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Enzymatic and non-enzymatic lipid metabolism can give rise to reactive species that may covalently
modify cellular or plasma proteins through a process known as lipoxidation. Under basal conditions,
protein lipoxidation can contribute to normal cell homeostasis and participate in signaling or adaptive
mechanisms, as exemplified by lipoxidation of Ras proteins or of the cytoskeletal protein vimentin, both
of which behave as sensors of electrophilic species. Nevertheless, increased lipoxidation under patho-
logical conditions may lead to deleterious effects on protein structure or aggregation. This can result in
impaired degradation and accumulation of abnormally folded proteins contributing to pathophysiology,
as may occur in neurodegenerative diseases. Identification of the protein targets of lipoxidation and its
functional consequences under pathophysiological situations can unveil the modification patterns as-
sociated with the various outcomes, as well as preventive strategies or potential therapeutic targets.
Given the wide structural variability of lipid moieties involved in lipoxidation, highly sensitive and
specific methods for its detection are required. Derivatization of reactive carbonyl species is instrumental
in the detection of adducts retaining carbonyl groups. In addition, use of tagged derivatives of electro-
philic lipids enables enrichment of lipoxidized proteins or peptides. Ultimate confirmation of lipoxida-
tion requires high resolution mass spectrometry approaches to unequivocally identify the adduct and the
targeted residue. Moreover, rigorous validation of the targets identified and assessment of the functional
consequences of these modifications are essential. Here we present an update on methods to approach
the complex field of lipoxidation along with validation strategies and functional assays illustrated with
well-studied lipoxidation targets.
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1. Introduction

Redox balance is emerging as an important physiological and
pathophysiological regulator of cellular behavior and outcome. The
functions and activities of a growing number of proteins have been
found to be altered by the oxidation state of the protein, especially
at redox-sensitive cysteines. Proteins can also be modified by
covalent reactions with oxidized sugars, often referred to as ad-
vanced glycation end products (AGE), or with oxidized products of
lipids (advanced lipoxidation end products, or ALE) [1]. These re-
actions can occur mainly on the nucleophilic residues cysteine,
histidine, arginine and lysine, although reactions with glutamine
and asparagine have also been reported; this leads to the forma-
tion of a wide variety of adducts, as described previously [1–4].
While, originally, such modifications were considered solely as
detrimental to protein function, more recently there have been
some reports of protein lipoxidation increasing the activity or al-
tering the nature of the activity of specific proteins, and therefore
lipoxidation is starting to be considered alongside cysteine thiol-
sulfenate-disulfide switches as an additional mechanism of pro-
tein regulation [3,5,6]. The aim of this article is to provide a suc-
cinct update on the importance of lipoxidation in vivo and pro-
gress in the methods employed for its study.
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Fig. 1. Structure of some of the electrophilic lipids involved in protein lipoxidation.
2. Types of oxidized lipids that generate adducts

Phospholipid peroxidation occurs following radical attack,
usually on polyunsaturated fatty acyl chains, and generates many
different products including full-chain length oxidized fatty acids
or phospholipids, chain-shortened oxidized phospholipids and
small fragmentation products from the chain scission reactions.
These reactions are now quite well understood and have been
described in detail in several recent reviews [7–9], showing that
the structure of the parent lipid and the site of radical damage
determine the products. There are also enzymatic pathways for
producing oxidized fatty acids and phospholipids, starting with
cytochrome P450 enzymes, lipoxygenases and cyclooxygenases;
products of the latter are further metabolized by a variety of
prostaglandin synthases [10]. Many of the products generated by
both enzymatic and non-enzymatic pathways are reactive and
electrophilic owing to the presence of carbonyl groups (aldehydes
or ketones) or α, β-unsaturated moieties, and can be categorized
into five principal groups: alkanals (and hydroxyalkanals), 2-al-
kenals, 4-hydroxy–2-alkenals, keto-alkenals, and alkanedial (dia-
ldehydes) [3]. The most reactive and commonly studied are mal-
ondialdehyde (MDA), acrolein (ACR), 4-hydroxyhexanal (4-HHE)
and 4-hydroxynonenal (HNE), which also reflects the fact that
these products are produced at higher levels than many other
products [7] (please see Fig. 1 for the structures of some electro-
philic lipids involved in protein lipoxidation). In addition, com-
pounds with more complex structures, such as oxidized phos-
pholipids, arachidonic acid metabolites and nitrated fatty acids are
emerging as important lipid mediators in pathophysiological si-
tuations, in some cases associated with the onset and/or the re-
solution of inflammation. The type of adducts formed depends on
the reactivity of the oxidized lipid species. Compounds containing
aldehydes or ketones can react with amines (e.g. on lysine) to form
Schiff base adducts by loss of water, whereas those containing an
α, β-unsaturated moiety form Michael adducts by a nucleophilic
addition reaction of the protein sidechain at the β-carbon. Fur-
thermore, some electrophilic lipids have been described to contain
epoxide moieties, which also react with nucleophiles giving rise to
different structures. It is interesting to note that some bi-func-
tional lipid oxidation products, such as dialdehydes or hydro-
xyalkenals, do react with proteins and still present free carbonyls,
which can be exploited in some detection procedures, as discussed
below. Nevertheless, in many cases, the carbonyl group is involved
in the reaction and is not available for detection. In addition, bi-
functional electrophilic lipids can induce protein cross-linking, as
has been shown for HNE, isoketals and cyclopentenone pros-
taglandins (cyPG) with dienone structure, and this may have im-
portant consequences on protein fate [11–13].
3. Pathophysiological relevance of lipoxidation adducts

Evidence for occurrence of lipoxidation products in vivo has
expanded greatly in the last 10 years, as more sensitive and spe-
cific methodology has been developed, and now there are many
examples of lipoxidized proteins in both healthy and diseased
tissues. Much of the work has focused on HNE, but there are also
many examples of adducts formed by other short chain electro-
philic products, whereas studies of lipoxidation by long chain and
esterified products are rarer.

