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Abstract: Current prediction equations for resting metabolic rate (RMR) were validated in a relatively
small sample with high-individual variance. This study determined the accuracy of five common
RMR equations and proposed a novel prediction equation, including body composition. A total
of 3001 participants (41 ± 13 years; BMI 28.5 ± 5.5 kg/m2; 48% males) from nutrition clinics in
Israel were measured by indirect calorimetry to assess RMR. Dual-energy X-ray absorptiometry were
used to evaluate fat mass (FM) and free-fat mass (FFM). Accuracy and mean bias were compared
between the measured RMR and the prediction equations. A random training set (75%, n = 2251)
and a validation set (25%, n = 750) were used to develop a new prediction model. All the prediction
equations underestimated RMR. The Cunningham equation obtained the largest mean deviation
[−16.6%; 95% level of agreement (LOA) 1.9, −35.1], followed by the Owen (−15.4%; 95% LOA 4.2,
−22.6), Mifflin–St. Jeor (−12.6; 95% LOA 5.8, −26.5), Harris–Benedict (−8.2; 95% LOA 11.1, −27.7),
and the WHO/FAO/UAU (−2.1; 95% LOA 22.3, −26.5) equations. Our new proposed model includes
sex, age, FM, and FFM and successfully predicted 73.5% of the explained variation, with a bias of
0.7% (95% LOA −18.6, 19.7). This study demonstrates a large discrepancy between the common
prediction equations and measured RMR and suggests a new accurate equation that includes both
FM and FFM.

Keywords: resting metabolic rate; prediction; equation; body composition

1. Introduction

According to the World Health Organization (WHO), the global prevalence of over-
weight and obesity has nearly tripled over the last five decades, which is a significant public
health concern [1]. Body weight reflects the balance between energy intake and energy
expenditure. Assessment of resting metabolic rate (RMR), the main component (50–70%) of
total daily energy expenditure (TDEE), is recommended to determine individual energy re-
quirements [2]. Indirect calorimetry is the gold standard to measure RMR but is rarely used
in clinical settings due to its high cost. Several prediction equations have been developed
to predict RMR: Harris–Benedict [3], Food and Agricultural Organization/WHO/United
National University [4], Mifflin–St. Jeor [5], and Owen et al. [6,7], have been developed
as methods to assess RMR in clinical practice. Most of these equations estimate RMR
based on sex and body weight, with the Harris–Benedict and Mifflin–St. Jeor equations
also include height and age. Notably, body composition has a strong influence on energy
expenditure [8], with a 4.5 kcal/day contribution per kg of fat, compared to a 13 kcal/day
contribution (~×4) per kg of muscle [9]. Thus, using weight as a predictor, rather than
body composition components, leads to a greater range of variance when estimating RMR
and may provide a reasonable fit at the group level [10–13], but with a relatively large
variance among individuals [13–17]. A significant issue is that while some studies report a
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trend to underestimation of RMR [10,12,16,18], there may also be problems with overesti-
mation [14,17,19], depending on the characteristics of the study population. For instance,
in one study conducted among 125 women [10], the equations resulted in an underestimate,
although they yielded overestimates in another three studies with an African American
population or Hispanic Women [14,17,19].

The Cunningham RMR prediction equation relies on fat-free mass (FFM) because of
the strong correlation (r = 0.7) between FFM and RMR [20–22]. The equation was developed
in 1980 and is based on the data of 223 subjects from various studies published by Harris
and Benedict in 1919. The prediction ability of this method has been found to be better
for athletes than for the general population [23] specifically among male as compared to
female athletes (mean bias of 147 ± 283 kcal/day for males and 291 ± 333 kcal/day for
females) [24]. To make the system more generally applicable, some studies have proposed
models that integrate body composition measurements, but again these have primarily
been based on small numbers of participants from specific populations [15,25,26].

Therefore, despite the wide use of the common equations, there remains a need to
establish a novel prediction equation for RMR with a better fit at the individual level.
The current study aimed to evaluate the common prediction equations on a large and
diverse dataset and to develop a new prediction model that incorporates body composition
parameters.

