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Abstract

Background: An increasing number of observational studies combine large sample sizes

with low participation rates, which could lead to standard inference failing to control the

false-discovery rate. We investigated if the ‘empirical calibration of P-value’ method

(EPCV), reliant on negative controls, can preserve type I error in the context of survival

analysis.

Methods: We used simulated cohort studies with 50% participation rate and two different

selection bias mechanisms, and a real-life application on predictors of cancer mortality

using data from four population-based cohorts in Northern Italy (n¼6976 men and

women aged 25–74 years at baseline and 17 years of median follow-up).

Results: Type I error for the standard Cox model was above the 5% nominal level in 15

out of 16 simulated settings; for n¼10 000, the chances of a null association with hazard

ratio¼ 1.05 having a P-value< 0.05 were 42.5%. Conversely, EPCV with 10 negative con-

trols preserved the 5% nominal level in all the simulation settings, reducing bias in the

point estimate by 80–90% when its main assumption was verified. In the real case, 15 out

of 21 (71%) blood markers with no association with cancer mortality according to litera-

ture had a P-value< 0.05 in age- and gender-adjusted Cox models. After calibration, only

1 (4.8%) remained statistically significant.

Conclusions: In the analyses of large observational studies prone to selection bias, the

use of empirical distribution to calibrate P-values can substantially reduce the number of

trivial results needing further screening for relevance and external validity.
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Introduction

Non-communicable diseases represent the major global

health challenge of the 21st century, with 36 million deaths

(63% of the total) occurring globally in 2008.1 Nevertheless,

a substantial number of non-communicable diseases can be

avoided or delayed until significantly late in life by preven-

tion,2 especially when healthy lifestyles are adopted and

maintained from early adulthood to middle age.3,4

In a recent editorial, ‘precision prevention’ has been de-

fined as the possibility of ‘providing the right intervention

to the right population at the right time’ before disease

manifestation.5 An example is the identification of high-

risk subpopulations, such as those in low socioeconomic

groups,6–7 for tailored preventive interventions. However,

the current preventive guidelines are generally designed for

the ‘average individual’ in the population, despite standard

recommendations being potentially not beneficial (or pos-

sibly harmful) to specific subgroups. For instance, the rec-

ommended levels of leisure time physical activity increased

cardiovascular disease risk among men with intense occu-

pational physical activity.8 The availability of ‘big data’

from large observational studies is therefore expected to

help deal with the needs of preventive medicine.9 The large

sample size allows investigation of specific subgroups with

enough statistical power, and the combination of data

from multiple sources allows investigation of an increasing

number of new markers to improve risk stratification.10

The appearance of ‘big data’ in the epidemiological arena

is not free from methodological concerns.11–13 The low partic-

ipation rate observed in large biobanks12 or the adoption of

self-selected, convenient samples (e.g. in studies based on

Mobile-research platforms) may exacerbate the risk of selec-

tion bias generally present in observational research.13 This

bias, combined with large sample sizes, may result in type I er-

ror rate inflation above the nominal alpha level and a number

of false-positive results that need further screening for clinical

relevance.11 In the context of pharmacoepidemiological

studies on drug administrative records, Schuemie and col-

leagues introduced the ‘empirical calibration of P-value’ as a

method to control type I error.14–15 In that specific field and

using a logistic regression model, the method showed a satis-

factory control of type I error rate,14–16 at the price of a sub-

stantially increased probability of type II error.16

In this paper, we aim to investigate the method’s control

of type I error rate in the presence of selection bias and in

the context of survival analysis, using a comprehensive

plan of simulations. In addition, we apply the method to a

collaborative cohort study, to discuss its performance and

practicability in real-word analyses.

Methods

Review of the empirical calibration of P-value

method

The empirical calibration of P-value method relies on a set of

variables with no known association with the study outcome

(‘negative controls’, NCs) to obtain a distribution of effect

sizes under the null hypothesis (‘empirical null distribution’) in

the available data.14 After being estimated from the data, the

parameters of the null empirical distribution can be used to

calibrate the test statistic and the P-value for the exposure of

interest, assuming that bias arises from the same distribution

(aka ‘exchangeability’ assumption). Full details on the method

are reported in the Supplementary data available at IJE online.