As discussed below, generation of reactive species is increased
in pathological conditions, and, in parallel, levels of protein li-
poxidation increase in several diseases, favoring progress in the
detection of adducts and identification of the modified proteins. A
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condition in which protein lipoxidation may have a particularly
high relevance is ageing. ALE-adducted proteins have been found
to accumulate during ageing and certain age-related diseases (see
[14] for review). Both enzymatic and non-enzymatic lipid meta-
bolism can contribute to the generation of increased levels of re-
active lipid species in ageing [2]. On one hand, even physiological
ageing is associated with a sub-clinical systemic inflammatory
state, in which pro-inflammatory cytokines may elicit the enzy-
matic formation of inflammatory lipid mediators such as pros-
taglandins. On the other hand, the oxidative state can contribute to
the non-enzymatic oxidation of unsaturated lipids. Nevertheless,
the potential for oxidized lipid products to cause lipoxidation will
depend on a balance of the rate of formation of the product, its
reactivity, and the rate of detoxification by glutathione peroxidases
[15], glutathione S-transferases [16], or aldoketoreductases [17].
Importantly, protein lipoxidation in ageing and age-related dis-
eases can result in protein dysfunction contributing to the accu-
mulation of damaged proteins. This occurs because the modified
proteins can be involved in mitochondrial function, clearance of
damaged proteins or in the antioxidant cellular defense; thus,
their impairment can give rise to a vicious circle of protein li-
poxidation and accumulation.

Therefore, an important issue regarding the pathophysiological
relevance of protein lipoxidation is the nature of the adducts
formed. Various proteomic studies indicate that protein lipoxida-
tion occurs at restricted sets of proteins within the cellular pro-
teome [18,19]. Interestingly, there seem to be certain “hot spots”
among lipoxidized proteins. Regarding plasma proteins, albumin
appears to be the protein most sensitive to lipoxidation, not only
because of its abundance but of the high reactivity and accessi-
bility of some nucleophilic sites, such as Cys34 and Lys199 [20]. In
the cellular environment, particular pathways or protein classes
have been detected as lipoxidation targets in several experimental
or clinical settings. Among them, mitochondrial, protein home-
ostasis-related, such as the chaperones Hsp70 and Hsp90 [21], key
regulators of the antioxidant response such as Keap 1 [22], and
cytoskeletal proteins emerge as targets for oxidation and/or li-
poxidation in oxidative stress, cellular senescence and ageing or
age-related diseases [14]. Not only actin, but also tubulin and vi-
mentin are frequently identified cytoskeletal lipoxidation targets
[18,23–27]. Within proteins, some nucleophilic residues act as “hot
spots” towards the electrophilic agents. Usually, the residues that
undergo covalent adduction by reactive carbonyl species (RCS) are
cysteine, histidine and amino acids bearing a reactive amino
group, such as lysine and arginine. In general, the order of re-
activity of nucleophilic amino acids towards electrophilic com-
pounds is Cys⪢H is4Lys. However, factors including solvent ac-
cessibility and nucleophilicity regulate the reactivity of such hot
spots. In addition, the microenvironment around the residue
greatly affects the susceptibility to RCS adduction, as in the case of
Cys34 and Cys374 in albumin and actin, respectively. The high
reactivity of these particular residues is due to their significant
accessible surface together with the remarkable acidity of the S–H
bond, as indicated both by the polarity of S–H bond and the sta-
bility of the corresponding sulfur anion [20,23].

From a biological perspective, the selectivity of protein lipox-
idation elicits great interest. According to some hypothesis, se-
lectivity could be related to specific biological pathways whereas
others consider that it reflects defense mechanisms. The mod-
ification of Keap 1 results in the activation of transcription factor
Nrf-2 and induction of antioxidant response element-dependent
genes [22]. Actin scavenges reactive electrophilic aldehydes, up to
C9, such as ACR and HNE, through its highly reactive Cys374 re-
sidue, thus contributing to detoxification mechanisms without
undergoing significant polymerization impairment [28]. Similarly,
albumin, through its reactive nucleophilic sites, acts as a protein
carbonyl scavenger in the extracellular milieu, which contains only
low levels of glutathione (1.5–4 mM in human plasma with respect
to 1–10 mM in cells) [20]. Hence, actin and albumin can act as
carbonyl scavengers, protecting more vulnerable cellular and cir-
culating proteins whose covalent adduction would lead to damage.
From an analytical point of view, several limitations should be
taken into account when defining the selectivity of protein li-
poxidation. Currently, most in vitro studies attempting identifica-
tion of lipoxidation targets in cells or tissues use non-physiological
excess of RCS leading to high noise levels due to off-target effects.
To overcome this lack of biochemical specificity, some analytical
platforms have been developed that reduce the off-target effects
by minimizing the amounts of exogenous RCS [22,29]. In addition,
factors such as protein abundance and the number of studies ad-
dressing protein lipoxidation of given targets or performed in
particular experimental or pathological conditions, can introduce a
bias in these results. For instance, neurodegenerative and cardio-
vascular diseases have attracted a great deal of attention, and the
number of studies addressing protein lipoxidation in these pa-
thological conditions may determine the nature of some of the
targets most frequently identified. Extensive work has been car-
ried out on HNE-modified proteins in neurodegenerative diseases
[30] and it was recently reported that lysines on neurofilament
heavy and medium subunits are major sites of intramolecular
cross-linking by HNE [11]. Strong evidence has been accumulating
over many years for lipoxidation adducts of aldehydes in athero-
sclerotic plaques [31–33], while oxidized phosphatidylcholine
adducts of ApoB-100, extensively studied in atherosclerosis
[34,35], appear to be good biomarkers and predictive of disease
[36]. More recently, it has been suggested that HNE-adducts on
myocardial alcohol dehydrogenase 2 might contribute to cardio-
myocyte hypertrophy in a mouse model of disease [37]. Lipox-
idation has also been observed in several other inflammatory
diseases. For example, HNE-modified catalase has been reported in
erythrocytes of patients with systemic lupus erythematosus [38],
while Hsp90 modified by HNE was found in chronic alcoholic liver
disease [39]. A more recent study identified increased levels of
HNE adducts of AMPKα in a murine model of alcoholic liver dis-
ease that might contribute to changes in lipid metabolism, and
analysis of recombinant AMPKα in vitro demonstrated that several
cysteines were susceptible to formation of Michael adducts with
HNE [40]. Recent work on chronic periodontitis in humans found
increased prevalence HNE-His adducts both in serum and gingival
crevicular fluid, which was exacerbated in patients who also had
type 2 diabetes [41].