2. Materials and Methods

In this single-center cross-sectional observational study, 3001 participants attending
a private nutrition clinic in the center of Israel were enrolled between October 2015 and
October 2020. Study participants visited the clinic for nutrition consulting to improve their
well-being, change lifestyle habits, or lose weight. Among the entire study population,
51.9% of the participants were male with a large range of BMI (14.7–59 kg/m2), and from
different races, which represent well the general population in Israel. Participants were
excluded from the study if they were lactating (n = 7), users of steroidal drugs (n = 18),
or had undergone a surgical procedure that could affect body composition [e.g., amputated
organs (n = 4), breast augmentation or reduction (n = 9), and liposuction surgeries (n = 3)].
Demographic parameters, including age and sex, were collected, as well as the medical
history of bariatric surgery (n = 136), thyroid disorders (n = 46), or diabetes (n = 115) based
on the clinical records. Furthermore, we classified the participants (n = 2937, 97.9% of
the study sample) based on self-reported previous weight loss attempts: never (n = 2109),
one or two attempts (n = 625), or three or more attempts (n = 203). The study flow chart
is shown in Figure 1. Data collection and analysis were by the relevant ethical codes and
were approved by the Ethics Committee of Tel Aviv University (0000607-2).

The same clinician conducted all the anthropometric measurements. While most
participants (>95%) were tested on the same day, some conducted the metabolic and body
composition assessments one week apart. Weight (±0.1 kg) was recorded on a digital
scale (SECA mBCA 515; MFBIA; SECA®, Hamburg, Germany) while subjects were dressed
in shorts and a T-shirt. A standard, wall-mounted stadiometer was used to measure the
height (±0.1 cm) without shoes, and the BMI (kg/m2) was calculated accordingly. Neck
and abdomen circumferences were measured (cm) with a flexible tape at the levels of
laryngeal prominence and umbilicus, respectively.

Body composition measurements, FFM (kg), FM (kg), and FM (%), were measured us-
ing dual-energy X-ray absorptiometry (DXA, Lunar; GE) and analyzed using the integrated
software (enCORE 2011, v.13.60.; GE, Madison, WI, USA). Participants were instructed
to arrive at the clinic after at least a 4 h fast. Before the scan, participants were asked to
remove all metal items. Each whole-body scan took ~7 min. Quality control calibration
procedures were conducted on a spine phantom each morning.
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Figure 1. Study flow chart. 

The same clinician conducted all the anthropometric measurements. While most par-
ticipants (>95%) were tested on the same day, some conducted the metabolic and body 
composition assessments one week apart. Weight (±0.1 kg) was recorded on a digital scale 
(SECA mBCA 515; MFBIA; SECA®, Hamburg, Germany) while subjects were dressed in 
shorts and a T-shirt. A standard, wall-mounted stadiometer was used to measure the 
height (±0.1 cm) without shoes, and the BMI (kg/m2) was calculated accordingly. Neck 
and abdomen circumferences were measured (cm) with a flexible tape at the levels of lar-
yngeal prominence and umbilicus, respectively. 

Body composition measurements, FFM (kg), FM (kg), and FM (%), were measured 
using dual-energy X-ray absorptiometry (DXA, Lunar; GE) and analyzed using the inte-
grated software (enCORE 2011, v.13.60.; GE, Madison, WI, USA). Participants were in-
structed to arrive at the clinic after at least a 4 h fast. Before the scan, participants were 
asked to remove all metal items. Each whole-body scan took ~7 min. Quality control cali-
bration procedures were conducted on a spine phantom each morning. 

RMR was measured in a metabolic cart using an indirect-calorimeter device, Quark 
RMR (Cosmed, Rome, Italy). Participants were instructed to arrive at the clinic by the 
morning after an overnight fast (12 h) and avoid any exercise training 24 h before the 
measurement. In addition, participants were restricted from consuming nicotine products 
for at least 2 h before the measurement. To ensure rest state when measuring RMR, ac-
cording to the guidelines [27], participants were at rest 20 min before the measurement. 
Turbine calibration and gas calibration were performed before each test, according to the 
manufacturer’s instructions [28]. During the measurement, the subjects lay awake in a 
supine position, in a quiet room with stable temperature (22–24 °C). All measurements 
were conducted by adjusted size face mask. Measurements were 21 min long, with a 5 
min adaptation phase excluded from the analysis, and the mean of the final 16 min calcu-
lated as the mean RMR. In case of major movement or falling asleep during the measure-
ment, this period was excluded and the measurement continued to achieve the 16 min 
stability. Nearly all measurements (>90%) were at least 5 min steady state (10% or less 

Figure 1. Study flow chart.

