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Arm order recognition 
in multi‑armed bandit problem 
with laser chaos time series
Naoki Narisawa1*, Nicolas Chauvet1,2, Mikio Hasegawa3 & Makoto Naruse1,2*

By exploiting ultrafast and irregular time series generated by lasers with delayed feedback, we have 
previously demonstrated a scalable algorithm to solve multi-armed bandit (MAB) problems utilizing 
the time-division multiplexing of laser chaos time series. Although the algorithm detects the arm 
with the highest reward expectation, the correct recognition of the order of arms in terms of reward 
expectations is not achievable. Here, we present an algorithm where the degree of exploration 
is adaptively controlled based on confidence intervals that represent the estimation accuracy of 
reward expectations. We have demonstrated numerically that our approach did improve arm order 
recognition accuracy significantly, along with reduced dependence on reward environments, and the 
total reward is almost maintained compared with conventional MAB methods. This study applies to 
sectors where the order information is critical, such as efficient allocation of resources in information 
and communications technology.

Chaos can be defined as random oscillations generated by deterministic dynamics1. Chaotic time series are very 
sensitive to initial conditions, which render long-term predictions unachievable unless infinite observation accu-
racy is attained in the beginning2. The close relationship between lasers and chaos has been known for a long time; 
the output of a laser generates chaotic oscillations when a time-delayed optical feedback is injected back into the 
laser cavity3. Laser chaos exhibits ultrafast dynamics beyond GHz regime/domain; hence, various engineering 
applications have been examined in the literature. Examples range from optical secure communication2 and fast 
physical random bit generation4 to secure key distribution using correlated randomness5.

The present study relates to the application of laser chaos to a multi-armed bandit problem (MAB)6. Rein-
forcement learning (RL), a branch of machine learning along with supervised and unsupervised learning, stud-
ies optimal decision-making rules. It differs from other machine learning tasks (e.g. image recognition) as the 
notion of reward comes into play in RL. The goal of RL is to construct decision-making rules that maximize 
obtained rewards; hence, gaming AI is a well-known application of RL7. In 2015, AlphaGo, developed by Google 
DeepMind, defeated a human professional Go player for the first time8.

The MAB is a sequential decision problem of maximizing total rewards where there are K(> 1) arms, or 
selections, whose reward probability is unknown. The MAB is one of the simplest problems in RL. In a MAB, a 
player can receive reward information that pertains only to the selected arm at each time step, so a player cannot 
obtain the reward information for a non-selected arm. The MAB exhibits a trade-off between exploration and 
exploitation. Sufficient exploration is necessary to estimate the best arm more accurately, but it accompanies 
low-reward arm selections. Hence, excessive exploration can lead to significant losses. Furthermore, to maximize 
rewards, one needs to choose the best arm (use the exploitation principle). However, if the search for the best 
arm fails, then a non-best option may be mistakenly chosen very likely. Therefore, it is important to balance 
exploration and exploitation.

An algorithm for the MAB using laser chaos time series has been proposed in 20186. This algorithm sets two 
goals: to maximize the total rewards and to identify the best arm. However, concerning real-world applications, 
maximizing the rewards and finding the optimal arm may not be enough to solve a problem. For example, there is 
a study to improve communication throughput by treating the channel selection in wireless communications as a 
MAB9. Should we have multiple channel users, not all users can use the best channel simultaneously; accordingly, 

OPEN

1Department of Mathematical Engineering and Information Physics, Faculty of Engineering, The University of 
Tokyo, 7‑3‑1 Hongo, Bunkyo‑ku, Tokyo  113‑8656, Japan. 2Department of Information Physics and Computing, 
Graduate School of Information Science and Technology, The University of Tokyo, 7‑3‑1 Hongo, Bunkyo‑ku, 
Tokyo  113‑8656, Japan. 3Department of Electrical Engineering, Tokyo University of Science, 6‑3‑1 Niijuku, 
Katsushika‑ku, Tokyo  125‑8585, Japan. *email: narisawa‑naoki682@g.ecc.u‑tokyo.ac.jp; makoto_naruse@
ipc.i.u‑tokyo.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-83726-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4459  | https://doi.org/10.1038/s41598-021-83726-8

www.nature.com/scientificreports/

there may be situations where compromises must be made, i.e., other channels will be selected. Now it is obvious 
that particular channel performance ranking information would be useful when considering non-best channels.