The importance of lipoxidation has been broadly discussed in
the context of disease in several recent reviews. Pamplona [2]
reviewed several products of lipoxidation (Nε-hexanoyl-lysine or
HEL, HNE-lysine, carboxymethyl lysine, glyoxal-lysine dimer) and
the proteins bearing these adducts, and discussed evidence for
their accumulation in longevity. The role of α, β-unsaturated al-
dehydes and their adducts in the pathophysiology of vascular
diseases (including diabetes and atherosclerosis), Alzheimer’s
disease and chronic obstructive pulmonary disorder has been re-
viewed by Lee and Park [42]. There are recent focused reviews on
the occurrence of ACR–protein adducts [32] and the role of HNE–
protein adducts [43] in human diseases. Another area of growing
interest is the role of ALE end products in age-related ocular dis-
eases and diabetic retinopathy, where evidence for carboxymethyl
lysine, Nε(3-formyl-3,4-dehydropiperidino)lysine and other ad-
ducts has been collected, as reviewed recently [44,45].

While it can be seen that there is abundant evidence for the
occurrence of lipoxidation and ALE in a range of different diseases,
and it is clear that many have value as biomarkers of ageing, da-
mage and inflammation, it is more challenging to demonstrate a
physiological role of the modifications. Lipoxidation can be
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detected in healthy tissue; for example, healthy human plasma has
been found to contain HNE adducts on Apolipoprotein B-100 [46]
and HNE-adducts were detected in healthy human erythrocyte
membranes [47], while protein adducts of HNE, 4-oxononenal
(ONE), HHE, ACR and 3-hydroxyacrolein have all been identified in
healthy rat heart mitochondria [48]. In many cases, protein mod-
ification by reactive electrophilic species has been found to inhibit
protein and enzyme function, in some cases leading to beneficial
effects. In addition, the possibility that moderate levels of elec-
trophilic species participate in adaptive or preconditioning re-
sponses needs to be considered. In these cases, electrophilic spe-
cies would trigger cell defense mechanisms, such as expression of
phase II enzymes or antioxidant defenses, thus protecting cells
from further damage. The cyPG 15-deoxy-Δ 12,14-prostaglandin J2
(15d-PGJ2) has been found to inhibit soluble epoxide hydrolase by
forming adducts with a catalytic cysteine (Cys521), but this con-
tributes to the coronary vasodilation observed in hypoxia in mice,
and can be considered a compensatory effect [49]. Furthermore, a
role of 15d-PGJ2 in the resolution of inflammation in relation to its
electrophilic nature has been set forth in various experimental
systems [50,51]. A role of electrophilic lipids in cell signaling is
exemplified by the fact that the central signaling protein H-Ras is a
target for modification and activation by 15d-PGJ2 and other
electrophilic prostanoids, which bind to critical cysteine residues
in a structure-dependent fashion leading to modulation of
downstream cascades [52,53]. Thus strong support for regulation
of physiological processes by lipoxidation is emerging, but more
research in the area is required. This in turn depends on the ap-
plication of robust and specific methods for identifying and
quantifying proteins modified by these electrophilic lipid species,
which are discussed in the following sections. In addition, lipi-
domic approaches that shed light on the reactive lipid species
generated both under basal and pathological conditions, as well as
on their reactivity, will greatly help to understand of the con-
sequences of lipoxidation, and even predict the modification of
certain targets. Currently, controversy exists about the levels of
some of the species generated and whether they are sufficient to
promote changes in protein activity through lipoxidation. Some of
the difficulties arise from the high reactivity of these species,
which makes it challenging to detect/quantify free and total levels.
In addition, analysis of whole cell or tissue extracts can overlook
potential compartmentalization of these species, which may be
generated at, or preferentially act in, specific subcellular
environments.
4. Detection of reactive oxidized lipid species, particularly al-
dehydes, as precursors of lipoxidation

The electrophilic lipids that have received most attention are
those containing carbonyl groups. Analysis of free reactive carbo-
nyl species (RCS) and of electrophilic lipid species in general,
especially in biological matrices is very challenging due to their
intrinsic physicochemical properties (i.e. high reactivity towards
the matrix and low molecular weights), low amounts in biological
samples, high hydrophilicity not suitable for their retention on
common reversed phase LC columns, and the fact that most of the
detectors are unsuitable for direct detection. In addition, most of
these reactive species do not have a chromophore or their absor-
bance is very limited, and they do not possess ionizable functional
groups, which makes their ionization yield in electrospray ioni-
zation (ESI) very poor and hampers their detection by mass
spectrometry (MS). Due to these limitations, most of the analytical
approaches for profiling RCS in biological matrices are based on
derivatization approaches. The derivatizing agents of RCS are
characterized by a functional group that rapidly reacts with the
carbonyl group, such as hydralazine, and by a moiety required for
their detection. Usually the derivatizing agent is chosen on the
basis of the available detector used. Table 1 summarizes the most
commonly used derivatizing agents for RCS.

As explained below, some of these derivatization methods can
be applied to the detection of bifunctional electrophilic lipids
bound to proteins, when the adducted lipid still possesses a free
carbonyl group. The first popular methods for RCS analysis were
based on 2,4-dinitrophenylhydrazine (DNPH) as a derivatizing
agent and the corresponding reaction products, the hydrazones,
were detected by UV detection for an overall analysis of RCS or by
a UV detector coupled to HPLC when each individual aldehyde
needed to be identified [54,55]. This approach was widely used for
the analysis of free RCS in vitro, but was inadequate for in vivo
conditions due to the lack of sensitivity and selectivity. Later, some
methods based on LC–MS and GC–MS analysis of 2,4-dini-
trophenylhydrazone derivatives of free aldehydes and ketones
were proposed and they were mostly applied to volatile airborne
carbonyls or carbonyls contained in food [56]. Use of DNPH as a
derivatizing agent is currently limited due to disadvantages such
as limited solubility in aqueous solvents, explosiveness, and ten-
dency to deposit in the MS ion-source [57].

In line with these limitations, in recent years some innovative
analytical approaches have been reported for RCS profiling and for
their quantitative analysis in biological matrices including serum,
urine and cells. The proposed methods so far reported can be
roughly divided into two groups: (1) untargeted methods able to
profile unknown RCS; (2) targeted methods characterized by high
sensitivity for an absolute quantitative analysis of a known RCS.
5. Untargeted methods for RCS profiling

In recent years, some oxo-lipidomic approaches have been
proposed with the aim of (i) obtaining a comprehensive mea-
surement of the oxidized lipids and of the relative break-down
products present in a biological matrix and (ii) profiling the in-
dividual analyte responses in various pathophysiological
conditions.

