1470 1454 β(H–C–H)(CH2) + β(H–C–H)(CH3)
1474 1493 1490 1517 1504 ν(N=C)(CS2) + β(H–C–H)(CH2)

a The scale factor of 0.97 was applied. b Abbreviations: δ: Torsion, ν: stretching, β: in-plane bending, γ: out-of-plane bending.

3.3. DFT Calculations of DDTC-Cu2+ on AuNPs

The DFT calculated spectra of DDTC and DDTC-Cu2+ on the Au6 cluster under the polarizable
continuum model (PCM), appeared to match well with the SERS spectrum of the experimental Raman
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spectrum of DDTC. The bands at ~1423 and ~1490 cm−1 can be both ascribed to the vibrational modes
of C=N stretching and CH2 bending modes. Of these, the stretching vibration of C=N is supposed to
be more Raman-active dominant. These two bands, which are sensitive to the C=N stretching modes,
can be expected to change considerably on AuNPs if the copper ion replaces the sulfur atom, leading
to change in the relative Raman signals based on the present theoretical calculation. Although not
shown here, the bond length of C=N of DDTC appeared to decrease from 1.39 to 1.34 Å after binding
to Cu2+, resulting in increased vibrational frequencies.

3.4. Quantification of the Cu2+ Ion on the Basis of Raman Spectra

According to a previous report [33], the C=N stretching vibrational frequency should increase
when the Schiff base is bound to Lewis acids such as H+ and BF3. Considering that the Cu2+ ion,
as an electron pair receptor, could play the role of a Lewis acid, its binding to the nitrogen atom
could increase the C=N stretching vibrational frequencies. A recent SERS study also indicated that the
DDTC-based thiram and ziram may coordinate with a gold film as either a monodentate or a bidentate
mode on Au [34].

Figure 3a shows the concentration-dependent SERS spectra of DDTC on AuNPs. The peak
intensities at ~1504 cm−1 steadily increased, depending on the concentration of the Cu2+ ion,
as magnified in Figure 3b. The calibration curve of the Raman peak intensities versus [Cu2+] is
shown in Figure 3c.
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Figure 3. (a) Cu2+ concentration-dependent SERS spectra of DDTC on AuNPs in distilled water.
(b) A magnified view of the spectral region from 1380 to 1600 cm−1. (c) Three independent
measurements of Raman intensities of vibrational bands at ~1504 cm−1 were performed to provide the
standard deviations and a linear fit for the concentration range between 1 and 60 µM.

3.5. Raman Spectroscopic Quantification of Cu2+ Ions in Electroplating Wastewater Samples

Considering that alkaline chlorination can remove hazardous cyanide species from wastewater
samples [12–15], we applied our method to detecting the presence of cyanide ions in real wastewater
samples before and after alkaline chlorination. Table 2 shows the atomic percentages of various metal
ionic species in electroplating wastewater samples. Figure 4 shows our spectroscopic results from the
electroplating wastewater samples: standard solution of [CN] = 100 ppm, “S1” (cyanide-containing),
and “S2” (after alkaline chlorination). Under our experimental conditions, UV-Vis absorption and
SERS spectra of DDTC on AuNPs, depending on the concentration of Cu2+ for sample “S2” after
alkaline chlorination, looked similar to those in the distilled water, whereas the cyanide-containing
samples of the standard and “S1” did not exhibit such behaviors. The complex formation of the Cu2+

ion with the CN species may hamper the binding of Cu2+ and DDTC. In Figure 4b, the absorption
band was weakened for the cyanide-containing wastewater samples. This interpretation could also be
supported by the relatively weak CN intensity at ~2114 cm−1 [29] of the wastewater after the alkaline
chlorination treatment of sample “S2”, as shown in Figure 4c.
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level (1.3 ppm = ~20 μM) for drinkable water [29]. Figure 6 illustrates the alkaline chlorination process 
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Figure 4. (a) Initial photo of the industrial wastewater samples: [CN] = 100 ppm,
“S1” (cyanide-containing), and “S2” (after alkaline chlorination). Photo of wastewater samples after
dilution and treatment with DDTC. (b) UV-Vis absorption spectra of [CN], “S1”, and “S2” after
treatment with DDTC. (c) SERS spectra of [CN], “S1”, and “S2” on AuNPs after treatment with DDTC.
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Table 2. Atomic percentages of various metal ionic species in electroplating wastewater samples.

Sample Cr Mn Fe Ni Cu Zn

“S1” (cyanide wastewater) ND * ND 342.95 703.85 84.69 2447.67
“S2” (after alkaline chlorination) ND 2.38 468.28 667.66 77.06 2175.26

* ND: not detected.