Conversely, when there are no other users, a player (the single user) can simultaneously utilize top-ranking 
options to accelerate the communication ability, similar to the channel bonding in local area networks10. The 
purpose of this study is to accurately recognize the order of the expected rewards of different arms using a 
chaotic laser time series and to minimize the reduction of accumulated rewards due to too detailed exploration.

Principles
Definition and assumption.  We consider a MAB problem in which a player selects one of K slot machines, 
where K = 2M and M is a natural number. The K slot machines are distinguished by identities numbered from 
0 to K − 1 , which are also represented in M-bit binary code given by S1S2 . . . SM with Si ∈ {0, 1} ( i = 1, . . . ,M ). 
For example, when K = 8 (orM = 3) , the slot machines are numbered by S1S2S3 = {000, 001, . . . , 110, 111} . In 
this study, we assume that µi  = µj if i  = j , and we define the k-th max and k-th argmax operators as maxk{} and 
argmaxk{} . The variables used in the study are defined as described below:

•	 Xi(n) : Obtained reward from arm i at time step n independent at each time step. xi(n) is observed value.
•	 µi := E[Xi(n)] . (Consistent regardless of time step)
•	 µ∗ := maxi µi , i∗ := argmaxi µi

•	 Ti(n) : Number of selections of arm i by the end of time step n. ti(n) is observed value.
•	 A(n): Arm selected at time step n. a(n) is the observed value.
•	 [k] := argmaxki µi : k-th best arm.

We estimate the arm order of reward expectations by calculating the sample mean of the accumulated reward 
at each time step. Specifically, the sample means of rewards obtained from arm i by time step n is calculated as 
follows:

In each time step n, we estimated the arm j := argmaxki µ̂i(n) as the k-th best arm.

Time‑division multiplexing of laser chaos.  The proposed method is based on the MAB algorithm 
reported in 20186. This method consists of the following steps: [STEP 1] decision making for each bit of the slot 
machines, [STEP 2] playing the selected slot machine, and [STEP 3] updating the threshold values.

[STEP 1] Decision for each bit of the slot machine.  First, the chaotic signal s(t1) measured at t = t1 is compared 
to a threshold value denoted as TH1 . If s(t1) ≥ TH1 , then bit S1 is assigned 1. Otherwise, S1 is assigned 0. To 
determine the value of Sk (k = 2, . . . ,M) , the chaotic signal s(tk) measured at t = tk (> tk−1) is compared to a 
threshold value denoted as THk,S1...Sk−1

 . If s(tk) ≥ THk,S1...Sk−1
 , then bit Sk is assigned 1. Otherwise, Sk is assigned 

0. After this process, a slot machine with the number represented in a binary code S1 . . . SM is selected.

[STEP 2] Slot machine play.  Play the selected slot machine.

[STEP 3] Threshold values adjustment.  If the selected slot machine yields a reward, then the threshold values 
are adjusted in a way that the same decision will be more likely to be selected. For example, if S1 is assigned 0 and 
the player gets a reward, then TH1 should be increased because doing so increases the likelihood of getting S1 = 0 
again. All of the other threshold values involved in determining the decision (i.e. TH2,S1 , . . . ,THM,S1...SM−1 ) are 
updated in the same manner.

If the selected slot machine does not yield a reward, then the threshold values are adjusted to make the same 
decision less likely to take place. For example, if S1 is assigned 1 and the player does not get a reward, then TH1 
should be increased because of the decreased likelihood of getting S1 = 1 . Again, all of the other threshold values 
involved in determining the decision (i.e. TH2,S1 , . . . ,THM,S1...SM−1 ) are updated in the same manner.

Arm order recognition algorithm with confidence intervals.  Confidence intervals.  An over-
view of our proposed algorithm is shown in Fig.  1a. For each threshold value THj,b1...bj−1 ( j ∈ {1, . . . ,M} , 
b1, . . . , bj−1 ∈ {0, 1} ) and z ∈ {0, 1} , the following values P̂(z; n) and C(z; n) are calculated:

Ij,b1...bj−1(z) represents a subset of machine arms. If machine i can be selected when the signal s(tj) is more than 
THj,b1...bj−1 , then i is included in Ij,b1...bj−1(1) . Otherwise, i is not included in Ij,b1...bj−1(1) . In the same way, if 