RMR was measured in a metabolic cart using an indirect-calorimeter device, Quark
RMR (Cosmed, Rome, Italy). Participants were instructed to arrive at the clinic by the
morning after an overnight fast (12 h) and avoid any exercise training 24 h before the
measurement. In addition, participants were restricted from consuming nicotine products
for at least 2 h before the measurement. To ensure rest state when measuring RMR,
according to the guidelines [27], participants were at rest 20 min before the measurement.
Turbine calibration and gas calibration were performed before each test, according to the
manufacturer’s instructions [28]. During the measurement, the subjects lay awake in a
supine position, in a quiet room with stable temperature (22–24 ◦C). All measurements
were conducted by adjusted size face mask. Measurements were 21 min long, with a 5 min
adaptation phase excluded from the analysis, and the mean of the final 16 min calculated
as the mean RMR. In case of major movement or falling asleep during the measurement,
this period was excluded and the measurement continued to achieve the 16 min stability.
Nearly all measurements (>90%) were at least 5 min steady state (10% or less coefficient
of variation in VO2 and VCO2) [27]. VO2 and VCO2 were recorded every five second.
The Weir equation was used to convert respiratory gas measures to energy expenditure,
with acceptable respiratory exchange ratio ranged from 0.68 to 0.90 [27].

Statistical Analysis

The normality of the distribution of each continuous variable was assessed using
histograms and QQ plots and by the Kolmogorov–Smirnov Test. Variables found to
have non-normal distributions were subjected to traditional transformations: square root
for left-tail distributions and log-normal transformation for right-tail distributions. Par-
ticipant characteristics were presented as the mean ± SD for continuous variables and
by prevalence for categorical and dichotomic variables. Student’s t-test or Pearson’s
Chi-squared test were used to comparing the sex differences. Bland–Altman analysis
was used to determine the accuracy and the level of agreement of five common RMR
equations (Harris–Benedict, Food and Agricultural Organization, WHO, United National
University, Mifflin–St. Jeor, and Owen) with 95% level of agreement and mean bias
[(RMRmeasured−RMRestimated/RMRmeasured) × 100] between the estimated RMR of each
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equation and the experimentally measured RMR from our data. Lin’s concordance cor-
relation was used to examine the concordance between the r2 and the linear equation
of each estimated equation and the experimentally measured RMR values. The level of
inter-method agreement was compared using Bland–Altman plots, with a 95% level of
agreement for mean bias.

To develop a multivariable prediction model for RMR, the dataset was randomly split
using the train_test_split function of the scikit-learn Python package. A random subset
of 75% of the participants (n = 2251) was assigned to a training set and 25% (n = 750)
to a validation set. The two sets were matched in age, sex, BMI, and body composition
(Supplementary Table S1). The inclusion variable for RMR predictors was set according to
the Pearson’s coefficient between RMR and each variable and based on the least squares
method to maximize r2. Parameters were included in the model according to a stepwise
method, based on Pearson’s coefficient between RMR and each variable, and by the least
squares method to maximize r2. Pearson’s correlation between potential variables was
examined to avoid the exclusion of a multicollinearity variable with a high correlation
(>0.7) in the model, and according to the variance inflation factor (VIF).

We validated our new model on the validation set (n = 750), using Bland–Altman
plots (with 95% level of agreement for mean bias), and using Lin’s concordance correlation.
A good model fit was defined as having maximum mean absolute error ±200 kcal/24 h
(~10%). Data were collected using Microsoft® Excel v.16.16.27 and analyzed using IBM®

SPSS Statistics v.27.