One of the first oxo-lipidomic approaches to identify 4-hydro-
xyalkenal species in lipid extracts used carnosine as a derivatizing
agent followed by a direct infusion on a nano ESI source connected
to a triple quadrupole [58]. Carnosine rapidly reacts with un-
saturated aldehydes and the Michael adducts formed are ionizable
and hence, easily detectable using an ESI source. Moreover, colli-
sional induced dissociation (CID) of carnosine adducts leads to
diagnostic neutral losses that were used to specifically identify
unknown adducts, whereas the structures of 4-hydroxyalkenal
species were readily deduced from the detected molecular weight
and the knowledge of the existence of naturally occurring poly-
unsaturated fatty acid structures. Four hydroxyalkenal species
were identified in the lipid extracts of various mouse tissue sam-
ples, namely 4-hydroxyhexenal, 4-hydroxynondinenal, 4-hydro-
xynonenal, and 4-hydroxydodecatrienal. Moreover, by using
deuterated standards, a quantitative measurement was also
performed.

More comprehensive oxo-lipidomic approaches have taken
advantage of the derivatization of RCS with 7-(diethylamino)cou-
marin-3-carbohydrazide (CHH) followed by ESI-MS analysis in
positive ion mode [59]. Identification of CHH-derivatized com-
pounds and elucidation of the cleavage sites and the oxidative
modifications were carried out by specific neutral losses or frag-
ment ions. This method allowed the identification of 69 and 122
products of in vitro oxidation of free fatty acids and phosphati-
dylcholine vesicles, respectively, thus illustrating the complexity of
the reactive species generated. More recently this method has



Table 1
Compounds used in the derivatization of RCS.
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been applied to the characterization of lipid extracts from rat
primary cardiomyocytes treated with the peroxynitrite donor SIN-
1 [60]. Another derivatization method for comprehensive analysis
of oxidized lipids uses p-toluenesulfonylhydrazine-(TSH) [57],
which has a reactivity similar to DNPH but improved solubility and
high volatility, and is suitable for the global derivatization of al-
dehydes and ketones coupled to a detection based on SWATH
(Sequential Window Acquisition of all Theoretical Fragment-Ion
Spectra) at high mass resolution. The approach was applied to the
comprehensive quantification of known compounds as well as the
identification of uncharacterized compounds in biological samples
based on the detection of signature fragment ions originated from
the derivatization reagent sub-structure. Similarly, another LC–
ESI-MS approach uses dansyl hydrazine as a derivatizing agent and
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a MS analyzer operating in SRM mode, monitoring the ion at m/z
236.1 generated by the CID of the derivatized aldehydes whose
[MþH]þ is scanned from m/z 275–949 [61]. A derivatization-free
approach based on UHPLC–HRMS has also been proposed as a tool
for the identification of aldehydes (2-alkenals, 4-hydroxy-2-alke-
nals, and 4-hydroxy-2,6-alkadienals). This method was suitable for
detecting aldehydes from 6 to 16 carbons, and signals were found
for [MþNH4]þ and [MþH]þ adducts in positive-ion mode ESI and
for [MþHCOO]� adducts in negative-ion mode [62].
6. Targeted methods

Several methods have been reported for the quantitative ana-
lysis of free RCS in biological fluids, including capillary GC–MS,
micellar electrokinetic chromatography, LC–MS/MS and various
derivatizing procedures. Methods targeting a wide spectrum of
RCS, including lipid- and glucose-derived RCS are desirable since,
in pathological conditions, there is cross-talk between modifica-
tion of proteins by the two classes of reactive species.

A method based on derivatization with 2,2′-furyl followed by
HPLC coupled to fluorescence detection has been validated for the
quantitative analysis of MDA, ACR, glyoxal (GO) and HNE in sera of
humans, with detection limits ranging from 0.03 to 0.11 nmol/ml
[63]. MDA was found to be the most abundant species in healthy
volunteers, with a serum concentration greater than 10 nmol/ml,
followed by the other aldehydes at concentration around 1 nmol/
ml. Interestingly, this method detected significantly higher con-
centrations of ACR, MDA, and HNE in sera from diabetic and
rheumatoid arthritis patients as compared to healthy controls.
Carbonyl groups can also be derivatized with 4-(N,N-dimethyla-
minosulfonyl)-7-hydrazino-2,1,3-benzoxadiazole to generate per-
oxyoxalate chemiluminescence [64]. This method has been ap-
plied for the analysis of methylglyoxal, ACR, crotonaldehyde and
trans-2-hexenal with results ranging from 4.4 to 6.5 nM.

In spite of the comprehensive oxo-lipidomic methods devel-
oped over the last years, several limitations and unanswered
questions on RCS analysis in biological matrices still remain. On
one hand, the stability of RCS can be widely different, with α, β-
unsaturated aldehydes being less stable than saturated aldehydes.
This can affect the recovery yield and the accuracy of the method.
Hence the recovery of RCS from biological samples should be
carefully standardized and made reproducible by suitable sample
preparation with addition of the derivatizing agent during sample
collection and spiking of deuterated internal standards. On the
other hand, it is important to consider the source of RCS detected
by derivatization methods, and specifically, what proportion of
RCS is in a free or protein-bound form, and what proportion can
arise from reversible protein adducts such as Schiff bases or Mi-
chael adducts. Furthermore target analysis based on derivatization
misses Schiff base protein–lipid adducts.

Notwithstanding these unanswered questions, owing to ad-
vances in analytical strategies there is now a better understanding
of RCS. In particular, we now know that there are many more RCS
besides the well-known RCS species such as HNE, HHE, ACR, GO
and methylglyoxal, which have been extensively studied. Indeed,
comprehensive lipidomic approaches have identified more than
400 different RCS species in rodent serum [61]. This, together with
the knowledge about other lipidic reactive species, such as ni-
trated fatty acids, which do not possess carbonyl moieties [65],
highlights the structural variety of reactive species that can modify
proteins. Taking into account that the functional consequences of
the modification may depend on the structure of the adducted
moiety, a vast number of functionally diverse protein species may
arise through lipoxidation. Moreover, significant advances have
been made in quantitative detection of RCS in biological samples.
From a quantitative point of view it would be important to de-
termine the amount, not only of free RCS but also of protein-bound
species. This information would be very valuable for studies in
model systems to ascertain the role of lipoxidation using con-
centrations in the range of those occurring in vivo. A combination
of strategies will therefore be needed for understanding the roles
of lipoxidation in pathophysiology.
7. Analysis of protein lipoxidation through MS-based methods