Simulation plan

We conceived selection bias as an underlying mechanism

(Z) driving participation in the study sample used to make

inference on the true relationship between an exposure (X)

and an outcome (Y). In other words, the vector of data (xj,

yj) for the j-th individual in the population of interest is ob-

served with probability pj which depends on Z: pj ¼
Prob[missing(xj, yj) ¼1j zj)]. We simulated Z and the

Key Messages

• An increasing number of observational studies combine large sample sizes with low participation rates. It is not yet

known if standard inference can adequately control type I error in this new situation.

• In simulated cohorts mimicking 50% participation rate and n¼10 000, the chances of a null association with a hazard

ratio of 1.05 being statistically significant are 42.5%. Conversely, we show in simulations and in a real study that us-

ing the empirical distribution to calibrate P-values can maintain the type I error rate close to the desired 5% nominal

level.

• The analyses of large observational studies prone to selection bias require dedicated tools to limit false-positive find-

ings. The calibration of P-values can substantially reduce the number of trivial results needing further screening for

relevance.
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continuous exposure of interest X from a bivariate normal

distribution with mean vector
lZ

lX

� �
¼ 0

0

� �
and variance-

covariance matrix
1 rZ;X

rZ;X 1

� �
, with rZ;X ¼ 0:2. In sen-

sitivity analyses, the choice of larger values of rZ;X

did not alter our findings substantially. The failure time

T was generated from the exponential model as17

T ¼ � log Uð Þ
kexp bX�XþbZ�Zð Þ ; where k is a suitable constant, U is

a random number for the uniform distribution on the unit

interval, bX was 0 (in simulations for type I error), 0.1 or

0.2 (in simulations for type II error), and bZ was 0.2 or

0.4. Censorship time was also generated from the same ex-

ponential model, but independently of X and Z. The ob-

served follow-up time was the lowest value between failure

time, censorship time and a fixed constant to mimic admin-

istrative censorship due to the end of follow-up at a given

date in real studies. We set the outcome variable Y¼ 1

when the observed follow-up time was equal to the failure

time, and Y¼ 0 otherwise. The choice of the constant val-

ues yielded to an event rate in different scenarios of about

10%. The two scenarios in Tables 1 and 2 are a combina-

tion of values for bZ and rZ;X, and represent different

amounts of bias in the data. As a third step, we simulated

negative controls as a number i¼1 to I of continuous vari-

ables (I¼ 10, 30 or 50) with no role in failure time T and

therefore not associated with the study outcome. Each NCi

was simulated from a bivariate normal distribution with

mean vector
lZ

lNCi

� �
¼ 0

0

� �
and variance-covariance

matrix
1 rZ;NCi

rZ;NCi 1

� �
.

The correlation term rZ;NCi ranged between 0.0 and 0.3

in one set of simulations (Table 1), and between -0.3 and

0.3 in a second set of simulations (Table 2). For a fixed

value of bZ, the sign of the correlation between X and Z

drives the direction of the bias for the estimator of the as-

sociation between X and the outcome. Therefore, the set of

values for rZ;NCi between -0.3 and 0.3 corresponds to a sit-

uation in which the exchangeability assumption is relaxed.

We set two distinct values for sample sizes, n¼ 5000 and

n¼ 20 000; and a number R¼ 200 of replications.

We then applied two distinct selection bias mechanisms.

Under mechanism 1, simulated data (xj, yj) for the j-th

individual were set at missing with probability pj equal

to 0.1, 0.5 and 0.9 according to sample tertiles of Z; i.e. pj

increased for increasing values of Z. Since Z is positively

associated with the outcome, the event rate under the first

mechanism was below the population value of 10%; i.e.

each simulated dataset corresponds to a study setting in

which healthier individuals are more likely to participate.

Under mechanism 2, the probability pj decreased for in-

creasing values of Z (values of 0.9, 0.5 and 0.1), resulting

in an event rate above the population value of 10%; i.e.

each simulated dataset corresponds to a study setting in

which unhealthier participants are more likely to partici-

pate. On average, in both mechanisms, the probability of

missing data was 0.495, mimicking a real-word participa-

tion rate of about 50%. Finally, we also introduced the

possibility of missing-at-random in the NC variables, as in

real-life studies not all the variables are available for all the

study participants. We estimated b̂X; raw from Cox regres-

sion models on the available data after having applied the

selection bias mechanisms (i.e. on datasets of size n¼ 2500

and n¼ 10 000), and derived b̂X; calibrated using the empiri-

cal calibration method. We computed: rejection rate, as

the number of P-values below 0.05 on the total number R

of replications; bias, as the average over R of the difference

between the numerator in the t statistic for b̂X; raw and

b̂X; calibrated with the true value of bX; and standard devia-

tion, as the average over R of the denominator of the t

statistic for b̂X; raw and b̂X; calibrated.

