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Abstract: Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease characterized
by incompletely reversible airflow limitation and seriously threatens the health of humans due to
its high morbidity and mortality. Naringenin, as a natural flavanone, has shown various potential
pharmacological activities against multiple pathological stages of COPD, but available studies are
scattered and unsystematic. Thus, we combined literature review with network pharmacology
analysis to evaluate the potential therapeutic effects of naringenin on COPD and predict its underlying
mechanisms, expecting to provide a promising tactic for clinical treatment of COPD.
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1. Introduction

1.1. Chronic Obstructive Pulmonary Disease

Chronic obstructive pulmonary disease (COPD), one of the most common chronic respiratory
disease, is characterized by progressive and irreversible airflow limitation resulting from the
emphysematous destruction of the alveolar structure and the remodeling and narrowing of small
airways [1,2]. COPD is considered as a multifactor disease, and cigarette smoking is demonstrated as
the dominant driving force for the development of the disease [3]. Since its high prevalence, morbidity,
and mortality, COPD induces substantial economic and social burden worldwide. It is predicted that
COPD will become the third-ranked leading disease of death worldwide in 2030, and there may be
over 5.4 million deaths annually from it in 2060 due to the increasing numbers of smokers and aging
populations [4,5].

Clinical phenotypes of COPD vary among patients due to the differences in the age of onset,
the rate of progression, the frequency of exacerbations, and the association with comorbidities,
with some patients predominantly suffering from small airway disease, while others mainly
suffer from pulmonary diseases such as emphysema [6]. Although several treatments of COPD,
including inhaled corticosteroids, long-acting muscarinic antagonists, and long-acting β2-agonists
have already demonstrated to have a certain degree of clinical efficacy, it seems that the side effects
of these currently available therapies are unavoidable and time- or dose-dependent [7]. In addition,
the precise mechanisms of COPD pathogenesis have not been clarified at present. Therefore, it is
critical to elucidate the molecular mechanisms underlying COPD and identify an alternative ingredient
that can treat COPD with fewer side effects.
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1.2. Naringenin and its Glycoside Naringin

Naringenin, a natural flavanone, was first identified from extracts of the dormant peach
(Prunus persica) flower buds, with the chemical name of 5,7,4′-trihydroxyflavanone [8] (Figure 1). As a
common dietary constituent consumed by humans, naringenin is abundantly present in citrus fruits and
vegetables such as grapefruit, lemon, oranges, and tomatoes. Naringin is a flavanone glycoside composed
of naringenin and neohesperidose attached at C-7, which is partly absorbed by gastrointestinal
tracts and is mostly metabolized by gastrointestinal bacteria into naringenin after oral ingestion [9].
Thus, naringin is mainly introduced into the body as a form of naringenin [10]. In recent years,
accumulating studies have reported on the potential pharmacological activities of naringenin, including
beneficial effects in chronic airway disease, lung diseases, liver diseases, cardiovascular diseases,
and cancer [11–15]. Evidence suggests that it had antioxidative, anti-inflammatory, antifibrogenic,
antiatherogenic, and antiproliferative bioactivities [16–18]. Even though its therapeutic effects in the
treatment of COPD are seldom reported, these findings still indicate that naringenin and its glycoside
naringin appear to be full of potential therapeutic value in COPD.
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The traditional concept of “one drug for one target for one disease” was the predominant
paradigm in drug discovery in the past. However, advances in systems biology suggest that complex
diseases may not be effectively treatable by interventions at single targets [19]. As a classic method of
bioinformatics, network pharmacology can save cost and time compared with conventional experiments,
and, more importantly, the core of network pharmacology is consistent with the holistic philosophy,
which contributes to overcoming complex diseases such as COPD, in a systematic manner [20,21].
Consequently, in this study, we combined literature review with network pharmacology analysis
to evaluate the possible therapeutic effect of naringenin on COPD and its underlying mechanisms,
expecting to provide a promising treatment option for COPD.

In conclusion, naringenin exhibits various pharmacological effects against multiple respiratory
diseases, which suggests its potential therapeutic effect on different pathological stages of COPD
(Table 1).

2. Potential Pharmacological Effects of Naringenin in COPD

2.1. Anti-Inflammatory Activity

Accumulating reports suggested that persistent inflammation in the lung parenchyma and
peripheral airways plays a critical role in the initiation and progression of COPD [22]. The pathogen-
and damage-associated molecular patterns initiate the immune response at the early phase of
this inflammation. Pro-inflammatory cytokines, chemokines, and activated inflammatory cells
are generated, resulting in chronic bronchitis or emphysema. In multiple animal models, orally
administered naringenin or naringin was proved to markedly reduce the infiltration of inflammatory
cells and decrease the myeloperoxidase activity in the lungs, thereby exerting protective effects to
ameliorate the histopathological lung tissue injury resulting from lipopolysaccharide (LPS), CS exposure,
Staphylococcus aureus, or cecum ligation and puncture (CLP) [23–26].
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Clinical trials revealed that the elevated levels of pro-inflammatory cytokines such as tumor necrosis
factor (TNF)-α, interleukin (IL)-8, IL-6, and IL-1β in the serum and sputum of COPD patients, which is
associated with the severity and exacerbation frequency of this disease [27–29]. Specific pro-inflammatory
cytokine such as IL-8 and IL-1β blockade therapies are currently emerging and have demonstrated as a
certain degree of efficacy in COPD [30–32]. Liu et al. reported that naringenin could attenuate inflammation
in CS-exposed mice and involve the suppression of NF-κB [33]. Naringenin (20, 40, and 80 mg/kg, p.o.)
could inhibit the production of IL-8 and TNF-α and decrease the level of matrix metalloproteinase (MMP)-9
in the bronchoalveolar lavage fluid (BALF) and serum. Similarly, inhibition of TNF-α and IL-8 by treatment
of naringin (9.2, 18.4, and 36.8 mg/kg, p.o.) was observed in the airways of guinea pigs with chronic
bronchitis challenged by CS exposure [34]. IL-1β and IL-6 often synergistically work with other cytokines
and thus thereby provide a link between innate and acquired immunity in COPD [35]. Zhao et al. found
that naringenin (100 mg/kg, p.o.) pre-treatment could significantly decrease the serum and BALF levels
of IL-1β and IL-6 in an LPS-induced acute lung injury mouse model, which is probably correlated with
suppressing the phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) signaling pathways [36].
Zhang et al. reported that orally administrated naringenin (100 and 200 mg/kg, p.o.) could ameliorate
lung injury by downregulating the level of IL-1β in radiation-induced mice [37]. Moreover, naringenin
(50 and 100 mg/kg, p.o.) was observed to decrease the level of IL-6 in lung tissues, thereby attenuating
LPS-induced acute lung injury in rats [12]. An opponent of Th1 cells, Th2 cells are characterized by the
production of anti-inflammatory cytokines such as IL-4, IL-5, IL-10, and IL-13, which were reported to be
reduced in COPD patients [38–42]. Recently, blocking antibodies against Th2 cytokines and their receptors
have shown clinical benefits in COPD and asthma [43–45]. Ahmad and colleagues investigated the
anti-inflammatory mechanisms of naringin against carrageenan-induced pleurisy in a mouse model [46].
Orally administered naringin (40 and 80 mg/kg) was shown to downregulate Th1 cytokines (TNF-α,
IL-2, IL-6, and IL-17) and upregulate Th2 cytokines (IL-4 and IL-10) in the pleural exudates, through
the inhibition of NF-κB and STAT3 signaling pathways. In a CS-challenged rat model, naringin (20, 40,
and 80 mg/kg, p.o.) was found to dose-dependently elevate the level of IL-10 in BALF [24].