7.1. Label-free MS methods

Mass spectrometry (MS)-based analytical approaches are one
of the most popular methodologies to study biological systems
and are used extensively in the study of protein–lipid adducts. MS
technology offers unmatched performance in identification and
quantification of these compounds, providing precise, sensitive
and high-throughput analysis. It allows detailed structural in-
formation to be obtained at a molecular level, providing structural
characterization of protein–lipid adducts in vitro and in vivo. Al-
though the ultimate goal is to characterize the adducts formed in
real pathophysiological conditions, an initial characterization of
potentially important adducts can be obtained from the analysis of
peptide–lipid or protein–lipid adducts prepared in vitro under
controlled reaction conditions using pure preparations of the
candidate peptides/protein and electrophilic lipids. The high re-
activity of the electrophilic lipids allows the formation of adducts
with the amino (–NH2) or sulfhydryl (–SH) groups almost spon-
taneously. The new peptide–lipid adducts can be easily detected
by MS analysis with matrix assisted laser desorption/ionization
(MALDI) or electrospray (ESI), often coupled to liquid chromato-
graphy (LC–MS), in positive ion mode. In the case of protein–lipid
adducts, characterization by MS can follow the top-down or bot-
tom-up proteomic strategies. Bottom-up approaches are by far the
most popular, involving enzymatic hydrolysis of the protein–lipid
adducts, usually using trypsin, followed by analysis of tryptic
peptides and peptide–lipid adducts by MS (MALDI-MS or LC–MS)
and MS/MS [66].

Peptide–lipid adducts are identified in MS as protonated mo-
lecules [MþH]þ or multiple charged ions [MþnH]nþ and mod-
ified peptides are typically recognized in the MS spectrum based
on the mass shift against the unmodified peptide. In the case of
Michael adducts, the mass shift caused by the modification is
equal to the molecular weight of the RCS, while for the Schiff base
it is equal to the molecular weight of the RCS minus 18 amu, owing
to loss of H2O during adduct formation. For example, regarding
peptide adducts with MDA, the mass deviation is þ72 amu for
Michael adducts and þ54 for Schiff adducts in the case of single
charged ions, or þ36 amu for Michael adducts and 27 for Schiff
adducts in the case of double charged ions, as observed in the
study of MDA adduction of beta-lactoglobulin by LC–MS [67,68].
Tandem mass spectrometry (MS/MS) of peptide–lipid adduct ions
is usually performed to confirm the nature of the oxidative mod-
ification and to pinpoint its location in the peptide backbone. MS/
MS commonly utilizes collision-induced dissociation (CID), and
details about the site of modification and type of adducts in pep-
tides are inferred by the deviation of the typical y or b-type frag-
ment ions or by the presence of modified immoniun ions [69].
CID-tandem mass spectra also show typical loss of the carbonyl
moiety, leading to the formation of the non-modified b and y-ions,
which might prevent the identification of the position of the ad-
duct. It is possible to take advantage of this characteristic loss of
the electrophilic lipid and of the modified immonium ions. These
typical fragmentation pathways can be used to define specific
target reporter ion-based MS approaches, namely neutral loss
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scans (NLS) or precursor ions scan (PIS). NLS have been widely
used for the detection of HNE–peptide adducts. MS3 neutral loss
scanning of 156 amu (singly charged), 78 amu (doubly charged) or
52 amu (triply charged) approaches were used to locate HNE–
peptide Michael adducts [70,71], as reported for example for HNE–
cytochrome C oxidase adducts [71] or HNE with beta-spectrin in
human blood samples [72]. More recently, dissociation techniques
that do not induce fragmentation of labile bonds, such as electron
capture dissociation (ECD) and electron transfer dissociation (ETD)
have been used [4,73]. MS/MS spectra obtained under these con-
ditions can be more informative, showing abundant c- and z-type
fragment ions of modified peptides, since the carbonyl–peptide
bond is more stable, preventing the loss of the carbonyl moiety.
ETD is also preferred for the analysis of bigger peptides and intact
proteins and thus for top-down approaches.

Peptide and protein adducts with small electrophilic lipids, like
the α, β-unsaturated aldehydes HNE, MDA and ACR are by far the
most studied [3,66,74], and protein adducts involving these lipids
have been detected and characterized both in vitro and in many
pathophysiological situations [30,32]. Nevertheless, for other lipid
classes, the evidence is scarcer. There are numerous reports of the
formation of protein adducts of cyPG in several experimental
models of pathophysiological situations through various techni-
ques, either involving endogenously generated or exogenously
added cyPG. Most studies combine the detection of modified
proteins through the use of metabolic labeling (see below) with
MS characterization of the candidate cyPG–peptide adducts in the
positive mode, using purified protein or peptides incubated in
vitro with cyPG (for review see 3,19). Nevertheless, at present, the
MS detection of prostaglandin–protein adducts formed en-
dogenously is yet to be established. Peptide/protein modifications
by electrophilic lipids esterified to phospholipids have rarely been
considered [3]. Recently, several groups have identified adducts of
RCS derived from phosphatidylcholine with His, Cys and Lys in
synthetic peptides of ApoA and ApoB-100 [75,76]. This is a field of
research that should be explored further since adducts of proteins
with oxidized phospholipids have been detected in HDL and in
human platelets enriched with electrophilic truncated oxidized
phosphatidylcholine (KODA-phospahtidylcholine) [77].

Thus, the number of protein–lipid adducts formed under con-
trolled chemical conditions is relatively low, and their spectra are
relatively easy to analyze. Data obtained through this approach
allows the identification of the type of adducts that can be formed
for each electrophilic lipid. Additionally, this approach has the
advantage of decoding the reactivity of each specific electrophilic
lipid species and specific fragmentation patterns of lipoxidation
adducts under tandem MS conditions can be identified, which can
be very useful for target analysis in biological samples. However,
use of more complex samples from cells, biological fluids and
tissues requires more complicated, specific and targeted ap-
proaches to identify and characterize the protein adducts. These
can take advantage of enrichment procedures, chemical labeling
and bottom-up proteomic strategies combining enzymatic diges-
tion, chromatographic methods and analysis by MALDI-MS and/or
LC–MS and MS/MS. Enrichment and derivatization methods, fol-
lowed by MS analysis, are commonly used to improve sensitivity
and selectivity, which aids in the structural identification and may
be performed before or after protein digestion. In this regard, it
should be noted that aldehydes that react with lysines and argi-
nines pose additional difficulties since these modifications may
interfere with trypsin digestion, resulting in long peptides that are
difficult to sequence. Also, false positives of HNE adducts can be
obtained since they would add the same mass as arginine. Stabi-
lization of lipid adducts with NaBH4 prior to enzymatic digestion
and MS analysis is usually performed [78]. Targeted analysis based
on NLS scans, of either underivatized or derivatized samples is
becoming a popular analytical strategy to search for specific pro-
tein modifications arising from a particular lipoxidation product.
Recently published papers illustrate how combined MS approaches
(MALDI-TOF and LC–ESI-MS/MS) can contribute to uncover protein
lipid adducts in biological samples. HNE adducts of metalloprotei-
nase rhMMP-13 were identified by bottom-up approaches using
HR-LC–MS/MS and target analysis by multiple-reaction monitoring
(MRM) based on specific neutral loss of HNE in vitro and in chon-
drocytes from osteoarthritic patients [79]. Results from proteomic
approaches, using MALDI-TOF/TOF combined with SDS-PAGE and
enzymatic digestion, showed that liver fatty acid-binding protein
(L-FABP) is a target for modification by HNE [80]. Several nuclear
proteins including actin, chromodomain-helicase-DNA-binding
protein 4, heterogeneous nuclear ribonucleoprotein L(hnRNPs),
and neuroblastoma differentiation-associated protein AHNAK,
were found to be modified by HNE, HHE, and ONE, among others,
using SDS-PAGE and LC–MS in a model of liver steatosis [81].