(1)µ̂i(n) =
Ri(n)

Ti(n)
, where Ri(n) :=

n
∑

s=1

Xi(s) · I[A(s) = i]

(2)P̂j,b1...bj−1(z; n) :=

∑

i∈Ij,b1 ...bj−1
(z) Ri(n)

∑

i∈Ij,b1 ...bj−1
(z) Ti(n)

, Cj,b1...bj−1(z; n) := γ ·
√

√

√

√

log n
∑

i∈Ij,b1 ...bj−1
(z) Ti(n)

(3)Ij,b1...bj−1(z) :=
{ {i |machine i is available if s(tj) ≥ THj,b1...bj−1 } (if z = 1)

{i|machine i is available if s(tj) < THj,b1...bj−1 } (if z = 0)
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machine i can be selected when the signal s(tj) is less than or equal to THj,b1...bj−1 , then i is included in Ij,b1...bj−1(0) . 
Otherwise, i is not included in Ij,b1...bj−1(0) . For example, in the case of an eight-armed bandit problem (Fig. 1b):

P̂j,b1...bj−1(z; n) represents the sample means of rewards obtained from machines in Ij,b1...bj−1(z) . Cj,b1...bj−1(z; n) 
represents the confidence interval width of the estimated value P̂j,b1...bj−1(z; n) . The lower C(z; n), the higher the 
estimation accuracy. Parameter γ indicates the degree of exploration : a higher γ means that more exploration 
is needed to reach a given confidence interval width.

Coarseness/fineness of exploration adjustments by confidence intervals.  At each threshold THj,b1...bj−1 , if the two 
intervals

are overlapped, we suppose there is a likelihood of a change in the order relationship between P̂(0; n) and P̂(1; n) ; 
that is, the order of P̂(0; n) and P̂(1; n) is not known yet. Therefore, the exploration process should be executed 
more carefully. Hence, the threshold value should be closer to 0, which is a balanced situation, or we should 
perform further exploration, so that the threshold adjustment becomes finer. Conversely, if the two intervals 
are not overlapped, then we suppose a low likelihood of a wrong estimate of the order relationship between 
P̂(0; n) and P̂(1; n) . Hence, we should continue exploration more coarsely so that the threshold adjustment will 
be accelerated (Fig. 1c).

Results
Experimental settings.  We have evaluated the performance of the methods for two cases: a four-armed 
bandit and an eight-armed bandit. First, the reward probability of each arm is assumed to follow the Bernoulli 
distribution: Pr(Xi = x) = µx

i (1− µi)
1−x . Each reward environment ν := (µ0, . . . ,µK−1) is set to satisfy the 

I1(0) = {0, 1, 2, 3}, I2,0(0) = {0, 1}, I2,1(1) = {3, 4}, I3,00(1) = {1}.

[

P̂(0; n)− C(0; n), P̂(0; n)+ C(0; n)
]

and
[

P̂(1; n)− C(1; n), P̂(1; n)+ C(1; n)
]

Figure 1.   Architecture of the proposed method with confidence intervals. (a) Solving the MAB with K = 2M 
arms using a pipelined arrangement of comparisons between thresholds and a series of chaotic signal sequences. 
(b) Correspondence between threshold value TH and a subset of arms I(z) (z ∈ {0, 1}) in the example of an 
eight-armed bandit problem. For each threshold TH∗ , two types of arm set I∗(0) and I∗(1) are defined. (c) 
Coarseness/fineness of exploration adjustment by confidence intervals. For each threshold TH∗ , the fineness of 
the threshold adjustment is changed depending on whether two confidence intervals P̂∗(0; n)± C∗(0; n) and 
P̂∗(1; n)± C∗(1; n) are overlapped. A part of images in (a) is adapted from Naruse et al., Sci. Rep. 8, 10890 
(2018). Copyright 2018 Author(s), licensed under a Creative Commons Attribution 4.0 License.