3. Results

Characteristics of the 3001 participants across sex are presented in Table 1. The mean
age was 41 ± 13 years, between 20–95 years of age, with the following age distribution:
742 participants were between 20–30 years old, 712 were 30–40 years old, 806 partici-
pants were 40–49 years old, 478 participants were 50–59 years old, 200 participants were
60–69 years old, and 63 participants were 70 years old or older. The mean was BMI
28 ± 5.5 kg/m2 (range: 14.7–59 kg/m2), mean measured RMR was 1841 ± 365 kcal day−1,
and 52% were females. As expected, compared to females, males had significantly higher
RMR (2075 ± 325 kcal day−1 vs. 1615 ± 236 kcal day−1, p < 0.001) and FFM (64.1 ± 9.1
vs. 43.4 ± 6.4, p < 0.001), and lower FM (29.2 ± 9.3 vs. 39.5 ± 9.1, p < 0.001). The largest
category of subjects was overweight (35.1%), followed by obesity (32.8%), normal weight
(32.3%), and underweight (0.9%). The measured RMR, FFM, and FM increased significantly
with increases in BMI (p < 0.001 for all).

Bland–Altman analysis presenting the bias and the 95% LOA of each of the com-
mon prediction equation is presented in Figure 2. The largest difference was obtained
for the Cunningham equation, which is based on FFM as the single predicting factor
(1521 ± 280 kcal day−1, −16.6%; 95% LOA 1.9, −35.1). This was followed by the Owen
equation (1542 ± 281 kcal day−1, −15.4%; 95% LOA 4.2, −22.6), the Mifflin–St. Jeor equa-
tion (1593 ± 284 kcal day−1, −12.6; 95% LOA 5.8, −26.5), and the Harris–Benedict equation
(1676 ± 313 kcal kg−1, −8.2%; 95% LOA 11.1, −27.7). The lowest mean deviation was
obtained by the WHO/FAO/UAU equation (1792 ± 701 kcal kg−1, −2.1%; 95% LOA 22.3,
−26.5). The explained variation (r2) ranges from 0.63 to 0.70, in the following order: Mifflin–
St. Jeor > Harris–Benedict > WHO/FAO/UAU > Owen > Cunningham (Figure 2a,c,e,g).
A high Pearson coefficient was found between RMR and weight (p = 0.74, p < 0.001), height
(p = 0.65, p < 0.001), and neck circumference (p = 0.74, p < 0.001), with the highest coefficient
obtained with FFM (p = 0.824, p < 0.001). In addition, a high Pearson coefficient was ob-
tained between FFM and height (p = 0.8, p < 0.001), neck circumference (p = 0.86, p < 0.001),
and weight (p = 0.65, p < 0.75). These were not combined as RMR predictors in the model
in order to avoid multicollinearity.
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Table 1. Characteristics of the study population according to sex.

Females
n = 1559

Males
n = 1442 p Total

n = 3001

Age (years) 40.3 ± 13.06 41.7 ± 13.01 p = 0.007 41 ± 13.01
Body weight (kg) 72.4 ± 15.4 91.1 ± 18.2 p < 0.001 81.3 ± 19.2

Height (m) 1.64 ± 0.06 1.77 ± 0.07 p < 0.001 1.7 ± 0.09
BMI (kg/m2) 27 ± 5.6 29 ± 5.3 p < 0.001 28.5 ± 5.5

FFM (kg) 43.4 ± 6.4 64.1 ± 9.1 p < 0.001 53.3 ± 13
FM (kg) 28.1 ± 11.7 26.5 ± 12.2 p < 0.001 27.3 ± 12
FM (%) 39.5 ± 9.1 29.2 ± 9.3 p < 0.001 34.5 ± 10.5

RMR (kcal/24 h) 1615 ± 236 2075 ± 325 p < 0.001 1841 ± 365
Abdominal circumference (cm) 96.1 ± 13.1 102 ± 14 p < 0.001 98.9 ± 13.9

Neck circumference (cm) 32.9 ± 2.6 40 ± 3.5 p < 0.001 36.5 ± 4.7
Diabetes 37 (2.4%) 78 (5.4%) p < 0.001 115 (3.8%)

Hypothyroidism 109 (7%) 27 (1.9%) p < 0.001 136 (4.5%)
Bariatric surgery, yes (%) 26 (1.7%) 20 (1.4%) p = 0.53 46 (1.5%)