Chemokines are mainly divided into four subfamilies including CC chemokines, CXC chemokines,
XC chemokines, and CX3C chemokines, which play a critical role in recruiting inflammatory cells from
the circulation into the lungs in COPD [47,48]. Liu et al. evaluated the effect of naringin on chemokine
expression in LPS-challenged RAW 264.7 macrophages [49]. Pre-treatment with naringin (50, 100,
and 200 µM) was found to significantly reduce the secretion of monocyte chemoattractant protein (MCP)-1
and macrophage inflammatory protein (MIP)-1α. Shi et al. investigated the anti-inflammatory mechanism
of naringenin in an allergen-induced murine model of asthma. Naringenin (25, 50, and 100 mg/kg, i.p.)
was observed to markedly reduce the levels of CCL5 and CCL11 in the BALF, which is correlated with
blocking the activation of NF-κB [50]. Thymic stromal lymphopoietin (TSLP), an IL-7-like cytokine,
can synergize with IL-1β and TNF-α to induce Th2-differentiated cytokines and chemokines expression in
mast cells [51]. A clinical trial showed that the expression of TSLP, CCL17, CCL22, and CXCL10 increased
in the bronchial mucosa and BALF of COPD patients [52]. Naringenin (100 µM) was found to inhibit TSLP
production at a maximal rate of 62.27 ± 10.79% probably through suppressing the receptor-interacting
protein (RIP)-2 and caspase-1 in human mast cell line [53].

Owing to the hydrophobic structure of naringenin, it possesses a poor aqueous solubility and
bioavailability. As a drug delivery system, naringenin nanocarriers are currently emerging so that promote
the bioavailability and enhance the therapeutic effect of naringenin [54]. Kumar et al. investigated
the anti-inflammatory mechanisms of a novel naringenin delivery system in LPS-induced RAW264.7
macrophage cells [55]. Compared with naringenin, polyvinyl pyrrolidone (PVP) coated-naringenin
nanoparticles (NPs) were shown to be more efficient. These naringenin NPs (25 µg/mL) were observed to
downregulate the expression of NF-κB via the P38 mitogen-activated protein kinase (MAPK) signaling
pathway and to inhibit the production of inflammatory mediators including TNF-α, IL-6, MCP-1, and IL-1β.
The anti-inflammatory activities of naringenin and naringin are summarized in Table 1.
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Table 1. Summary of anti-inflammatory activities of naringenin and naringin.

Pharmacological Activity Type of Study Study Subject Pharmacological Aspects Findings Ref.

Anti-inflammation

In vivo LPS-induced acute lung injury mice Naringin;
15, 30, and 60 mg/kg, p.o.

Pulmonary neutrophil infiltration and TNF-α, MPO, iNOS,
and NF-κB activities ↓ [23]

In vivo CS-exposed rats Naringin;
20, 40, and 80 mg/kg, p.o.

Infiltration of neutrophils and MPO, MMP-9, TNF-α, and
IL-8 levels ↓; Level of IL-10 ↑ [24]

In vivo Staphylococcus aureus-induced
pneumonia mice Naringenin; 100 mg/kg, i.h. Pulmonary inflammation and inflammatory cells

infiltration ↓ [25]

Both in vitro and
in vivo

LPS-induced RAW 264.7 cell line;
CLP-induced mice

Naringin;
50, 100, 200 µM (in vitro)
200 mg/kg, i.p. (in vivo)

TNF-α expression and HMGB1 release ↓; HO-1 expression
via the AMPK-p38-Nrf2 pathway ↓ (in vitro)

Lung injury ↓; TNF-α and HMGB1 expression ↓ (in vivo)
[26]

Both in vitro and
in vivo CS-exposed A549 cell line and mice

Naringenin;
2, 20, 50 mM (in vitro)

20, 40, and 80 mg/kg, p.o.
(in vivo)

NF-κB activity ↓; Levels of GR mRNA and protein ↑
(in vitro)

Inflammatory cells and the production of IL-8, TNF-α, and
MMP-9 ↓ (in vivo)

[33]

In vivo CS-exposed chronic bronchitis
guinea pigs

Naringin;
9.2, 18.4 and 36.8 mg/kg, p.o. Levels of IL-8 and TNF-α and MPO ↓ [34]

In vivo LPS-induced acute lung injury mice Naringenin; 100 mg/kg, p.o.
Pulmonary edema, neutrophil infiltration and the levels of
TNF-α, IL-1β, IL-6, and MIP-2 ↓; The activities of PI3K and

AKT ↓
[36]

In vivo Radiation-induced lung injury mice Naringenin;
100 and 200 mg/kg, p.o. Level of IL-1β ↓ [37]

In vivo LPS-induced acute lung injury rats Naringenin;
50 and 100 mg/kg, p.o.