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4459  | https://doi.org/10.1038/s41598-021-83726-8

www.nature.com/scientificreports/

following conditions: (i) ∀i : µi ∈ {0.1, 0.2, . . . , 0.8, 0.9} , (ii) i  = j ⇒ µi  = µj . In this experiment, a variety of 
assignments of reward probabilities ν satisfying the above conditions were prepared, and the performance was 
evaluated under every reward environment ν . We have defined the reward, regret, and correct order rate (COR) 
as metrics to quantitatively evaluate the performance of the method.

where n denotes number of time steps, ti(n) is the number of selections of arm i up to time step n, and lm repre-
sents the number of measurements in one reward environment ν . For the accuracy of arm order recognition, we 
considered the estimation accuracy of the top four arms regardless of the total number of arms. We prepared all 
144 reward environments ν (all combinations satisfying the above conditions and maxi  =j |µi − µj| = 0.3 ) for 
the four-armed bandit problems and 100 randomly selected reward environments for the eight-armed bandit 
problems. The performances of four methods were compared: RoundRobin (all arms are selected in order at 
each time step), UCB1 (method for maximizing the total rewards proposed in 200211), Chaos (previous method 
using the laser chaos time series6, only finding the best arm, not recognizing the order), and Chaos-CI (proposed 
method using laser chaos time series and with confidence intervals). The details of UCB1 used in the present 
study are described in the Methods section. The purpose of this study is to extend the existing Chaos method to 
recognize the arm order. We should consider the trade-off between order recognition and reward maximization. 
As introduced above, RoundRobin and UCB1 were considered to examine quantitative performance analysis. 
RoundRobin systematically accomplishes the order recognition whereas UCB1 is known to achieve O(log n) 
regret at time n. We consider that these are appropriate and contrasting representative methods in the literature 
to examine the trade-off and the essential interest of the present study. Meanwhile, comparison to other bandit 
algorithms such as Thompson sampling12 or arm elimination13 is expected to trigger stimulating future discus-
sions, leading to further improvement of the proposed Chaos-CI algorithm.

Evaluation under one reward environment.  The curves in Fig. 2a and b show the time evolutions of regret(n) and 
COR(n) , respectively, over lm = 12, 000 measurements under specific reward environments ν = (µ0, . . . ,µK−1) . 
Specifically, columns (i) and (ii) pertain to the four-armed bandit problems defined by ν = (0.9, 0.8, 0.7, 0.6) 

(4)reward(n) := 1

lm

lm
∑

l=1

[

n
∑

s=1

x
(l)

a(l)(s)
(s)

]
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�
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


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Figure 2.   Time evolution of metrics COR(n) and regret(n) under one reward environment ν . Each column 
shows the results under each environment: the left two columns are in the four-armed bandit and the right two 
columns are in the eight-armed bandit. (a) COR(n) calculated as Eq. (6). (b) regret(n) calculated as Eq. (5).
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and ν = (0.4, 0.3, 0.2, 0.1) , whereas columns (iii) and (iv) depict the eight-armed bandit problems given by 
ν = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) and ν = (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2) . The curves were colour coded 
for an easy method comparison. In the arm order recognition, Chaos-CI and RoundRobin presented high accu-
racy in the early time step. In terms of total reward, Chaos and UCB1 achieved the greatest rewards. The post-
convergence behavior of Chaos and Chaos-CI is not necessarily the same. The reason is that the parameters � 
and � that determine the scale of threshold change are fixed values in Chaos, whereas they change adaptively 
according to past reward information in Chaos-CI.

Evaluation of the whole reward environments.  Figure 3a summarizes the relationship between total rewards and 
order estimation accuracy: x-axis represents the normalized reward reward†(n) , whereas y-axis represents the 
COR COR(n) . Here, a normalized reward is defined as follows:

Each plot in the graph indicates reward†(n) and COR(n) at time step n = 10,000 under one reward environment ν:

Figure 3b shows the time evolution of the average value of each metric over the whole ensemble of reward envi-
ronments from n = 1 to n = 10,000:

Compared to UCB1, Chaos-CI can recognize the arm order faster. On the other hand, Chaos-CI can get more 
rewards than RoundRobin.

reward†(n) := reward(n)

µ∗ · n .

(reward†ν(10,000), CORν(10,000)).

∑

ν CORν(n)
∑

ν 1
,

∑

ν reward
†
ν(n)

∑

ν 1
, (1 ≤ n ≤ 10,000).