BMI Group *
Underweight 20 (1.3%) 8 (0.6%) p = 0.038 28 (0.9%)

Normal weight 642 (41%) 326 (22.6%) p < 0.001 968 (32.3%)
Overweight 507 (32.5%) 546 (37%) p = 0.002 1053 (35.1%)

Obesity class 1 247 (15.8%) 385 (26.7) p < 0.001 632 (21.1%)
Obesity class 2 101 (6.5%) 129 (8.9%) p = 0.011 230 (7.7%)
Obesity class 3 41 (2.6%) 48 (3.3%) p = 0.26 89 (3%)

Continuous variables presented as mean ± SD, and as prevalence for categorical and dichotomic variables.
Independent samples, Student’s t-test, or Person’s Chi-squared test were used to compare the results in fe-
males and males. * underweight; BMI < 18.5 (kg/m2), normal weight; BMI 18.5–24.9 (kg/m2), overweight;
BMI 25–29.9 (kg/m2), obesity class 1; BMI 30–34.9 (kg/m2), obesity class 2; BMI 35–39.9 (kg/m2); obesity class 3;
BMI > 40 (kg/m2). FFM, fat-free mass; FM, fat mass; RMR, resting metabolic rate.

The two newly proposed models are presented in Table 2. Model 1 includes age
(years), sex, FFM (kg), and FM (kg) as predictors with an R2 value of 0.745.

Table 2. This table presents two new models developed to predict RMR, based on the training set
(n = 2251, 75%).

Model 1 Model 2

Unstandardized
β

Standardized
Coefficient β p Unstandardized

β

Standardized
Coefficient β p

Constant 709 - p < 0.001 824 - p < 0.001
Age (years) −5 −0.18 p < 0.001 −5 −0.18 p < 0.001
sex (male) 66.8 0.09 p < 0.001 67.7 0.09 p < 0.001
FFM (kg) 20.5 0.73 p < 0.001 18.5 0.65 p < 0.001
FM (kg) 7.7 0.25 p < 0.001 3.5 0.11 p = 0.016

FFM (kg) × FM (kg) - - p < 0.001 0.07 0.16 p = 0.003
R2 0.745 0.746

Adjusted R2 was 74.5 % for model 1, and 74.6% for model 2 calculated by linear regression based on stepwise
elimination. FFM, fat-free mass; FM, fat mass; RMR, resting metabolic rate.
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Figure 2. Bland–Altman analysis presenting the bias and the 95% level of agreement between each
prediction equation and the measured RMR. The x-axis represents the mean of the measured and
estimated RMR, and the y-axis expresses the difference in percentage between the RMR predicted
using each of the equations and the RMR measured as follows: (pRMR-mRMR/mRMR)/100). Lin’s
concordance correlation was used to determine the R2 and the linear equation between each common
equation and the measured RMR. (a,b) Cunningham [20,22]; (c,d) Harris–Benedict [3]; (e,f) Food and
Agricultural Organization/WHO/United National University [4]; (g,h) Mifflin–St. Jeor [5]; (i,j) Owen
et al. equations [6,7].
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For males, RMR (kcal/24 h) = 775.8 − (age × 5) + (FFM × 20.5) + (FM × 7.7)
For females, RMR (kcal/24 h) = 709 − (age × 5) + (FFM × 20.5) + (FM × 7.7)
Model 2 includes an interaction variable of FFM × FM, which increases the explained

variation by 0.001.
For males, RMR (kcal/24 h) = 891.7 − (age × 5) + (FFM ×18.5) + (FM × 3.5) + (FFM ×

FM × 0.07)
For females, RMR (kcal/24 h) = 824 − (age × 5) + (FFM × 20.5) + (FM × 7.7) + (FFM

× FM × 0.07)
In both models, the FFM predictor has the most significant contribution to RMR

prediction (standardized β coefficients of 0.73 and 0.65, respectively; p < 0.001). Male sex
was related to an increase of 9% in predicted RMR (p < 0.001); each year of age was related
to a decrease of 5 kcal day−1, and 1 kg of FFM contributed 20.5 kcal day−1 to the RMR,
which is a three-fold increase over the value for FM kg (7.7 kcal day−1, p < 0.001 for both).
A sensitivity analysis for participants with thyroid disorders or following bariatric surgery
revealed similar results in the accuracy of the model. Moreover, no significant change in
the prediction accuracy or mean bias was found when the self-reported previous weight
loss attempts were added to the model.