Levels of IL-6, MPO, TNF-α, and caspase-3 ↓; HSP70
expression ↑ [12]

In vivo Carrageenan-induced pleurisy mice Naringin; 40 and 80 mg/kg, p.o. Th1 cytokines (TNF-α, IL-2, IL-6, and IL-17) ↓; NF-κB and
STAT3 activities↓; Th2 cytokines (IL-4 and IL-10) ↑ [46]

In vitro LPS-induced RAW 264.7 cell line Naringin; 50, 100, and 200 µM Secretion of IL-8, MCP-1 and MIP-1α ↓; NF-κB and MAPK
activities ↓ [49]

In vivo Allergen-induced asthma mice Naringenin;
25, 50, and 100 mg/kg, i.p. Levels of CCL5 and CCL11 and NF-κB activity ↓ [50]

In vitro LPS-induced acute lung injury mice Naringenin; 100 µM TSLP production and levels of RIP-2 and caspase-1 ↓ [53]

In vitro LPS-induced RAW 264.7 cell line Naringenin NPs; 25µg/mL NF-κB and MAPK activities ↓; Levels of TNF-α, IL-6,
MCP-1, and IL-1β ↓ [55]
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2.2. Antioxidative Activity

Oxidative stress is considered as another driving mechanism in COPD pathogenesis [56]. It is
suggested that reducing oxidative stress by antioxidants or enhancing endogenous antioxidant capacity
may be feasible therapeutic tactics for COPD. N-acetylcysteine is a potential add-on therapy in COPD
because of its antioxidant properties, but its clinical management in the treatment of COPD has
remained controversial primarily due to its reduced bioavailability in oral form and its acidic nature
debarring its use as an inhaled form [57]. Barnes considered that there are currently no safe and
effective antioxidants for the treatment of COPD, possibly because of the difficulties of identifying
which patients would benefit most from antioxidant therapy and the dose needed to restore the redox
balance in COPD patients [58].

Multiple studies have shown that, compared with healthy controls, hydrogen peroxide (H2O2)
was greatly increased in the exhaled breath condensate of COPD patients, which is correlated with
forced expiratory volume in one second, neutrophil count, and dyspnea score [59–61]. Naringenin
(100 mg/kg, p.o.) was observed to downregulate the levels of reactive oxygen species (ROS) including
H2O2 and malondialdehyde (MDA) in the BALF of LPS-challenged acute lung injure mice, suggesting
its potential antioxidative activity in pulmonary diseases [36]. The activities of common enzymatic
antioxidants including superoxide dismutases (SOD), catalases (CAT), and glutathione peroxidases
(GPx) were found to be significantly increased in patients with COPD compared to healthy controls
subjects and they are proportionate to the severity of the disease [62,63]. In addition, the cyclooxygenase
(COX)-2 and nuclear factor erythroid-2 related factor (Nrf)2 mediating signaling pathway has been
considered as a new approach for preventing oxidative stress and inflammation in COPD [64,65].
Ali et al. investigated the antioxidative mechanisms of naringenin in a benzo[a]pyrene-induced Wistar
rat model [66]. Pre- or post-treatment with naringenin (100 mg/kg, p.o.) was found to not only
significantly enhance the levels of glutathione (GSH) and GSH-dependent enzymes such as GPx,
glutathione s-transferase (GST), and glutathione reductase (GR), but also increase the levels of SOD,
CAT, and xanthine oxidase (XO) both in BALF and in lung tissues. Further immunohistochemical
analyses revealed that naringenin could also suppress the expression of COX-2 through blocking the
activation of NF-κB in lung tissues. Podder et al. accessed the cytoprotective effect of naringenin
against paraquat-induced cellular toxicity in the human bronchial epithelial BEAS-2B cell line [67].
Naringenin (100 µM) was observed to decrease the generation of ROS and induce the expression
of antioxidant-related genes including GPX2, GPX3, GPX5, and GPX7. Further study revealed
that naringenin exerts anti-oxidative activity probably associated with the activation of the Nrf2
signaling pathway.

Nitric oxide (NO) may be generated by type 2 nitric oxide synthase (NOS) (also known as
inducible NOS, or iNOS), which was significantly increased in patients with COPD compared with
non-smokers and smokers with normal lung function [68,69]. Akintunde et al. reported the potential
antioxidative activity of naringin in a wood smoke exposure-induced rat model [70]. Naringin
(80 mg/kg, p.o.) was shown to not only increase the activities of SOD and CAT but also lower the levels
of NO in the lung tissues, thereby ameliorating the pulmonary damage. Naringenin (50 mg/kg, p.o.)
was also found to significantly increase GSH content and endothelial nitric oxide synthase (eNOS)
protein expression, whereas decreased the expression of iNOS in both lung and heart tissues in
monocrotaline-induced pulmonary hypertension rats [71]. In addition, PVP coated-naringenin NPs
were shown to suppress the expression of iNOS and COX-2 and inhibit the production of NO [55].
The antioxidative activities of naringenin and naringin are summarized in Table 2.



Biomolecules 2020, 10, 1644 6 of 29

Table 2. Summary of antioxidative activities of naringenin and naringin.

Pharmacological Activity Type of Study Study Subject Pharmacological Aspects Findings Ref.

Antioxidation

In vivo LPS-induced acute lung injury mice Naringenin; 100 mg/kg, p.o. Levels of H2O2 and MDA ↓ [36]

In vivo Benzo[a]pyrene-induced rats Naringenin; 100 mg/kg, p.o.
Levels of GSH, GPx, GST, GR, SOD,

CAT, and XO ↑; Expression of COX-2
through blockage of NF-κB ↓

[66]

In vitro Paraquat-induced BEAS-2B cell line Naringenin; 100 µM

Generation of ROS ↓;
Antioxidant-related genes including
GPX2, GPX3, GPX5, and GPX7 and

Nrf2 activity ↑

[67]

In vivo Wood smoke-exposed rats Naringin; 80 mg/kg, p.o. The activities of SOD and CAT ↑;
Levels of NO ↓ [70]

In vivo Monocrotaline-induced pulmonary
hypertension rats Naringenin; 50 mg/kg, p.o. GSH content and eNOS protein

expression ↑; Expression of iNOS ↓ [71]

In vitro LPS-induced RAW 264.7 cell line Naringenin NPs; 25 µg/mL Expression of iNOS and COX-2 and
the production of NO ↓ [55]
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2.3. Anti-Airway Remodeling Activity

Airway remodeling is a direct cause of airflow limitation in COPD patients with hyperplasia of
the airway epithelial cells, thickening of the reticular basement membrane, airway smooth muscle
proliferation, deposition of collagen, and airway fibrosis [72]. The currently available therapies for
airway remodeling in COPD are mainly bronchodilators and glucocorticosteroids, but patients are
poorly controlled by them [73]. Although the reversibility of airway remodeling was observed in
animal models, there is no available therapy proven to reverse airway remodeling in patients with
COPD or asthma [74,75].