Figure 3.   Metrics over the whole reward environments prepared. (a) Each scatter plot represents a normalized 
reward reward†(n) and correct order rate COR(n) at time step n = 10,000 under one reward environment ν : 
(reward†ν(10,000), CORν(10,000)) . The more the scatter plot is at the top of the graph, the higher the order 
estimation accuracy is, and the more the scatter plot is at the right, the greater the obtained reward is. (b) Time 
evolution of the average value of each metric over the whole ensemble of reward environments ( 1 ≤ n ≤ 10,000).
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Discussion
Difficulty of maximizing rewards and arm order recognition.  The results of the numerical simula-
tions on the four-armed and eight-armed bandit problems show similar trends: there is a trade-off between the 
maximized total rewards and arm order recognition. As RoundRobin selects all arms equally, we always achieve 
a perfect COR at a time step n = 10,000 for any given reward environment. However, we cannot maximize 
rewards because regret linearly increases with time. On the contrary, in Chaos, we achieved normalized rewards 
of almost unity at the time step of n = 10,000 with respect to many types of reward environments. However, we 
can observe inferior performances regarding the arm order recognition accuracy because the arm selection is 
greatly biased to the best arm. In terms of the COR, the COR on RoundRobin and Chaos-CI (proposed method) 
quickly converged to unity. In terms of the total rewards, Chaos (previous method) and UCB1 are more active 
in using the exploitation principle to obtain greater rewards. The proposed method, Chaos-CI, achieves an out-
standing performance on the arm order recognition and reward.

Number of arm selections.  Figure  4a, b, and c show the time evolutions of Ti(n) by UCB1, Chaos 
and Chaos-CI, respectively (RoundRobin leading to equal number of selections for all arms at any time). 
Here, we examine the two types of reward environments ν1 and ν2 in an eight-armed bandit given by 
ν1 := (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) and ν2 := (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2) corresponding to the left and 
right columns of Fig. 4.

This figure shows that the selection number of the best arm (i.e. T[1](n) ) increases by O(n) and Ti(n) (i  = i∗) 
increases almost by O(log n) in UCB1. Through the evolution of Ti(n) , UCB1 can achieve a regret of O(log n) , 
but the convergence of COR(n) is slow. In the proposed Chaos-CI, the selection number of every arm evolves 

Figure 4.   Time evolution of the selection number of each arm for three methods: UCB1, Chaos, and Chaos-CI. 
The three figures on the left represent Ti(n) under reward environment ν1 , and the three on the right represent 
under ν2 . Each row represents the result of each method: (a) UCB1, (b) Chaos, and (c) Chaos-CI.
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in a linear order. Therefore, the arm order recognition accuracy is faster than UCB1. Although the selections of 
non-top arms in the linear order cause regret to increase in a linear order, the slope of the linear-order regret is 
significantly decreased compared with that of RoundRobin by selecting better arms more often or by prioritizing 
the search (i.e. T[1](n) > · · · > T[K](n)).

Environment dependency.  As shown in Figs. 3 and 4, the performances of Chaos are very different depending 
on reward environments ν1 and ν2 . This finding is clearly linked with the arm selection number Ti(n) . In reward envi-
ronment ν1 , all Ti(n) evolve in a linear order, but in reward environment ν2 , Ti(n) (i  = i∗) is approximately 100 at time 
step n = 50,000 . Thus, the performance of Chaos heavily depends on the given reward environment. Table 1 summa-
rizes the sample variance of metrics over 100 reward environments in an eight-armed bandit. Our proposed algorithm 
(Chaos-CI) depends on the order of the arms. If the difference between the average reward of each branch is large, 
we consider that the ranking estimation is easy. However, from Fig. 3(a) and Table 1, we observe that the proposed 
method always estimates the rankings with high accuracy regardless of the order of the arms. This estimation accuracy 
outperforms the performance of UCB1, which is an algorithm that does not depend on the order of the arms. In terms 
of obtained rewards, Chaos-CI has a larger variance than UCB1 and Chaos but is more stable than RoundRobin.

In the experiments, the expected reward µi is limited so that the difference in the estimated difficulty does 
not vary drastically from problem to problem because the larger the difference in the expected reward value of 
each arm, the easier the problem becomes to solve. Meanwhile, if the difference in reward expectation for each 
arm becomes even smaller (specifically, smaller than 0.1), the correct order recognition in its exact sense will be 
significantly challenging. At the same time though, such a case means that there are not significant reward differ-
ences regardless of which arm is pulled. Hence, we consider that the evaluation method or the definition of cor-
rect order recognition may need revision. We expect these points to form the basis of interesting future studies.