Next, we applied Bland–Altman analysis to the validation set to determine the mean
bias and level of agreement of both models (Figure 3). The new model (model 2) successfully
predicted 73% of the explained variation of the measured RMR (p < 0.001). The mean
deviation percentage of model 1 is −0.7% (p = 0.049), and no significant difference was
found for the average deviation of model 2 and the measured RMR (average deviation
−0.6%: 0.55, p = 0.123). The 95% level of agreement ranges from −18.6 to 19.7 for both
proposed models.
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developed based on 239 Caucasian participants with normal body weight [3]. Further-
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Figure 3. Bland–Altman analysis of the proposed new models applied to the validation set (n = 750).
The x-axis represents the mean of the measured and estimated RMR, and the y-axis expresses the
difference in percentage between the RMR predicted using each of the equations and the RMR
measured as follows: (pRMR − mRMR/mRMR)/100). Lin’s concordance correlation was used to
determine the R2 and the linear equation between each estimated equation and the measured RMR.
(a,b) model 1, includes sex, age, FM, and FFM. (c,d) model 2, includes sex, age, FM, FFM, and the
interaction between FM and FFM (FM*FFM).
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4. Discussion

To our knowledge, the present investigation is the largest cross-sectional study to ex-
amine the accuracy of several common RMR prediction equations using body composition
parameters, in addition to height, weight, sex, and age. As a result of the investigation,
we propose a new prediction model for RMR. The known RMR prediction equations pro-
duced a large variation (−0.7% to −16.6%) in the mean bias with an explained variation of
0.63 to 0.70. In contrast, our new prediction equation, which includes both fat mass and
fat-free mass, can successfully predict 73% of the explained variation of the measured RMR,
with a mean bias of −0.7%.

Our findings demonstrate that the common prediction models underestimate experi-
mentally measured RMR by −2.1 ± 12.4% to −16.1 ± 9.4%. While we appreciate that the
population characteristics may influence the accuracy of a model, the characteristics of the
3001 Israeli participants comprising the study population employed are very similar to
those of the general population. For example, the average BMI of the study participants
was 28.5 kg/m2, similar to the mean BMI among the USA (28.5 kg/m2) [29] and slightly
higher than the average BMI in Israel of (26.3 kg/m2). In addition, the sample size we used
to determine the accuracy of the common equations and to develop the new prediction
model is larger than that used in any previous study. The Harris–Benedict equation was
developed based on 239 Caucasian participants with normal body weight [3]. Furthermore,
these previous measurements were conducted under resting and not basal conditions,
with no representation of elderly participants. Similarly, although the WHO/FAU/UNU
equations were based on a large number of participants (2526), this population differed
from the general population in that 90% of the participants were men and mostly young
members of the military or police forces [4]. The Owen equation was based on 60 men and
44 women, with an age range from 18 to 82 years and 18 to 65 years, respectively, excluding
more elderly women [6,7]. Similarly, the population used to develop the Mifflin–St. Jeor
equation comprised 498 participants, with members of all the BMI categories, and ages
19–78 but did not include the oldest old group (>80). In addition, the development was
based on data from the RENO Diet-Heart study, which involved a five-year follow-up.
It might have introduced biases related to the induction process [5]. Accordingly, the pro-
posed equation might be the most appropriate for the general population with a reasonable
external validity.