Real data application

The study sample is constituted by participants in four

population-based prospective cohorts, namely three inde-

pendent surveys of the MONICA-Brianza study (baseline

periods: 1986–87, 1989–90 and 1993–94) and the

PAMELA cohort study, with baseline visit between 1990

and 1993. A single team of researchers conducted these

studies in the same area (located north of Milan) and

adopted a standardized protocol for baseline visits and

follow-up procedures.8 Participation rates were between

65% and 70%. The follow-up activities for the study

cohorts were approved by the local ethics committee of the

University Hospital of Monza. A signed informed consent

was not a requisite at the time of recruitment (1986–94).

Follow-up for mortality ended in December 2008. At base-

line, a fasting serum blood sample was drawn from each

participant and n¼34 markers were measured on the fresh

specimens in a centralized laboratory. To investigate the

association between blood markers and cancer mortality in

the general population, we provided the list of available

markers to a clinical oncologist (SG), initially blinded

about the objective of the research. After a review of the

relevant literature, SG indicated n¼21 negative controls

and n¼ 13 positive associations, listed in Supplementary

Table 1 and 2, available as Supplementary data at IJE on-

line, respectively. We first estimated the hazard ratio of

cancer mortality for 1 standard deviation-increase for each

of the 34 markers from Cox regression models, adjusting

for age and gender. To investigate type I error, we applied
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the empirical calibration of P-value method to negative

controls using a leave-one-out cross-validation approach.15

Then, to assess type II error, we applied the empirical cali-

bration method to each of the 13 positive controls, using

the full set of 21 NCs.

The analyses were performed using standard

procedures in the SAS Software, release 9.4; Figures 1

and 2 were drawn using R. Programming statements for

the simulation study are available as Supplementary data

at IJE online.

Results

Simulation study

Table 1 shows the simulation results for type I error when

the exchangeability assumption is met. The rejection rate for

the raw method (standard analysis) was above the nominal

5% level in seven out of eight simulated scenarios, with a

peak of 42.5%. The rate rose with increasing bias and sam-

ple size, and it was generally higher in selection mechanism 2

(i.e. when unhealthier individuals are more likely to partici-

pate in the study) than in selection mechanism 1. Conversely,

the empirical calibration of P-values maintained the rejection

rates close to the nominal 5% level in both selection mecha-

nisms, at the same time reducing average bias by 80–90%

compared with the bias of the raw method. These figures

were already achieved with a number of NC equal to 10.

When we relaxed the exchangeability assumption

(Table 2), the empirical calibration of P-values still main-

tained a satisfactory control of type I error rate compared

with the raw method, in all the combinations of selection

mechanism, bias scenario and sample size. The method’s

performance generally improved for increases in the num-

ber of NCs. However, there was no effect in terms of re-

duction in average bias compared with the raw estimator;

the lower rejection rate was obtained through an increase

in the average standard deviation. Supplementary Figure 1,

available as Supplementary data at IJE online, shows the

forest plot for 30 NCs corresponding to one simulated

dataset when the exchangeability assumption is met (panel

a) or not met (panel b).

Figure 1 shows the rejection rates for true effect sizes bX

equal to 0.1 and 0.2 (corresponding to hazard ratios of

1.1. and 1.2 per 1 SD increase in X, respectively), from the

type II error simulation study when requirements for the

exchangeability assumption are met and under a mild bias.

Under selection mechanism 1 (panel a), the empirical cali-

bration of the P-value method is underpowered only for a

sample size of 2500 and a true hazard ratio of 1.1. It is

worthy of note that under the same conditions, the stan-

dard method has a rejection rate below 50% as well.