In a house dust mite-induced asthma mouse model, Seyedrezazadeh et al. revealed that the
combination of hesperetin (7 mg/mL, p.o.) and naringenin (9 mg/mL, p.o.) could significantly decrease
subepithelial fibrosis, smooth muscle hypertrophy in airways and lung atelectasis [76]. Both in vivo
and in vitro studies have shown that airway remodeling can cause the increased expression of Th2
cytokines, which are often triggered by allergens in asthma [77,78]. Allergens induce the production
of immunoglobulin E (IgE), thereby resulting in airway remodeling [79]. Xiong et al. reported that
the anti-asthmatic effects of naringin in a mouse model challenged by ovalbumin [80]. Naringin
(5 and 10 mg/kg, p.o.) was found to reduce mean airway resistance measured by the forced oscillation
technique and the level of IgE in serum and BALF. Flow cytometric analysis revealed that the percentage
of Th1/Th2 cells in naringin treatment groups was significantly higher than those in the model group.
Shi et al. investigated the effects of naringenin in another ovalbumin-induced asthma mouse model [81].
Naringenin (50 mg/kg, i.p.) was found to significantly reduce the area of airway fibrosis in airways
and the levels of Th2 cytokines in the BALF, thereby delaying the progression of airway remodeling.
In addition, naringin (20, 40, and 80 mg/kg, p.o.) was also observed to dose-dependently reduce the
thickening of the bronchial wall in CS-exposed rats [24]. The anti-airway remodeling activities of
naringenin and naringin are summarized in Table 3.
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Table 3. Summary of anti-airway remodeling activities of naringenin and naringin.

Pharmacological Activity Type of Study Study Subject Pharmacological Aspects Findings Ref.

Anti-Airway
Remodeling

In vivo House dust mite-induced asthma mice Naringenin; 9 mg/mL, p.o. Subepithelial fibrosis and smooth muscle
hypertrophy ↓ [76]

In vivo Ovalbumin-induced asthma mice Naringin; 5 and 10 mg/kg, p.o. Mean airway resistance and the level of IgE ↓
Percentage of Th1/Th2 cells ↑ [80]

In vivo Ovalbumin-induced asthma mice Naringenin; 50 mg/kg, i.p. Area of airway fibrosis and the levels of Th2
cytokines ↓ [81]

In vivo CS-exposed rats Naringin; 20, 40, and 80 mg/kg, p.o. Thickening of the bronchial wall ↓ [24]
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2.4. Anti-Pulmonary Fibrosis Activity

Pulmonary fibrosis, one of the most common comorbidities that accompany COPD, is characterized
by fibroblast proliferation, ECM aggregation, inflammatory damage, and structural destruction in the
lungs [82,83]. A study reported by Divo et al. showed that the risk of death of COPD patients was
closely associated with coexistent comorbid conditions such as pulmonary fibrosis [84]. As a result,
a better understanding of the therapeutic tactics linking COPD with pulmonary fibrosis might assist in
improving clinical outcomes.

The overexpression of tissue inhibitor of metalloproteinase (TIMP)-1 activates fibroblasts and
thereby initiates fibrosis by inhibiting MMP-mediated ECM degradation, resulting in emphysema
involved in COPD [85]. Naringin (60 and 120 mg/kg, p.o.) was found to significantly downregulate
the expression of TNF-α, MMP-9, and TIMP-1 in a paraquat-induced pulmonary fibrosis mouse model.
Meanwhile, the reduction of pulmonary fibrosis deposition was also observed [86]. Hydroxyproline
(HYP) plays a crucial role in the pathogenesis of diseases associated with dynamically balanced collagen
synthesis and catabolism such as idiopathic pulmonary fibrosis [87]. Turgut et al. found that oral
treatment with naringin (80 mg/kg, p.o.) could markedly reduce the levels of HYP and lung collagen
content, thereby exerting protective effects against bleomycin-induced fibrosis in Wistar rats [88].

The severity of COPD is probably correlated with transforming growth factor (TGF)-β signaling
pathway-mediated polymorphisms [89]. Lin et al. reported that naringenin (100 mg/kg, p.o.) could
suppress the level of TGF-β in mice serum and markedly inhibit the expression of proteins associated
with fibrosis including alpha-smooth muscle actin (α-SMA), collagen I, and collagen III in BEAS-2B
cells. Meanwhile, autophagy inhibition could reverse Mycoplasma pneumoniae-induced pulmonary
fibrosis-related protein expression, suggesting that autophagy progression might play a critical role
in the inhibition of pulmonary fibrosis [90]. The anti-pulmonary fibrosis activities of naringenin and
naringin are summarized in Table 4.
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Table 4. Summary of anti-pulmonary fibrosis activities of naringenin and naringin.

Pharmacological Activity Type of Study Study Subject Pharmacological Aspects Findings Ref.

Anti-Pulmonary Fibrosis

In vivo Paraquat-induced
pulmonary fibrosis mice Naringin; 60 and 120 mg/kg, p.o. Expression of TNF-α, MMP-9, and TIMP-1

and the pulmonary fibrosis deposition ↓ [86]

In vivo Bleomycin-induced
fibrosis rats 80 mg/kg, p.o. Levels of HYP and lung collagen content ↓ [88]

Both in virto and in vivo

Mycoplasma
pneumoniae-induced

BEAS-2B cell line and
pneumonia mice

Naringenin; 100µM (in vitro)
100 mg/kg, p.o. (in vivo)

Fibrosis-related proteins (TGF-β, α-SMA,
collagen I and collagen III) expression and

autophagy ↓ (in vitro)
Level of TGF-β and autophagy relative
protein LC3 and Beclin-1 expression ↓

(in vivo)

[90]
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2.5. Expectorant

In COPD, the mucus layer is vulnerable to destruction, thus leading to detrimental effects on
lung function and homeostasis. Mucus hypersecretion may also result in airway obstruction as mucus
occupies the airway lumen and inclines to be retained due to ciliary dysfunction [91,92]. Accumulating
evidences have been revealed the tremendous complexity of the expression, interactions, and functions
of mucins in patients with different severity of COPD, suggesting that modulating the synthesis,
secretion, or structure of mucins in these patients might be a useful treatment for this disease [93].
Several natural compounds such as flavonoids have shown their potential effects on the expression
and secretion of mucin [94].