7.2. Label-based MS methods

The most commonly used measurement of protein oxidation is
probably the formation of protein carbonyl groups (often referred
to as protein carbonylation); this is because robust, simple and
economical methods are available for detection of carbonyl groups
on proteins [82]. While bi-functional lipid oxidation products, such
as dialdehydes or hydroxyalkenals, do react with proteins to yield
free carbonyls, a substantial number of other products do not.
Moreover, protein carbonyls can also be formed by direct oxidation
of the side chains of lysine, proline, arginine and other residues,
for example through oxidative deamination. Thus while many
studies report on the occurrence of protein carbonyls in disease,
this cannot be considered as evidence of lipoxidation unless spe-
cific antibodies against lipid oxidation products have been used, or
the modifications are analyzed by mass spectrometry, as described
in later sections.

To improve sensitivity and selectivity in the detection of car-
bonylated proteins, some analytical approaches take advantage of
chemical labeling of carbonylated lipid–protein adducts prior to
MS detection [83]. These derivatization procedures, as discussed in
previous sections, usually exploit the high reactivity of the free
carbonyl groups of the Michael lipoxidation adducts, which are
very prone to react with free amine containing molecules of the
derivatizing reagent. Lipid–protein Schiff adducts cannot be deri-
vatized by this approach, unless the electrophilic lipid is a di-al-
dehyde. Derivatization with DNPH has been used for more than a
decade, since DNPH labeled carbonylated peptides showed favor-
able ionization, providing a sensitive detection method. Never-
theless, this method presents some disadvantages, outlined above
for the analysis of free RCS together with a lack of selectivity be-
cause DNPH also reacts with sulfenic acid [84]. 7-(Diethylamino)
coumarin-3-carbohydrazide has also been used for derivatization
of lipid-bound carbonyls [85], although other chemical labels can
also be used [86]. One of the most common chemical labeling
procedures employs biotin-based hydrazide-functionalized re-
agents. This approach allows enrichment of biotin-linked adducts
by avidin chromatography [4], thus reducing the amount of un-
modified peptides in the MS analysis. Two routes can be con-
sidered: enrichment of biotinylated proteins followed by enzy-
matic digestion and MS, or initial digestion of protein and further
separation of biotinylated peptides by affinity chromatography
[66]. MS based approaches combined with enrichment procedures
using biotin are increasingly being used to recognize site-specific
modifications of proteins in complex proteomes from biological
samples. Recently, Aluise et al. [87] identified a peptidylprolyl cis/
trans isomerase A1 (Pin1) adduct with HNE linked to the catalytic
cysteine (Cys113) using click chemistry conjugation of biotin to
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Pin1 and LC–MS/MS analysis. In vitro covalent modification of the
mitochondria protein NAD-dependent deacetylase sirtuin-3
(zrSIRT3) by HNE at Cys280 was recognized using biotin hydrazide
(BH) treatment and avidin pull-down and further analysis by LC–
MS/MS and MALDI-TOF/TOF [88].

As mentioned above, until now most published work has fo-
cused on HNE–protein lipid adducts, but many more electrophilic
lipid species are generated during lipid oxidation. Further in-
vestigation and experimentation in this field will be needed in
order to understand the impact of lipoxidation in heath and dis-
ease. Future research should therefore concentrate on new
methods for in vivo detection of carbonylated proteins and other
lipid adducts.
8. Detection of protein lipoxidation through non-MS
approaches

Metabolic labeling methods are based on the incubation of
biological samples, mostly cells in culture, with labeled analogs of
the oxidized or electrophilic species or their precursors. As stated
above, some of these methods can be used both in MS and non-MS
approaches. Incubation of cells in the presence of radioactive
precursors of oxidized lipid species, in particular with radioactive
arachidonic acid, which is a precursor of electrophilic pros-
taglandins and of other reactive lipids, has allowed the detection
of incorporation of radioactivity into proteins [89]. These methods
have the advantage that the structure of the resulting lipoxidized
species is not affected; thus, metabolism and interactions are
preserved. As a drawback, this labeling method requires handling
of radioactive material and does not allow imaging or enrichment
procedures.

Biotinylated derivatives of electrophilic lipid species or their
parent compounds have been widely used for the study of protein
lipoxidation. Biotinylated analogs of cyPG or their precursors are
among the most widely used probes. The fact that some cyPG
showed beneficial effects in experimental models of inflammation
and tissue injury spurred research in the identification of the
proteins modified by these mediators, seeking novel therapeutic
targets, even before their real pathophysiological importance had
been elucidated. Indeed, the study of protein modification by
biotinylated cyPG has paved the way for studies with other lipid
species with similar structure or reactivity, including nitrated fatty
acids and isoprostanes. In fact, many of the targets of cyPG iden-
tified, including NF-κB and transient receptor potential (TRP)
channels [90,91], have later been confirmed to be modified by the
other lipids [65,92]. The progress with cyPG may be due to the fact
that these compounds are relatively stable, as are the resulting
adducts with proteins, and they are amenable to derivatization
through modification of the carboxyl group by various moieties.
Therefore, since the first descriptions of biotinylated PGA2 [93] and
15d-PGJ2 [90], many biotinylated derivatives of arachidonic acid-
derived electrophilic lipids have been commercialized and are
readily available. Advantages of these derivatives include the ex-
ploitation of the high affinity avidin–biotin interaction for both
detection and enrichment of the samples for purification and
identification. Among the drawbacks of this approach is the fact
that the biotin moiety imposes structural restrictions that may
affect interaction with proteins (see below). Thus, although bioti-
nylated analogs mimic many of the effects of their parent com-
pounds, there are important functional differences [50,94]. In ad-
dition, none of these metabolic labeling procedures are suitable for
use in humans.