Table 1. Rejection rate, average bias and average standard deviation (SD) over R¼200 replications using standard and cali-

brated P-value, for type I error simulation study under the exchangeability assumptiona

Bias scenario Sample sizeb Method Selection mechanism 1c Selection mechanism 2d

Rejection rate (%) Bias SD Rejection rate (%) Bias SD

Mild (bZ ¼ 0:2,

corr(X, Z)¼0.2)

N ¼ 2500 Raw 5.0 0.024 0.068 7.0 0.025 0.061

Calib, # NC¼10 5.0 0.003 0.074 5.0 0.005 0.069

Calib, # NC¼30 3.5 0.004 0.073 3.0 0.006 0.066

Calib, # NC¼50 3.5 0.005 0.071 3.5 0.006 0.064

N ¼ 10 000 Raw 12.5 0.023 0.034 14.5 0.025 0.030

Calib, # NC¼10 5.5 0.005 0.039 4.0 0.007 0.035

Calib, # NC¼30 3.5 0.004 0.038 4.5 0.008 0.034

Calib, # NC¼50 4.0 0.004 0.037 3.0 0.007 0.033

Moderate (bZ ¼ 0:4,

corr(X, Z)¼0.2)

N ¼ 2500 Raw 8.0 0.048 0.071 17.0 0.048 0.057

Calib, # NC¼10 4.5 0.005 0.077 4.5 0.008 0.065

Calib, # NC¼30 2.5 0.006 0.076 3.0 0.006 0.062

Calib, # NC¼50 2.0 0.007 0.076 4.0 0.009 0.063

N ¼ 10 000 Raw 28.5 0.053 0.035 42.5 0.053 0.028

Calib, # NC¼10 3.0 0.010 0.045 3.0 0.011 0.037

Calib, # NC¼30 2.0 0.009 0.044 1.5 0.011 0.037

Calib, # NC¼50 1.5 0.011 0.046 1.5 0.013 0.040

Z is the variable that drives the missing data mechanism, and X is the exposure of interest.

NC, negative controls, SD, standard deviation; calib, calibrated P-value method.
aCorrelation between NCs and Z between 0 and 0.3.
bAfter having applied the selection mechanism. The true model was simulated on datasets of size 2*N.
cThe selection mechanism reduces the event rate compared with the simulated true datasets.
dThe selection mechanism increases the event rate compared with the simulated true datasets.
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Rejection rates were slightly larger with selection mecha-

nism 2 (panel b). We found similar findings in the moder-

ate bias scenario, as well as when relaxing the

exchangeability assumption (data not shown).

Real data application

The study population comprises 3464 men and 3512

women, with mean age 47.2 6 12.2 years at baseline. Over

17 years of median follow-up, we observed n¼ 470 deaths

Table 2. Rejection rate, average bias and average standard deviation (SD) over R¼200 replications using standard and cali-

brated (calib) P-value, for type I error simulation study and after having relaxed the exchangeability assumptiona

Bias scenario Sample sizeb Method Selection mechanism 1c Selection mechanism 2d

Rejection rate (%) Bias SD Rejection rate (%) Bias SD

Mild (bZ ¼ 0:2,

corr(X, Z)¼0.2)

N ¼ 2500 Raw 6.0 0.031 0.068 7.0 0.020 0.061

Calib, # NC¼10 3.5 0.029 0.078 6.0 0.020 0.069

Calib, # NC¼30 3.0 0.026 0.078 5.5 0.017 0.069

Calib, # NC¼50 4.0 0.028 0.076 5.0 0.017 0.068

N ¼ 10 000 Raw 8.5 0.022 0.034 10.5 0.022 0.030

Calib, # NC¼10 3.0 0.019 0.044 7.5 0.020 0.038

Calib, # NC¼30 2.5 0.020 0.044 3.5 0.020 0.040

Calib, # NC¼50 2.0 0.021 0.044 3.5 0.021 0.040

Moderate (bZ ¼ 0:4,

corr(X, Z)¼0.2)

N ¼ 2500 Raw 9.5 0.047 0.071 11.0 0.048 0.057

Calib, # NC¼10 4.5 0.035 0.090 5.0 0.041 0.080

Calib, # NC¼30 5.5 0.048 0.091 5.0 0.051 0.076

Calib, # NC¼50 5.5 0.048 0.087 4.0 0.049 0.076

N ¼ 10 000 Raw 35.0 0.054 0.035 41.5 0.050 0.028

Calib, # NC¼10 7.0 0.047 0.075 6.5 0.045 0.056

Calib, # NC¼30 6.0 0.056 0.068 5.0 0.053 0.053

Calib, # NC¼50 4.0 0.055 0.065 3.0 0.051 0.058

Z is the variable that drives the missing data mechanism, and X is the exposure of interest.

