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Medication harm is in the spotlight with the 
World Health Organization’s (WHO) Global 
Patient Safety challenge.1 Defined as “any nega-
tive patient outcome or injury related to a medi-
cation”,2 it is a costly problem for healthcare 
systems. Mortality, secondary to medication 
harm, is reported at 0.3% of all hospital patients.3,4 
Recent local studies in two Australian hospitals 
linked medication harm to anticoagulants, insulin 
and antihypertensives,5,6 which is similar to find-
ings from other health systems.7,8

The WHO has set a target of reducing medication 
harm by 50%, in particular by expediting digital 
solutions. In response there has been a flurry of 
publications on predictive modelling to help with 
early detection and prediction of those at high 
risk.5,9–11

Identifying medication harm is challenging how-
ever, as it occurs in combination with other 
causal factors and spans all hospital events. The 
difficulty of defining causality is reflected in the 
wide ranges of reported rates of inpatient medi-
cation harm, ranging from 1.6% to 35% of 
admissions.8,12,13 Incident reporting by clinicians 
is the traditional method of ascertaining medica-
tion harm. However, under-reporting is the 
norm and incident reports reflect only the tip of 
the medication-harm iceberg. Further, incident 
reporting systems focus on errors and do not 
include patient harm arising from appropriate 
medicines use. The gold standard method is a 
prospective appraisal of patient medical records, 
laboratory tests and interviews with patients and 
care providers.14,15 This approach is considered 
the most reliable as it is likely to detect more inci-
dents than retrospective methods, but it is 
resource intensive and not feasible in large patient 
cohorts.

Targeted review of medical records using coded 
data or trigger tools (TTs) to identify which 
records should be reviewed is one method to 
address this.16,17 This is increasingly viable with 
the availability of digital healthcare data for trig-
gers. Identification of medication harm using rou-
tinely collected patient data is important as it is a 
major opportunity for improving clinical care. We 
propose a bimodal, targeted approach combining 
triggers and diagnostic codes to identify inpatient 
medication harm. We also discuss how machine 
learning (ML) and clinicians working at the coal 
face can improve medication-harm detection.

Targeted retrospective medical record 
review in the hospital setting
Traditionally epidemiological evidence of medi-
cation harm is from studies using retrospective 
medical record review, for example the Harvard 
Medical Practice Study and other similar stud-
ies.18,19 These studies retrospectively reviewed all 
patient records to detect the presence of harm. 
However, this non-targeted review (i.e. screening 
every patient record) is resource intensive and the 
determination of causality is difficult.14 Methods 
to reduce the volume of records and improve 
validity are needed.

Two methods that use a targeted method to facili-
tate a structured approach to medical record 
review include the use of triggers20,21 and clinical 
coding data.22 The Adverse Drug Event Trigger 
Tool (ADE TT) described by Rozich20 and later 
refined by the Institute for Health Care 
Improvement enables targeted medical record 
review.23 The ADE TT contains a set of triggers 
which signal that medication harm may have 
occurred.23 Triggers include administration of 
antidotes or out-of-range laboratory results, for 
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example, administration of protamine sulphate 
and/or a supratherapeutic activated partial throm-
boplastin time (aPTT), signalling a potential 
bleed due to heparin therapy.

There are now several TTs available. One study 
evaluated 8 different TT methods in 1115 adult 
inpatients and found low sensitivities, ranging 
from 2% to 16%, but high specificities of 99%.24 
A systematic review of automated ADE detec-
tion in electronic health records using TTs iden-
tified 11 studies (7 of which were in a paediatric 
population), with a median positive predictive 
(PPV) value of 40%.25 Another TT for identify-
ing medication harm in older adult inpatients 
(TRIGGER-CHRON) was evaluated across 12 
Spanish hospitals and reported an overall PPV of 
22%.26 The differences in findings may in part 
be due to patient cohorts (i.e. age), and varia-
tions in trigger sets. It should be noted that TTs 
with high PPVs are possible through the selec-
tion of individual triggers with higher PPVs, 
however this comes at a cost of losing clinically 
important but rare adverse events.27 Whilst a 
wide range of PPVs have been reported, findings 
indicate that there is the potential to use TTs to 
drive medication-harm detection and spearhead 
patient safety initiatives. The advent of elec-
tronic health records (EHRs) is well suited to the 
TT methodology, which can be systematically 
applied to hospital records (e.g. by specifying 
predetermined threshold changes for laboratory 
tests), using automated algorithms, to detect 
harm in real time and at an institutional level.28 
Work to update and standardise the triggers is 
needed.

A second method is the use of coding data. 
International Classification of Disease (ICD) 
codes are allocated for every hospital separation, 
primarily for reimbursement purposes. ICD-
10-Y codes (medication-related codes) can be 
coupled with diagnosis codes (e.g. codes for 
bleeding or hypoglycaemia) as prompts for medi-
cal record review in large data sets.29 Similar to 
TTs, studies evaluating ICD codes report varia-
ble accuracy, with sensitivities ranging from 6% 
to 56% and specificity ranging from 95% to 
99%.17,22,30 For example, a Canadian study 
reported sensitivities of 9–83% when evaluating 
ICD codes at four tertiary hospitals.31 The wide 
range of sensitivities suggest that coding prac-
tices (i.e. extent of clinician documentation and 

the skill of coders) are likely to determine the 
effectiveness of coding.

One potential approach to improve validity is to 
use a bimodal approach using both ADE TT and 
coding in the same EHRs. This can be stream-
lined to flag patient records for potential medica-
tion harm for clinical review to establish causality. 
Furthermore, triggers can be adapted to local cir-
cumstances, and for special populations (e.g. 
older adults).32 Validated causality assignment 
tools, such as the WHO Uppsala Monitoring 
Centre criteria, should be used to standardise 
assessments.33 A review of the literature found no 
studies evaluating this bimodal approach.

ML and automated harm detection
ML methods are becoming increasingly popular 
in the healthcare setting to assist clinicians with 
diagnosis and prognosis.34,35 Whilst in their 
infancy, studies have explored the use of ML to 
predict or detect medication harm. A recent study 
described the development of multiple risk pre-
diction models.36 The authors utilised a de-iden-
tified dataset from a Swedish hospital. A series of 
ICD-10 codes related to the diagnosis of medica-
tion harm were used as the outcomes for models 
(e.g. I95.2 = drug-related hypotension). Whilst 
some models achieved high area under the curve 
(AUC) for their predictive performance (ranging 
from 0.8 to 0.9), there was no clinical verification 
of the accuracy of the coded outcome data (i.e. 
causality assessment to ensure codes were cor-
rectly allocated).36 An Australian study also 
reported using ML and ICD codes to detect med-
ication harm in a tertiary hospital. The automated 
algorithm demonstrated promising performance 
with an AUC of 0.803.37

Whilst ML offers an exciting opportunity to 
detect harm on a large scale, its success is depend-
ent on the availability of high-quality data. This is 
challenging with outcomes that are sparse and 
difficult to verify, such as medication harm. 
Furthermore compared with conventional statis-
tical methods, the inner workings of ML models 
are not transparent and they can lack face valid-
ity.38,39 This modelling approach can be abstract 
to clinicians, known as the so-called ‘black box’, it 
creates challenges in detection of bias, overfitting 
and for external evaluation and user acceptance 
testing.40
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Conclusion
For harm-mitigation strategies to be successful a 
pragmatic standardised approach to detection is 
essential. Leveraging a targeted, bimodal method 
of medical record review enables healthcare pro-
fessionals to capitalise on the availability of EHRs 
to assist with the detection of medication harm.
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