Analogously, fluorescent labels have been introduced in elec-
trophilic lipid species for the detection and quantitation of lipox-
idized proteins either in gels or in cells [95,96]. In combination
with proteomic techniques, these approaches are also suitable for
the identification of potential targets of lipoxidation, although it
should be taken into account that, as in the case of biotinylated
tags, due to the bulky nature of the fluorescent moieties, validation
of the identified targets is required and the biological interaction
may be affected.

Click chemistry has also been used to monitor the fate of HNE
and oxidized phospholipids [87,97] and presents the advantage of
the smaller tagging moiety, which is considered in most instances
not to interfere with the metabolism or interactions of the labeled
lipids. This type of labeling allows the derivatization of the tag by
an alkyne-azide reaction ex vivo, that is, in tissue extracts, partially
purified samples or permeabilized cells, thus facilitating detection,
enrichment, imaging, etc. This strategy has been successfully used
to detect the HNE-induced cross-linking of peptidylprolyl cis/trans
isomerase A1 (Pin1) [87].

As discussed above, lipoxidation is a selective process that does
not affect cellular proteins randomly but is directed by structural
features of the protein and the reactive lipid species [19,98]. In-
tracellular redox status and availability of small molecule anti-
oxidants such as glutathione is also an important determinant for
this selectivity [98,99]. In addition, lipoxidation could present a
selective compartmentalization depending on the site of genera-
tion of electrophilic lipid species, or on the distribution of small
molecule thiols that could act as decoys or the presence of oxi-
dized lipid detoxifying enzymes such as GSTs [94,100]. Therefore,
topography of lipoxidation may also be important in its functional
outcome. In this context, some probes have been synthesized that
combine derivatization of electrophilic lipids with biotin or fluor-
escent tags, and organelle-specific tags or targeting moieties for
selectively detecting lipoxidation at particular subcellular en-
vironments [101].

Importantly, all these label-based methods can be used both in
“positive” (or direct) and “negative” (or indirect) approaches to
detect protein modification. In the positive approaches, the mod-
ified targets are identified. In the negative approaches, modifica-
tion is induced first with an oxidant or electrophilic lipid and the
reduction of the signal with the labeled probe is observed [96,102],
or vice versa. These approaches can be used in vitro and in cells or
tissues, and are useful to study the competition between the
tagged and the parent lipid or the potential interplay between li-
poxidation and concurrent modifications, either oxidative, or by
endogenous or exogenous electrophiles, such as drugs [53,103],
particularly those affecting the versatile cysteine residues (see
below) [104]. Nevertheless, as considered in the following section,
especially when using live cells, these approaches need to be
complemented with other methods since the modifications oc-
curring in cells treated with oxidized lipids can be structurally
quite varied and involve not only lipoxidation but also diverse
oxidations related to oxidative stress generated by the reactive
species [100].

The ex vivo derivatization of lipoxidized proteins with various
reagents has been considered above. In addition to MS procedures,
the derivatized moieties can be detected using fluorescence
methods, avidin–biotin based approaches or specific antibodies.
Nevertheless, some derivatization procedures present limitations.
As mentioned above, although lipoxidation can lead to an increase
in the amount of carbonyl groups on proteins as a result of the
incorporation of some lipid moieties containing these structures,
carbonyl groups formed by oxidative modification of certain re-
sidues will also be detected by methods based on derivatization of
carbonyl groups, such as reaction with DNPH. Moreover, this
method will not be specific for lipoxidation, nor will it detect all
types of lipoxidation, but only those in which a carbonyl moiety is
preserved after lipid addition. In spite of this, the dini-
trophenylhydrazone generated after reaction of DNPH with
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carbonyl groups can be detected spectrophotometrically or by
antibodies against the dinitrophenyl group, which has contributed
to the wide use of this method. Similar detection can be achieved
with biotin hydrazide derivatization, which reacts with carbonyl
groups but in this case adds a biotin moiety to the modified re-
sidue, enabling avidin-based affinity detection or enrichment
strategies. The methods for detecting carbonyl formation on pro-
teins have been reviewed recently [105].

Lastly, there are several antibodies that directly detect adducts
of lipid peroxidation products with proteins. These include anti-
bodies against various types of HNE adducts [106], which may be
selective for cysteine or histidine adducts, and antibodies against
other adducts like ACR–protein, MDA–lysine and oxidized phos-
pholipid–protein (please see [3] for review). In addition, anti-
bodies against 15d-PGJ2 have been used to detect this PG in-
tracellularly by immunohistochemistry [107], as well as protein
adducts involving this lipid through ELISA [49]. Kato et al. [108]
reviewed antibody-based methods for detection of a range of
unusual modifications of proteins with hydroperoxide-derived
products that form amide-type lipid–lysine adducts like HEL. In all
these cases, assuming an optimal specificity of the antibody, in-
formation on the proteins modified can be obtained, but not in-
formation on the site of modification, unless the use of antibodies
is combined with other strategies, such as the study of site-specific
mutants as described below.
Fig. 2. Summary of procedures useful for the identification, characterization and functi
and depth of information from top to bottom. At each level of complexity there are seve
9. Validation strategies

The results of the detection and identification of lipoxidation
targets may give a general view of the extent of these modifica-
tions in a given sample and may also pinpoint targets of potential
pathophysiological or therapeutic interest. Lipoxidation is usually
not random but occurs at precise residues within proteins [100].
The affected residues are often strong nucleophiles, and may be
located in environments that favor the docking or interaction of
the reactive lipid species [109,110]. Frequently, the modified re-
sidues are involved in catalysis or interaction with other proteins.
Therefore, validation of the modification and assessment of its
functional consequences is of special importance in delineating its
contribution to the overall effect of electrophilic lipids.