NC, negative controls. SD, standard deviation; calib, calibrated P-value method.
aCorrelation between NCs and Z between -0.3 and 0.3.
bAfter having applied the selection mechanism. The true model was simulated on datasets of size 2*N.
cThe selection mechanism reduces the event rate compared with the simulated true datasets.
dThe selection mechanism increases the event rate compared with the simulated true datasets.

Figure 1. Rejection rates (%) for true hazard ratios of 1.1 and 1.2 in simulation studies when requirements for the exchangeability assumption are met

and under a mild bias scenario. Exchangeability assumption: correlation between negative controls and Z between 0 and 0.3. Mild bias scenario:

(bZ ¼ 0:2, corr(X, Z)¼0.2). (a) The selection mechanism reduces the event rate compared with the simulated true datasets. (b) The selection mecha-

nism increases the event rate compared with the simulated true datasets.
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due to cancer, corresponding to an event rate of 7%. Of

these: 39% were due to gastrointestinal cancer; 25% to re-

spiratory tract cancer (30% in men, 13% in women); and

7% to neoplasm of lymphatic and haematopoietic tissue.

About 19% of cancer deaths in women were attributed to

breast cancer.

The age- and sex-adjusted hazard ratios of cancer

death for negative controls are presented in Figure 2a as

well as in Supplementary Table 1, available as

Supplementary data at IJE online. The association was

statistically significant for 15 out of 21 NCs, correspond-

ing to a type I error equal to 71%. The hazard ratios

ranged from 0.88 to 1.24, being above 1 in 14/15 cases

and indicating a potential positive bias. With the empiri-

cal calibration method, only one variable remained statis-

tically significant, namely the one with hazard ratio

below 1 (Supplementary Table 1), corresponding to a

type I error of 4.8%, close to the nominal 5% level, as il-

lustrated by the calibration plot (Figure 2b). Out of the

13 positive controls, six were associated with cancer mor-

tality in our data (Supplementary Table 2), with hazard

ratios ranging from 0.89 to 1.18; three of them had haz-

ard ratios above 1. Only three out of the six associated

positive controls remained so after the application of the

empirical calibration method (Supplementary Table 2);

all three had hazard ratios below 1.

Discussion

The analysis of ‘big data’ in observational research may

rely on the observed data rather than on pre-specified hy-

potheses; therefore, the external validation and the replica-

tion of findings are advised.10 The replicability of scientific

results is a complicated process,18 particularly when they

come from complex data combining multiple and hetero-

geneous sources. In this framework, the control of type I

error is of paramount importance to limit false-positive

discoveries that will require further screening for biological

plausibility and clinical relevance.9,12 In our simulation

study that reproduced the presence of selection bias mecha-

nisms in the observed data, the type I error rate for the raw

estimator in a standard Cox model was above the nominal

5% level in 15 out of the 16 simulation settings. For any

given scenario characterizing the amount of bias in the

data, the error rate increased as a function of the sample

size: with n¼ 10 000, a null association with a hazard ratio

as low as 1.05 had a 42.5% chance of being statistically

significant. The poor results suggest that the standard use

of traditional inference tools is not adequate to control

type I error in large databases prone to selection bias.

These situations may become more and more common in

the near future. Since the 1980s, population-based cohorts

have experienced a drastic reduction in participation rates,

which are currently close to 50%19 (as in our simulation

Figure 2. Age- and sex-adjusted hazard ratios (with 95% confidence intervals) of cancer mortality for the set of n¼ 21 negative controls (a), and cali-

bration plot for the type I error rate (b), with and without the empirical calibration of the P-value method. Men and women, 25 to 74 years old, partici-

pants in the MONICA-Brianza and the PAMELA cohort studies (n ¼ 6979). Hazard ratios are for 1-SD increase in the blood marker. MCV, mean

corpuscular volume; RBC, red blood cells; SGOT, serum glutamic-oxaloacetic transaminase; SGPT, serum glutamic pyruvic transaminase; WBC,

white blood cells. Diamonds indicate a P <0.05.
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plan) or even lower.20 Compared with non-responders,

participants have more favourable health behaviours21 and

lower mortality rates.22 Recent studies using smartphones

and M-research platforms are prone to selection bias due

to the self-selection of study participants and the fast de-

cline in retention rates.13 Of the almost 49 000 individuals

who consented to participate in a cardiovascular health

study on lifestyles, less than 10% completed 7 days of mo-

tion data collection through the study app.23 In another

study, patients with asthma were more likely to use the

study app and upload their data on days with more severe

symptoms.24 All these are examples of our selection bias

mechanism 121–23 and 2.24 respectively.