Lin et al. reported the expectorant activity of naringenin in several animal models [95]. Naringenin
(30–67 mg/kg, p.o.), by measuring the tracheal output of phenol red, was found to significantly increase
the volume of airway secretions in mice. In unanesthetized pigeons, naringenin (90 mg/kg, p.o.)
dose-dependently facilitated the mucociliary clearability and increased the tracheal mucociliary
velocity 1.44-fold compared to the control by using a migration method of carbon granules. Meanwhile,
treatment with naringenin (100 µM) was observed to enhance the basal lysozyme secretion from the
rat tracheal ring explants, and to inhibit the LPS-induced increased mucin secretion in the tracheal,
suggesting that naringenin possessed a widely expectorant activity.

MUC5AC is the prime mucin of airway epithelia, which often abnormally expresses and is
associated with airflow obstruction and airway hyperresponsiveness in patients with COPD [96,97].
Nie et al. comprehensively investigated the expectorant mechanisms of naringenin in epidermal
growth factor (EGF)-induced A549 cells [98]. Naringenin (30 and 100 µM) was found to not only
decrease EGF-induced overexpression of MUC5AC but also suppress the phosphorylation of the EGF
receptor, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK1/2),
c-Jun N-terminal kinase (JNK), NF-κB p65, and activator protein (AP)-1. Yang et al. reported the
expectorant activity of naringenin in a human airway epithelial cell model challenged by human
neutrophil elastase [99]. Treatment with naringenin (100 µM) significantly downregulated MUC5AC
mucin expression, which is associated with the reduction of ROS production and the inhibition of
NF-κB activity.

The inhibition of persistent goblet cell differentiation is necessary to reduce intraluminal mucus
accumulation, providing a potential way forward in the treatment of chronic airways diseases [100].
Chen et al. proved that naringin could exert mucoactive effects through multiple targets, correlated with
the inhibition of goblet cell hyperplasia and mucus hypersecretion, as well as the promotion of sputum
excretion in an LPS-induced acute lung injure mice model [101]. The expression of MUC5AC in BALF
and goblet cells in large airways was significantly attenuated with naringin (15 and 60 mg/kg, p.o.)
treatment. Meanwhile, naringin was found to inhibit the goblet cell hyperplasia in small airways at a
high concentration (60 mg/kg). Oral treatment with naringin (12.4 mg/kg) also significantly decreased
LPS-induced enhancement of sputum volume and increased the elasticity and viscosity of sputum in
the lower trachea of beagle dogs.

Cystic fibrosis transmembrane conductance regulator (CFTR) is a critical airway epithelial Cl-
channel that can regulate the electrolytes and fluid secretion across the respiratory system, so a lack of
CFTR may lead to the retention of sputum in the airway [102]. Shi et al. demonstrated that
naringenin had regulatory effects on the CFTR-mediated Cl− secretion probably through a signaling
pathway associated with Na+-K+-2Cl− co-transporters and K+ channels on the basolateral membrane.
Furthermore, naringenin (100 µM) could regulate CFTR expression, thereby decreasing the viscosity of
sputum in an LPS-induced airway epithelial cell model [103]. In addition, the in vitro and in vivo studies
indicated that naringin markedly reduced diesel particulate matter (DPM)-induced liquid viscosity by
reducing MUC5AC secretion, increasing CFTR protein expression, and increasing intracellular cAMP
to promote CFTR activation [104]. The expectorant effects of naringenin and naringin are summarized
in Table 5.
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Table 5. Summary of expectorant effects of naringenin and naringin.

Pharmacological Activity Type of Study Study Subject Pharmacological Aspects Findings Ref.

Expectorant

In vivo Several animal models Naringenin; 30–67 mg/kg, p.o.
Volume of airway secretions ↑ (mice);

Mucociliary clearability and tracheal mucociliary
velocity ↑ (pigeons); Mucin secretion ↓ (rats)

[95]

In vitro EGF-induced A549 cell line Naringenin; 30 and 100 µM
Expression of MUC5AC and phosphorylation of
EGF receptor, MAPK, ERK1/2, JNK, NF-κB p65,

and AP1 ↓
[98]

In vitro Human neutrophil elastase induced-human
airway epithelial cell line Naringenin; 100 µM MUC5AC expression, production of ROS and

NF-κB activity ↓ [99]

In vivo LPS-induced mice and beagle dogs Naringin; 15 and 60 mg/kg, p.o.
(mice); 12.4 mg/kg, p.o. (beagle dogs)

Expression of MUC5AC and goblet cell
hyperplasia ↓ (mice); Sputum volume ↓ and

elasticity and viscosity of sputum ↑ (beagle dogs)
[102]

In vitro LPS-induced airway epithelial cell and
Calu-3 cell line Naringenin; 100 µM

CFTR expression ↑ by Na+-K+-2Cl−

co-transporters and K+ channels and regulated
by intracellular cAMP

[103]

Both in vitro and in vivo DPM-induced Calu-3 cell line and mice
Naringenin; 25, 50, 100 µM (in vitro);
Naringin; 30, 60, and 120 mg/kg, p.o.

(in vivo)

Liquid viscosity, MUC5AC and total protein
secretion ↓; CFTR, AQP1, and AQP5 expression

and intracellular cAMP ↑
[104]



Biomolecules 2020, 10, 1644 13 of 29

2.6. Antitussive

Cough, a source of significant distress of patients, is commonly reported at the time of COPD
exacerbation and associated with exacerbation frequency [105]. Although the central antitussives have
remained the preferable choice for decades, they have limitations concerning efficacy and safety [106].
Therefore, there is an urgent need to identify an alternative drug to relieve the cough reflex in COPD
with lower side effects.

Luo et al. found that naringin (18.4 mg/kg, p.o.) effectively attenuated the airway
hyperresponsiveness, thereby attenuating CS exposure enhanced chronic cough in a guinea pig
model [107]. However, the precise antitussive mechanisms of naringenin are still not fully understood.
Gao et al. reported the antitussive effect and its mechanisms of naringin in different models of
experimentally induced cough in guinea pigs [108]. Compared with codeine phosphate (a common
central antitussive), naringin (15, 30, and 60 mg/kg, i.v.) did not exert central antitussive effects on
cough elicited by electrical stimulation of the superior laryngeal nerve. Meanwhile, naringin (0.5, 1.0,
and 2.0 µM) also had no inhibiting effect on the cough reflex induced by stimulation of the trachea after
intracerebroventricular injection. These studies suggested that naringin was a peripheral antitussive
rather than a central antitussive, which did not exert its antitussive effect through either the sensory
neuropeptide system or the modulation of ATP-sensitive K+ channels. Smith and Badri suggested that
the advantages of peripheral antitussives are the potential avoidance of side effects on the common
central nervous system such as drowsiness and the possibility of delivering therapies directly to the
airways, thereby reducing the overall risk of systemic adverse events [109].