For validation of lipoxidation, usually a combination of strate-
gies is required. In the most favorable scenario, a protein would be
identified from a sample of a pathophysiologically relevant model,
in which the modification by endogenously generated species
would be detected and the sites of addition directly spotted by MS
approaches. In this case, functional assessment of the modification
can be undertaken. However, in many cases, protein modification
is achieved by the use of exogenously added lipid electrophiles,
either unmodified or tagged. Above all in this situation, validation
strategies are required. In Fig. 2 we present a summary of some of
the currently used methods for validation of targets of lipoxida-
tion. If the electrophile was tagged, it is important to confirm the
results using the parent compound, since any tag can confer steric
onal assessment of protein lipoxidation. The rows represent increasing complexity
ral alternative but complementary approaches that can be used. WB, western blot.



G. Aldini et al. / Redox Biology 5 (2015) 253–266262
hindrance to the interaction either with the targets of interest or
with other structures, leading to indirect effects [94]. Nevertheless,
the differential behavior of tagged and untagged electrophilic li-
pids can be exploited to infer functional or structural con-
sequences of the modification [50]. Immunoprecipitation of the
modified protein or other affinity-based purification procedures
such as those based on avidin–biotin interaction have proved ex-
tremely useful for assessing protein lipoxidation in the case of low
abundance proteins or of peptides modified in a low proportion
[19,111]. Fig. 3 outlines the identification and characterization
approaches that have been used in the case of a thoroughly stu-
died lipoxidation target: the cytoskeletal protein vimentin. In ad-
dition, we illustrate several features of the functional character-
ization of the modification (see below for detailed comments).

From a functional point of view, it is important to take into
account that oxidized lipids bind to many targets in the cell pro-
teome and their effects arise from the complex interplay of the
diverse modifications. As stated above, induction of oxidative
stress may be a source of concomitant modifications that may
Fig. 3. Methods employed in the study of the lipoxidation of vimentin. (A) Combination
lipoxidation. (B) Several approaches used in the assessment of the consequences of vim
coexist or compete with lipoxidation, hence complicating the
structural and functional outcomes. This is particularly relevant in
the case of modifications of cysteine residues, which, in addition to
lipoxidation by various reactive species, may be targeted by oxi-
dative and nitrosative modifications of varied structure, including
glutathionylation, nitrosylation, cysteinylation, sulfenylation, etc.
Some recent comprehensive reviews have addressed the interplay
between lipoxidation and oxidative modifications [100,112].
Therefore, care should be exercised to assign functional roles to
lipoxidation of proteins by specific moieties without prior assess-
ment of the overall oxidative state of the protein and its cysteine
residues. Moreover, lipoxidation may result in activation or in-
hibition depending on the target and the structure of the adducted
moiety. Modifications of Ras proteins may have different con-
sequences on subcellular localization and activation platforms.
Whereas modification by small hydrophobic moieties appears to
favor localization at and/or signaling from the Golgi, modification
by fatty acids (i.e. palmitoylation) or addition of cyPG or cGMP to
the C-terminal cysteines seems to promote localization and/or
of strategies employed in the chemical and structural characterization of vimentin
entin lipoxidation in vitro and in cellular contexts.
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signaling at the plasma membrane (reviewed in [100]). Use of
labeled electrophilic species in combination with markers specific
for various subcellular compartments has been used to obtain
information on the presence of a particular target at a defined
compartment through fluorescence microscopy. Nevertheless, gi-
ven the high number of cellular targets of lipoxidation, colocali-
zation studies may offer information on the subcellular localiza-
tion of adducts but is insufficient for target validation.

The proportion of the target modified is also an important issue
which may have diverse implications, if we consider a signal ver-
sus background effect. Activation of a small proportion, i.e. 1% of an
otherwise inactive protein may have significant effects, whereas
inhibition of a higher proportion, i.e. 10% of a fully active protein
may not be enough to elicit a detectable outcome. In order to
establish a correlation between target modification and functional
effects, the use of mutant constructs and/or model systems in
which the levels of the target can be modulated are needed. In
cases in which lipoxidation occurs at a specific residue within one
protein, mutation of that residue can sometimes block the mod-
ification and completely rescue the functional alteration. Such is
the case with the transcription factor NF-κB and the intermediate
filament protein vimentin [26,90] (see Fig. 3B). While the effect of
the mutation can be clearly observed in vitro when working with
purified proteins, in cellular systems it is usually necessary to work
with a model that does not express the wild type form. In the case
of vimentin, transfection of cells that do not express the en-
dogenous protein has allowed the response of homogeneous
protein constructs/variants to electrophilic lipids to be explored
[113]. These studies have shown that mutation of the target re-
sidue, in this case Cys328, protects the mutant protein from the
morphological derangement induced by electrophilic lipids [113],
as illustrated in Fig. 3 for HNE. Thus, this residue behaves as a
sensor for this type of stress, either through direct modification by
HNE addition or by reactive species generated during HNE treat-
ment. In some cases, mutation of the target residue is deleterious
for protein function, making it more difficult to assess the func-
tional consequence of lipoxidation. This may be the case of actin,
which is targeted by various electrophiles at Cys374 [23–25], a
residue located at the interface between actin monomers in such a
way that its mutation may induce altered microfilament patterns
per se [114]. In some cases, although the function of a particular
protein may be spared by mutation of the target residue, the
general consequences for the cell could even be worsened if the
mutated site was acting as a decoy, thus scavenging the reactive
species.

It is also important to consider that lipid electrophiles are key
regulators of gene expression, thus, the functional effects, above all
in the long run can be the result of protein modification plus al-
tered gene expression, which can amplify or counteract the effect
of the electrophiles [50,98].

Ultimately, confirmation of the modification of a given target
will be achieved when the adduct is detected on a peptide from
the protein, whereas functional confirmation will be achieved by
combined strategies, such as those involving mutation of the
modified residue or alterations of expression levels.
10. Concluding remarks

Protein lipoxidation is obtaining recognition as a mechanism
for regulation of protein function in health and disease. Given the
wide structural variability and complexity of these posttransla-
tional modifications, MS-based methods are essential for their
characterization. In turn, functional assessment of the modifica-
tion requires integrated approaches that take into account other
potential modifications. Lipoxidation may interact or compete
with other modifications, including oxidative modifications or
adduct formation with drugs in therapeutic regimes of patients,
thus creating complex patterns, the characterization of which re-
quires highly specific and sensitive methods. In vitro studies using
either labeled or tag-free oxidized lipids are essential to unveil the
potential sites of modification by these compounds, though fur-
ther work regarding protein modifications in biological samples by
endogenously generated species and their functional relevance
will be key for a full understanding of the role of these lipids in
pathophysiological scenarios.
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