The novel model proposed in this study exhibits higher accuracy with values of −0.6%;
0.55, and r2 of 0.73 compared to the 0.63–0.71 range of explained variation obtained from the
commonly used equations. Notably, an extensive systematic review of validated common
equations revealed large deviations between the predicted and measured values of RMR,
with both under- and overestimations, depending on the equation and the study popula-
tion [30]. The deviation generated by the Mifflin–St. Jeor ranged from an underestimate
of 18% to an overestimate of 15% [31]; the deviation generated by the Harris–Benedict
equation ranged from an underestimate of 65% to an overestimate of 43% among obese
individuals [32]; and the Owen equation results ranged from 24% underestimation to 28%
overestimation of the measured RMR [31]. Furthermore, the overestimation in predicting
RMR tended to be particularly in people with obesity due to the higher fat mass, which
has a lower metabolic rate. In this study, we did not find such an association. A possible
explanation for this phenomenon may be the large age distribution in our study population,
with the likelihood that some obese people were younger and had a high metabolic rate
compared to older adults without obesity.

In this study, we found that combining demographic indices (age and sex) together
with body composition indices increases the prediction accuracy and reduces the range
of deviation. RMR prediction models based on body composition parameters have been
previously proposed in the existing literature, but most are based on specific populations,
e.g., women or athletes only [10,24]. The most common formula for use among the general
population is the Cunningham equation, whose development was based on nine databases
from nine different studies (a total of 1483 observations), where the data concerning body
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composition and energetic expense were collected using different methods in each study.
When we examined the accuracy level and LOA, we found that of all the common equations
examined, the Cunningham formula generated the most significant underestimate, 16.6%
(95% LOA 35.1-, 1.9). This finding emphasizes that, despite the high correlation (r = 0.7)
between FFM and RMR [20], combining the demographic indices, age, and sex with body
composition parameters contributes to the accuracy of the individual RMR assessment
and reduces the average deviation. Furthermore, we found that using body composition
parameters (both FM and FFM) allows the equation to be applied to a wide range of
populations, including individuals with obesity.

The model proposed in this study predicts 73% of the variation in RMR. Several fac-
tors influence RMR variation and may contribute to an increase in the explained variation.
Several studies have shown that past calorie restriction attempts may lead to less-than-
predicted RMR by losing muscle and respiring mass [33–36]. The metabolic effect of 5%
weight loss remained even up to 6 years after the initial weight loss [37,38]. On the other
hand, other studies did not find a long-term metabolic effect on weight reduction [39,40].
Although we hypothesized that past calorie restriction attempts would increase the ex-
plained variance, our models did not find an association between weight loss attempts
and predicted RMR. Further and longitudinal studies should determine the role of the
weight cycle on body metabolism and energy expenditure. Another unexplained vari-
ance in RMR may relate to our lack of ability to measure organ metabolic rate and size.
The brain, liver, and kidneys have a relatively high mass-specific metabolic rate of ~240,
200, and 400 kcal/kg/day and account for about 22%, 21%, and 8% of RMR, respectively,
in an average adult [41]. Moreover, studies in humans and mice found that weight loss
or calorie restriction is associated with reduced internal organ size (except brain mass
which increases in response to weight loss), which leads to metabolic adaptation [42,43].
Therefore, the high variability and residuals in RMR may be explained, at least partially,
by differences in the size and the metabolic rate of internal highly metabolic organs.

The current study has several limitations. All the data were collected from a single
clinic center in Israel, which might influence the ethnicity and socio-economic variety of the
study Israeli population. However, our large sample size, with the representation of a wide
age range, minimizes the potential selection bias in this study, as the study Israeli population
has similar characteristics to the general population (same BMI and equal sex distribution).
The strengths of this study include DXA measurements of body composition and the
use of a pre-defined protocol with the same metabolic cart for the RMR measurements
for all participants. The suggested new prediction equation in this study relies on DXA
measurement to assess body composition, a gold standard but expensive assessment
rarely used in a clinical setting. While BIA is correlated with DXA measurements of body
composition [44,45], and might be used in the RMR equation derived in this study, this
needs further testing. Accordingly, we suggest that the proposed model can be used based
on measurements obtained from BIA devices. Unfortunately, data regarding the menstrual
phase in women, which is well-known as a key factor in body metabolism and energy
expenditure, were unavailable.

5. Conclusions

In summary, by combining body composition indices and demographic parameters,
we present a novel model with higher individual accuracy for predicting RMR. Based on
the study findings, we believe that the proposed prediction model represents an important
tool that can be used for frequent measurements in the general population with access to
body composition assessment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu15040805/s1, Table S1: Study characteristics between the
training set and validation set.
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