Airway hyperresponsiveness, one of the major causes of chronic cough, has been considered as
a risk factor for the development and progression of COPD [110]. Naringin (18.4 mg/kg, p.o.) was
found to significantly alleviate airway hyperresponsiveness, thereby reducing the enhanced cough
induced by capsaicin in a cough-variant asthma guinea pig model [111]. In addition, compared with
other common peripheral antitussives including levodropropizine and moguisteine, naringin exerted
its antitussive effect through remarkably inhibiting the expression of substance P (SP) content and
neurokinin (NK)-1 receptor, as well as preventing the decline of neutral endopeptidase (NEP) activity
in the lungs [107]. These findings suggest that naringenin might be a promising peripheral antitussive
that relieve the suffering of COPD patient. The antitussive effects of naringenin and naringin are
summarized in Table 6.
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Table 6. Summary of antitussive effects of naringenin and naringin.

Pharmacological Activity Type of Study Study Subject Pharmacological Aspects Findings Ref.

Antitussive

In vivo CS-exposed guinea pigs Naringin; 18.4 mg/kg, p.o.
Airway hyperresponsiveness, chronic

cough and expression of SP content, NK-1
receptor and NEP activity ↓

[107]

In vivo Different cough guinea pig models Naringin; 15, 30, and 60 mg/kg, i.v.
0.5, 1.0, and 2.0 µM, i.c.v. Exerted peripheral antitussive effects [108]

In vivo Capsaicin-induced cough-variant
asthma guinea pigs Naringin; 18.4 mg/kg, p.o. Airway hyperresponsiveness and cough ↓ [111]
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3. Network Pharmacology

3.1. Data Preparation

Two drug-target databases were used to mine the potential targets of naringenin. Firstly,
known targets were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP)
database, which is a pharmacology platform of Chinese herbal medicines that includes 499 Chinese
herbs registered in the Chinese pharmacopoeia with 29,384 ingredients, 3,311 targets and 837 associated
diseases [112]. The second part was derived from Swiss Target Prediction, which can efficiently predict
the most probable protein targets of a small molecule [113]. The (sdf) file of naringenin was uploaded
into the webtool and filtered by “probability (the probability for a bioactive molecule to have a given
protein as target) >0”, with the organism selected as “Homo sapiens”. By merging the two parts of
data, we obtained a total of 120 potential protein targets of naringenin.

Using “chronic obstructive pulmonary disease” as a keyword, COPD-associated targets were
collected from four currently available databases, including the GeneCards, the Online Mendelian
Inheritance in Man (OMIM), the Therapeutic Targets Database (TTD), and the DrugBank. After deleting
the duplicates, we acquired 2392 COPD-related targets. All the above protein targets were transferred
into official gene symbols through the Uniprot database. Targets of naringenin were mapped to the
COPD-related targets to obtain 56 common targets (Figure 2).
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Figure 2. Venn diagram of naringenin-treated Chronic obstructive pulmonary disease (COPD)
targets. Circle A represents 2392 COPD-related targets. Circle B represents 120 targets of naringenin.
The intersection of two circles represents 56 common targets.

3.2. Protein–Protein Interaction (PPI) Network Construction

To further reveal the potential pharmacological effects of naringenin against COPD, we constructed
a naringenin targets-COPD targets (NT-CTs) PPI network for these 56 targets in the STRING 11.0
database, with organism species selected as “Homo sapiens” and a confidence score >0.4. The nodes
indicate proteins and the edges indicate the interaction between proteins. Hiding a disconnected
node, we constructed a network with 55 nodes and 463 edges (Figure 3A). The network was input into
Cytoscape 3.6.1 to be visualized. The degree value represents the number of edges connected to the
node. As shown in Figure 3B, a high node degree value is represented by a large size and dark color,
whereas a low node degree value is represented by a small size and light color. As shown in Table 7,
these 55 targets ranking by degree value may be the core targets of naringenin-treated COPD.
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(A) The network in the STRING database. (B) The network visualized in Cytoscape software. A high
node degree value is represented by a large size and dark color, whereas a low node degree value is
represented by a small size and light color.

3.3. GO and KEGG Pathway Enrichment Analysis

Metascape is a webtool that combines over 40 independent knowledgebases and provides a
comprehensive gene list annotation and analysis resource for experimental biologists [114]. Metascape
was used to perform Gene Ontology (GO) enrichment analysis of the 56 NT-CTs and the “p Value Cutoff

<0.05” was set, which included three categories: Biological progress (BP), cellular component (CC),
and molecular function (MF). The top 10 significantly enriched terms in the BP, CC, and MF are shown
in Figure 4. These results indicate that, in the BP category, NT-CTs are enriched in, e.g., response to toxic
substance, response to oxidative stress, cellular response to nitrogen compound, and transmembrane
receptor protein tyrosine kinase signaling pathway. In the CC category, these targets are enriched,
for example, in membrane raft, membrane microdomain, membrane region, lytic vacuole, and lysosome.
In the MF category, these targets are enriched, e.g., in phosphatase binding, heme binding, tetrapyrrole
binding, protein kinase activity, and protein tyrosine kinase activity.Biomolecules 2020, 12, x FOR PEER REVIEW 19 of 31 
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Table 7. The list of 55 core targets ranked by degree value.