The empirical calibration of the P-value method has

been introduced to control bias and type I error inflation in

pharmacoepidemiology.14–15 Our study has made a rele-

vant contribution to the recent debate on its routine use in

observational research.16,25 To begin with, in survival

analysis of data subject to selection bias from different

mechanisms, by using simulations and a real study we

showed that empirical calibration is able to keep type I er-

ror close to the 5% nominal level, independently of sample

size and even in case of departure from the exchangeability

assumption. Type I error preservation can also be achieved

when negative controls are hard to find and their number

is limited, as shown in simulations. Therefore, we consider-

ably extended the range of real-life situations to which the

method may be applied, with the aim of reducing the num-

ber of false findings. Second, researchers may want to use

negative controls to adjust for selection bias in the point es-

timate of the exposure of interest. Our study suggests that

the possibility of using the empirical calibration method to

this extent depends on the choice of the set of negative con-

trols. Sanderson et al. came to a partially similar conclu-

sion for bias due to measurement error.25 In the context of

selection bias, the exchangeability assumption is not verifi-

able, since correlation between X and Z, as well as

between the NCs and Z, cannot be estimated. However,

as illustrated in Supplementary Figure 1 (available as

Supplementary data at IJE online), under the exchange-

ability assumption the majority of negative controls are as-

sociated with the outcome in the same direction (panel a),

compared with a mixed situation when the assumption is

not met (panel b). In the real-life analysis, we were able to

reproduce a forest plot suggestive of exchangeability as-

sumption by selecting negative controls that all shared the

same measurement source (e.g. blood specimen in our

case). This seems a reasonable suggestion for deriving an

appropriate set of negative controls capable of estimating

selection bias for a given exposure. However, further stud-

ies are desirable to derive ‘rules-of-thumb’ to assist practi-

tioners in the choice of negative controls. Third, Gruber

et al. lamented a drastic increase in type II error when the

empirical calibration of the P-value method was applied to

the context of residual unmeasured confounding.16 Our

simulations confirmed these concerns for the combination

of small sample size (n¼ 2500) and effect size [hazard ra-

tion (HR)¼ 1.1]. The analysis of positive controls in our

real¼life application with a sample size of about 7000 sub-

jects suggests that when the association of interest and bias

have opposite directions, the empirical calibration method

may not have power issues. In data characterized by posi-

tive bias, a hazard ratio estimate below 1 is likely an under-

estimate of the true effect; the empirical calibration

method confirmed 100% of these situations. Conversely,

when the association of interest and bias have the same di-

rection, the empirical calibration can provide guidance to-

wards the minimum effect size needed to confirm the

association as statistically significant, given the amount of

bias present in the data.

Other alternative methods may be adapted to control

type I error in the presence of large samples and selection

bias, such as false-discovery rate (FDR),26 FDR based on

mixture models27 or instrumental variables.28 FDR is sen-

sitive to sample size due to the reduced standard error.14

Since we observed the same behaviour for the raw estima-

tor in our simulations, we may expect similar consequences

on the control of type I error. The identification of instru-

mental variables is difficult in real-world settings and it

may require the use of additional data. Furthermore, the

performance of the method relies on strong assumptions,

including the strength of the association with the exposure

variable.28 In contrast, the empirical calibration method is

not sensitive to sample size and does not require additional

data. However, further studies are desirable to fully com-

pare these alternative approaches, paying particular atten-

tion to mixture models.27

We acknowledge that this study has some limitations.

Although we planned a quite comprehensive set of scenar-

ios representative of the epidemiological literature, their

number is still limited when compared with specific situa-

tions that may occur in observational studies. In addition,

we assumed no other sources of bias, such as residual con-

founding or measurement error. In real data analysis, these

may affect the exposure variable and the negative controls

differently. However, not all the negative controls are re-

quired to have the same source of bias.15 Finally, we only

considered both continuous exposure and negative

controls.

To conclude, in observational research with the contem-

porary presence of large sample sizes and selection bias,

the standard application of traditional inference tools may

fail to adequately control type I error. The empirical cali-

bration of P-value is a robust method that can be applied
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from available data to reduce the number of false-positive

discoveries to be further screened for relevance and exter-

nal validity.

Supplementary Data

Supplementary data are available at IJE online.
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(Università degli Studi dell’Insubria) and Professor Giancarlo
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