On the other hand, if the reward distribution is more diverse, for example, [0.95, 0.9, 0.6, 0.5], UCB1, which 
aims to maximize the cumulative reward, will stop selecting the lower-reward-probability arms at an early explo-
ration phase, leading to the degradation of the accuracy of rank recognition. Conversely, since the proposed 
method adjusts the thresholds based on the confidence intervals in all branches, it is expected that the rank 
recognition accuracy will not be degraded.

Conclusions
In this study, we have examined ultrafast decision making with laser chaos time series in reinforcement learning 
(e.g. MAB) and set a goal to recognize the arm order of reward expectations by expanding the previous method, 
that is, time-division multiplexing of laser chaos recordings. In the proposed method, we have introduced 
exploration-degree adjustments based on confidence intervals of estimated rewards. The results of the numerical 
simulations based on experimental time series show that the selection number of each arm increases linearly, 
leading to a high and rapid order recognition accuracy. Furthermore, arms with higher reward expectations are 
selected more frequently; hence, the slope of regret is reduced, although the selection number of an arm still 
linearly increases. Compared with UCB1 and Chaos, Chaos-CI (proposed method) is less dependent on the 
reward environment, indicating its potential significance in terms of robustness to environmental changes. In 
other words, Chaos-CI can make more accurate and stable estimates of arm order. Meanwhile, expressing the 
accuracy of rank estimation in terms of earned rewards in a single metric is an interesting, important, and chal-
lenging problem. We plan to explore this in our future research. Such an order recognition is useful in applica-
tions, such as channel selection and resource allocation in information and communications technology, where 
compromise actions or intelligent arbitrations are expected.

Methods
Optical system.  The device used was a distributed feedback semiconductor laser mounted on a butterfly 
package with optical fibre pigtails (NTT Electronics, KELD1C5GAAA). The injection current of the semicon-
ductor laser was set to 58.5 mA (5.37Ith ), where the lasing threshold Ith was 10.9 mA. The relaxation oscillation 
frequency of the laser was 6.5 GHz, and its temperature was maintained at 294.83 K. The optical output power 
was 13.2 mW. The laser was connected to a variable fibred reflector through a fibre coupler, where a fraction of 
light was reflected back to the laser, generating high-frequency chaotic oscillations of optical intensity3,14,15. The 
length of the fibre between the laser and reflector was 4.55 m, corresponding to a feedback delay time (round 
trip) of 43.8 ns. Polarization maintaining fibres were used for all of the optical fibre components. The optical 
signal was detected by a photodetector (New Focus, 1474-A, 38 GHz bandwidth) and sampled using a digital 
oscilloscope (Tektronics, DPO73304D, 33 GHz bandwidth, 100 GSample/s, eight-bit vertical resolution). The 
RF spectrum of the laser was measured by an RF spectrum analyzer (Agilent, N9010A-544, 44 GHz bandwidth).

Table 1.   Sample average and variance of metrics over 100 reward environments.(n = 10,000)

COR reward
†

Average Variance Average Variance ( ×10−3)

RoundRobin 1 0 0.560 0.8852

UCB1 0.888 0.0026 0.967 0.0116

Chaos 0.497 0.0413 0.985 0.3073

Chaos-CI 0.982 0.0004 0.899 0.6140
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USB1 algorithm.  In UCB111, we select the arm j that maximize the score based on

where X̄j(n) is the expected average reward obtained from arm j, Tj(n) is the number of times machine j is played 
so far, and n is the total numbers of plays so far.

Details of the time‑division multiplexing algorithm. 

Parameters setting.  In the experiments, we set the parameters in Algorithm  1 as follows: α = 0.99 , � = 1 , 
� = 0.1 . These are the same values as the previous experiment6. The signal s(τ ) is represented by an 8-bit integer 
type: −128 ≤ s(τ ) < 128.

Convergence of Algorithm 1 based on uniform distribution.  This discussion on the convergence concerns only 
the two-armed bandit, while the random sequences are uniformly distributed and independent each time – 
something that does not concern chaotic time sequences. We assume that K = 2 and the time series used for 
comparison with thresholds follows a uniform distribution of [−1/2, 1/2] at an arbitrary time. We define the 
value of threshold TH1 at the beginning of time step n as w(n). The time evolution of w(n) can be represented as

The expectation of w(n) is represented as follows.