NO Gene
Name Protein Name Degree NO Gene

Name Protein Name Degree

1 AKT1
RAC-alpha

serine/threonine-protein
kinase

42 29 MMP3 Stromelysin-1 14

2 VEGFA Vascular endothelial
growth factor A 41 30 NOX4 NADPH oxidase 4 14

3 MAPK3 Mitogen-activated
protein kinase 3 37 31 PPARA Peroxisome proliferator-

activated receptor alpha 13

4 PTGS2 Prostaglandin G/H
synthase 2 34 32 HMGCR 3-hydroxy-3- methylglutaryl-

coenzyme A reductase 13

5 ESR1 Estrogen receptor 33 33 INSR Insulin receptor 12

6 MAPK1 Mitogen-activated
protein kinase 1 33 34 MMP13 Collagenase 3 12

7 CASP3 Caspase-3 33 35 GSTP1 Glutathione S transferase P 12

8 SRC
Proto-oncogene

tyrosine-protein kinase
Src

30 36 LDLR Low-density lipoprotein
receptor 11

9 MMP2 72 kDa type IV
collagenase 28 37 KIT Mast/stem cell growth factor

receptor Kit 11

10 CAT Catalase 24 38 CYP1B1 Cytochrome P450 1B1 11

11 SERPINE1 Plasminogen activator
inhibitor 1 24 39 PIK3CG

Phosphatidylinositol
4,5-bisphosphate 3-kinase
catalytic subunit gamma

isoform

10

12 APP Amyloid-beta precursor
protein 24 40 CYP2C9 Cytochrome P450 2C9 10

13 KDR Vascular endothelial
growth factor receptor 2 22 41 F3 Tissue factor 10

14 ADIPOQ Adiponectin 22 42 GSR Glutathione reductase,
mitochondrial 9

15 PPARG
Peroxisome

proliferator-activated
receptor gamma

22 43 FGFR1 Fibroblast growth factor
receptor 1 9

16 PIK3CA

Phosphatidylinositol
4,5-bisphosphate 3-kinase

catalytic subunit alpha
isoform

21 44 SHBG Sex hormone-binding
globulin 9

17 BCL2L1 Bcl-2-like protein 1 21 45 BCL2 Apoptosis regulator Bcl-2 8

18 IGF1R Insulin-like growth factor
1 receptor 20 46 UGT1A1 UDP-

glucuronosyltransferase 1A1 8

19 SOD1 Superoxide dismutase 18 47 EDNRA Endothelin-1 receptor 7

20 APOB Apolipoprotein B-100 18 48 PLA2G2A Phospholipase A2 7

21 CYP3A4 Cytochrome P450 3A4 18 49 CTSL Procathepsin L 7

22 IGFBP3 Insulin-like growth
factor-binding protein 3 18 50 SYK Tyrosine-protein kinase SYK 6

23 CYP19A1 Aromatase 18 51 VCP Transitional endoplasmic
reticulum ATPase 6

24 ABCG2

Broad substrate
specificity ATP-binding

cassette transporter
ABCG2

17 52 PTGS1 Prostaglandin G/H synthase 1 6

25 RELA Transcription factor p65 16 53 ADORA1 Adenosine receptor A1 5

26 HNF4A Hepatocyte nuclear factor
4-alpha 16 54 BCHE Cholinesterase 5

27 MET Hepatocyte growth factor
receptor 15 55 MMP12 Macrophage metalloelastase 2

28 ESR2 Estrogen receptor beta 14

We performed Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment
analysis of these NT-CTs based on Metascape. The top 20 significantly enriched pathways are shown in
Figure 5. The NT-CTs-based KEGG pathways are mainly enriched in pathways in cancer, proteoglycans
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in cancer, EGFR tyrosine kinase inhibitor resistance, the PI3K/Akt signaling pathway, the Ras signaling
pathway, the AGE-RAGE signaling pathway in diabetic complications, endocrine resistance, the HIF-1
signaling pathway, the Rap1 signaling pathway, and prostate cancer.Biomolecules 2020, 12, x FOR PEER REVIEW 20 of 31 
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Recent studies demonstrated that PI3K signaling is prominently activated in COPD and correlates
with increased susceptibility of patients to lung infections [115]. Phosphatase and tensin homolog
deleted from chromosome ten (PTEN), a negative regulator of the PI3K pathway, showed lower
expression in patients with COPD compared with healthy control and positively correlated with
the severity of airflow obstruction [116]. Phosphorylated AKT, as a marker of PI3K activation,
was negatively associated with PTEN protein level [117]. In several cell lines, the PTEN level
was found to be decreased by cigarette smoke extract (CSE) treatment and thereby activate the
PI3K/AKT pathway, resulting in pro-inflammatory cytokine release and macrophage M2 polarization
involved in COPD inflammation response [118,119]. The PI3K/AKT pathway also participated in the
regulation of airway remodeling, apoptosis, and mucus hypersecretion to accelerate the development
of COPD [120–122]. Additionally, PI3K inhibitors have been shown to induce alveolar regeneration
and restore glucocorticoid function in COPD patients [123,124].

AKT, a wide-range regulatory protein, is collaboratively regulated by multiple upstream proteins
and regulates many downstream effectors [125]. Signal transducer and activator of transcription
(STAT)3 can activate PTEN and thereby inhibit the PI3K/AKT pathway, which may activate various
downstream targets including caspase-3, Bcl-2, VEGF, eNOS, NF-κB, and Nrf2 [115]. The protein
levels of Bcl-2 and caspase-3 have been shown to change in CSE-treated cell lines and COPD mice,
and these changes are closely related to promoted cell apoptosis [126,127]. eNOS dysfunctionality
was aggravated during exacerbations in COPD patients and correlates with airway inflammatory
markers [128]. The variants and combinations of polymorphisms of eNOS likely contributed to
oxidative stress in COPD [129]. There is ample evidence that NF-κB and Nrf2 pathways were
participants in the regulation of a broad spectrum of inflammatory and oxidative stress networks in
COPD [130,131].
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3.4. Analysis of miRNA-Mediated Naringenin in the Treatment of COPD

MicroRNAs (miRNAs) have been implicated in the development of COPD through the
transcriptional and translational modulation of important genes, so it is necessary to analyze the
potential role of the miRNA-mediated treatment of COPD with naringenin [132]. Using the PubMed
database, eight miRNAs regulated by naringenin including miR-29b-3p, miR-29c-3p, miR-17-3p,
miR-25-5p, miR-223-3p, let-7a, miR-224-3p, and miR-140-3p were collected through a literature search.
Naringenin was found to exert antioxidant activity and neuroprotective effect in vitro by increasing
the level of miR-17-3p and decreasing the expression of miR-224-3p respectively [133,134]. Liang et al.
revealed that naringenin suppressed the activation of Smad3 and upregulated the expression of
miR-29b-3p and miR-29c-3p, thereby inhibiting fibrosis in cardiac fibroblasts [135]. In addition,
naringenin inhibited spinal cord injury-induced activation of neutrophils by repressing the level of
miR-223 in rats [136]. Meanwhile, Yan et al. found that naringenin ameliorated kidney injure by
inhibiting the activation of TGF-β1/smads signaling by upregulating let-7a in diabetic nephropathy
rats [137]. Defective insulin receptor signaling in patients with gestational diabetes was related to the
overexpression of miR-140-3p and naringenin was found to downregulate the level of miR-140-3p
to protect trophoblasts and endothelial cells from the harm of a high glucose environment [138].
Nevertheless, naringenin interacts with these miRNAs at an atomic level has not been well investigated,
which needs further research.