Figure 5 shows the concentration-dependent SERS spectra of DDTC on AuNPs in electroplating
the wastewater sample “S2”. The peak intensities at ~1504 cm−1 steadily increased, depending on
the concentration of the Cu2+ ion, similar to the case of the distilled water. The detection limit of the
current SERS method was found to be around ten times lower than that of the colorimetric test under
our experimental conditions. The lowest concentration of our SERS detection of Cu2+ in wastewater
samples was around 1 ppm, which is lower than the Environmental Protection Agency permission
level (1.3 ppm = ~20 µM) for drinkable water [29]. Figure 6 illustrates the alkaline chlorination process
of the influent sample “S1” to remove the cyanide species in electroplating the industrial wastewater
to produce non-cyanide wastewater “S2”. The following equations can be applied to treat the cyanide
wastewater by alkaline chlorination.

8CN− + 2Cu2+ → 2Cu(CN)3
− + (CN)2 (Stoichiometry cyanide reaction with Cu2+)

Cl2 + 2NaOH→ NaOCl + NaCl + H2O (alkaline chlorination)

NaOCl + CN− → OCN− + NaCl (Destruction of CN−)

2OCN− + 3OCl− + 2OH− → N2 + 3Cl− + 2CO3
2− + H2O (Destruction of OCN− and OCl−)
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Figure 5. (a) UV-Vis absorption spectra of the DDTC-Cu2+ complex in wastewater with bands at
~450 nm, depending on the concentrations of the Cu2+ ion. The inset shows a photo of the DDTC-Cu2+

complex with [Cu2+] from 0 to 50 ppm in wastewater. (b) Cu2+ concentration-dependent SERS spectra
of DDTC on AuNPs in wastewater samples after alkaline chlorination treatment. (c) A magnified view
of the region from 1400 to 1550 cm−1. (d) Three independent measurements of Raman intensities at
vibrational bands of ~1504 cm−1 were performed to provide the standard deviations and a linear fit for
the concentration range between 1 and 50 ppm. The samples for the calibration curve were obtained
by dilution of the initial wastewater (77.06 ppm Cu2+) with the DDTC-Cu2+ complex and the AuNP
solution. The samples with the other Cu2+ concentrations could also made by changing the volumes of
wastewater and DDTC-Cu2+ complex, accordingly.

Alkaline chlorination can be divided into two steps. (1) A highly alkaline condition (pH > 10)
will suppress the generation of gaseous HCN to maintain the free cyanide ions in wastewater
(workers should be cautious about exposure to the gas in the atmosphere). A chlorine gas injection
at least seven times higher than that of cyanide will yield cyanate (OCN−), avoiding the formation
of the metal cyanide complexes and the other chlorine adducts, including cyanogen chloride (CNCl).
(2) The cyanide adducts, such as OCN−, can be destroyed by lowering the pH to 8.5 to decompose
them to CO2 and N2.



Sensors 2017, 17, 2628 9 of 11
Sensors 2017, 17, 2628 9 of 11 

 

 
Figure 6. An alkaline chlorination process of the influent sample “S1” to remove the cyanide species 
in electroplating industrial wastewater to produce the non-cyanide wastewater in sample “S2”. 

4. Conclusions 

Our study showed that a facile detection method for Cu2+ ions in the DDTC-metal complexes 
could be achieved by monitoring specific marker bands in the SERS spectra. The SERS bands at ~1504 
cm−1 increased after the introduction of DDTC-Cu2+ complexes on AuNPs. This could be interpreted 
as the conformation of the complex that would have different orientations on Au as supported by 
DFT calculations. The other ions of Ni2+, Fe2+, Co2+, Mn2+, Zn2+, Pb2+, Mg2+, Cd2+, Ca2+, Hg2+, NH4+, Cr3+, 
Fe3+, and K+ did not exhibit such spectral behaviors. The UV-Vis absorption and a colorimetric method 
were also introduced to check the [Cu2+]-induced spectroscopic changes. Our method can be 
successfully applied to real electroplating wastewater samples. After removal of the CN species via 
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4. Conclusions

Our study showed that a facile detection method for Cu2+ ions in the DDTC-metal complexes
could be achieved by monitoring specific marker bands in the SERS spectra. The SERS bands at
~1504 cm−1 increased after the introduction of DDTC-Cu2+ complexes on AuNPs. This could be
interpreted as the conformation of the complex that would have different orientations on Au as
supported by DFT calculations. The other ions of Ni2+, Fe2+, Co2+, Mn2+, Zn2+, Pb2+, Mg2+, Cd2+,
Ca2+, Hg2+, NH4

+, Cr3+, Fe3+, and K+ did not exhibit such spectral behaviors. The UV-Vis absorption
and a colorimetric method were also introduced to check the [Cu2+]-induced spectroscopic changes.
Our method can be successfully applied to real electroplating wastewater samples. After removal
of the CN species via alkaline chlorination, the DDTC spectral features could be correlated with the
concentration of Cu2+.
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