Because we assume that s(t) follows a uniform distribution, if max{n�, n�} < 1/2,

(7)X̄j(n)+
√

2 log n

Tj(n)

(8)

w(n+ 1) = αw(n)+ q(n)

where q(n) :=











+� (ifA(n) = 0,X0(n) = 1)
−� (ifA(n) = 1,X1(n) = 1)
+� (ifA(n) = 1,X1(n) = 0)
−� (ifA(n) = 0,X0(n) = 0)

.

(9)

E
[

q(n)
]

= �Pr(A(n) = 0,X0(n) = 1)−�Pr(A(n) = 1,X1(n) = 1)

+�Pr(A(n) = 1,X1(n) = 0)−�Pr(A(n) = 0,X0(n) = 0)

= �µ0Pr(A(n) = 0)−�µ1Pr(A(n) = 1)+�(1− µ1)Pr(A(n) = 1)−�(1− µ0)Pr(A(n) = 0)

= {(�+�)µ0 −�}Pr(A(n) = 0)− {(�+�)µ1 −�}Pr(A(n) = 1).
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By Eqs. (8) and (9),

Equation (10) can lead to

where

Equation (11) indicates that Pr(A(n) = 0) and Pr(A(n) = 1) converge to a certain value in (0,  1) if 
|P/(1− Q)| < 1/2 and |Q| < 1 . In this case, the number of selections for each arm linearly increases. Further-
more, if |P/(1− Q)| ≥ 1/2 or |Q| ≥ 1 , then convergence or divergence occurs at |E[w(n)]| ≥ 1/2 , which leads to 
Pr(A(n) = 1) ≈ 1 or Pr(A(n) = 0) ≈ 1 . In this case, one of the arms will be selected intensively as time passes.

The above discussion shows that the convergence and performance of Algorithm 1 depend on learning rate 
α , exploration degree (�,�) , and reward environment (µ0,µ1).

Details of the proposed method. 

Pr(A(n) = 0) =
∫

Pr(A(n) = 0|w(n) = x) · Pr(w(n) = x)dx

=
∫

(

1

2
+ x

)

Pr(w(n) = x)dx

= 1

2
+ E[w(n)],

Pr(A(n) = 1) =
∫

Pr(A(n) = 1|w(n) = x) · Pr(w(n) = x)dx

=
∫

(

1

2
− x

)

Pr(w(n) = x)dx

= 1

2
− E[w(n)].

(10)
E[w(n+ 1)] = αE[w(n)]+ E

[

q(n)
]

= 1

2
(�+�)(µ0 − µ1)+ {α + (�+�)(µ0 + µ1)− 2�}E[w(n)].

(11)E[w(n)] = P

1− Q
+ Qn−1

(

E[w(1)]− P

1− Q

)

P := 1

2
(�+�)(µ0 − µ1), Q := α + (�+�)(µ0 + µ1)− 2�.
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Parameters setting.  In the experiments, we set the parameters in Algorithm 1 as follows: α = 0.99 , �init = 1 , 
�init = 0.1 , d = 10 , β = 2 . We also set γ = 1/

√
2 , which is the scale parameter for the confidence intervals. The 

signal s(τ ) is converted into an 8-bit integer variable type: −128 ≤ s(τ ) < 128.

Dependency for scale parameter of confidence intervals.  Figure 5 shows the influence of the parameter of con-
fidence intervals. γ is a parameter related to the width of confidence intervals. We can see that the correct order 
rate becomes higher and the obtained rewards smaller as γ becomes smaller, and vice versa. When γ =

√
2 , the 

reward and the correct order rate are relatively high; we use this value for γ in Chaos-CI described in the main 
text.

Convergence of the proposed method based on uniform distribution.  As described above, we have found that the 
performance of the algorithm proposed is heavily dependent on parameters (�,�) . Therefore, in the proposed 
method, exploration-degree adjustments based on confidence intervals are added to Algorithm 1: if the explora-
tion itself is not sufficient, then thresholds are set close to 0 and values of (�,�) decrease, so thresholds are less 
likely to diverge, which leads to improved accuracy. If exploration is applied sufficiently, then the values of (�,�) 
increase, so the thresholds are more likely to diverge, which leads to an intensive selection of a better arm and 
slow increase of regret.

Data availability
The datasets generated during the current study are available from the corresponding author on reasonable 
request.
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