The target genes of these miRNAs were predicted using the Targetscan database and the miRDB
database. These predicted genes were intersected with NT-CTs to obtain the potential miRNA-mediated
targets of naringenin in the treatment of COPD. Hiding the let-7a and miR-224-3p without connected
targets, we visualized the network for miRNA-mediated targets of naringenin to further explore
its potential therapeutic mechanisms in COPD. As shown in Figure 6, triangles represent miRNAs,
and diamonds represent targets. The red targets are relatively important targets, which are probably
associated with the pathogenesis of COPD. PIK3CA and PIK3CG are genes that encode the p110
catalytic subunit which is a necessary component of PI3K. In the miRNA-mediated network, PIK3CA
connects with three miRNAs including miR-17-3p, miR-140-3p, and miR-223-3p, and PIK3CG and AKT1
connect with miR-17-3p. Other possible targets associated with COPD pathogenesis, such as BCL2
and CASP3 are also linked with corresponding miRNAs. These findings may provide a perspective
complement to the underlying mechanisms of naringenin in the treatment of COPD.
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It is worth mentioning that vascular endothelial growth factor A (VEGFA) possesses the second
highest degree value in the PPI network and connects with miR-29 family members in the miRNAs
network. A clinical study reported that genetic polymorphisms of VEGF, the most important candidate
angiogenic factor, were associated with the progression of COPD [139]. The PI3K/AKT pathway
directly or via the eNOS signaling pathway results in the overexpression of VEFG and participate in
the process of angiogenesis involved in multiple lung disorders [140]. These findings suggested that
naringenin may affect the process of angiogenesis in COPD by targeting VEGF through the mediation
of specific miRNAs.

4. Conclusions

COPD is a heterogeneous and complex disease characterized by persistent inflammation in the
respiratory system involving multiple signaling pathways [141]. Though many previous studies
have demonstrated the clinical potential of naringenin in treating COPD by both preventive and
therapeutic measures, they are scattered and unsystematic. Through network pharmacology analysis,
we systematically integrate available potential targets and pathways that treat COPD by naringenin
and further predict new targets and pathways to construct a prospective regulatory network.

As mentioned in this literature review, naringenin has been shown to exert potential
pharmacological activities against multiple pathological stages of COPD through various signaling
pathways such as PI3K/AKT, STAT3, p38 MAPK, and ERK pathways. Based on network pharmacology,
we consider that miRNAs may act as upstream regulators on corresponding signaling pathways,
and the PI3K/AKT signaling pathway acts as a bridge in the regulatory network of naringenin in the
treatment of COPD. The PI3K/AKT pathway can activate downstream effectors including caspase-3,
Bcl-2, VEGF, eNOS, NF-κB, and Nrf2, thereby participating in the processes of apoptosis, angiogenesis,
inflammation, and oxidative stress in COPD pathogenesis (Figure 7). As a possible PI3K inhibitor,
naringenin is expected to be applied in COPD treatment. However, the therapeutic effects of naringenin
through PI3K pathway mediation have not been well studied in COPD models. Angiogenesis partakes
in the remodeling of airways in COPD, probably as part of the inflammatory response to smoking,
but its specific role in disease progression has not been fully elucidated [142]. Bakakos et al. suggested
that advances in understanding the role of angiogenesis in COPD might identify new therapeutic
targets that could affect the natural history of the disease [143]. In addition, there are no reports on the
regulation of apoptosis in COPD with naringenin treatment, which is noteworthy.

Due to the complexity, heterogeneity, and different severity of COPD, specific clinical stages
and phenotypes of COPD for which naringenin is most appropriate remains to be further explored.
Current studies are typically carried out with animal or cell line models, thus more clinical trials
are needed to further support the use of naringenin in humans. Clinal application of naringenin
is limited by its poor aqueous solubility and bioavailability in humans, therefore, it is necessary to
develop better drug delivery systems to be used by patients [11]. Recently, delivering naringenin as an
aerosol via pulmonary route allows rapid absorption and high local concentration, which might be
a feasible administration route in the treatment of COPD [144]. In addition, dosage regimen, safety,
and efficacy of naringenin should be identified in COPD before applicating in humans. With a clearer
understanding of the underlying mechanisms of COPD with naringenin treatment, this flavanone
might be a promising tactic of clinical treatment for COPD in the near future.
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Figure 7. Summary of potential mechanisms of naringenin in the treatment of COPD. Naringenin has
been shown to act on various signaling pathways such as phosphatidylinositol 3-kinase (PI3K)/protein
kinase B (AKT), STAT3, p38 mitogen-activated protein kinase (MAPK), and extracellular signal-regulated
kinase (ERK) pathways probably through specific miRNAs. The PI3K/AKT pathway, a bridge in the
regulatory network, can activate downstream effectors including caspase-3, Bcl-2, VEGF, eNOS, NF-κB,
and Nrf2 thereby participating in the processes of apoptosis, angiogenesis, inflammation, and oxidative
stress in COPD pathogenesis.
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MMP matrix metalloproteinase
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TSLP thymic stromal lymphopoietin
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MAPK P38 mitogen-activated protein kinase
ROS reactive oxygen species
MDA malondialdehyde
SOD superoxide dismutases
CAT catalases
XO xanthine oxidase
GPx glutathione peroxidases
GSH glutathione
GST glutathione s-transferase
GR glutathione reductase
COX-2 cyclooxygenase-2
iNOS inducible nitric oxide synthase
eNOS endothelial nitric oxide synthase
TIMP-1 tissue inhibitor of metalloproteinase-1
HYP hydroxyproline
CFTR cystic fibrosis transmembrane conductance regulator
SP substance P
NK-1 neurokinin-1
NEP neutral endopeptidase
PPI protein-protein interaction
NT-CTs naringenin targets-COPD targets
GO Gene Ontology
BP biological progress
CC cellular component
MF molecular function
KEGG Kyoto Encyclopedia of Genes and Genomes
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VEGF vascular endothelial growth factor
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