
1.  Introduction
Lakes are critical freshwater resources that are highly sensitive to stressors such as climate change (Woolway 
et al., 2020) and altered land use (Martinuzzi et al., 2014). Globally, these stressors are shortening the dura-
tion of ice cover (Sharma et al., 2019), increasing rates of lake carbon burial (Heathcote & Downing, 2012), 
increasing evaporative water loss (Wang et al., 2018), warming surface waters (O’Reilly et al., 2015), and 
changing mixing regimes (Maberly et  al.,  2020), all of which influence lake productivity and ecological 
state. These changes manifest themselves in the seasonality of lake processes. Just like a deciduous forest 
that comes to life in the spring, inland water bodies are characterized by a predictable seasonal succession 
of biological processes (Sommer et al., 2012). In the spring, many lakes experience a diatom bloom, followed 
by a “clear-water” phase where zooplankton rapidly devour the newly plentiful phytoplankton (Matsuzaki 
et  al.,  2020). Summer algal biomass is constrained by nutrient availability, with nutrient-rich eutrophic 
lakes experiencing near-constant summer phytoplankton blooms, and nutrient-poor oligotrophic lakes ex-
periencing relatively clear waters (Sommer et al., 1986). The difference between these states is visible to the 
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more than 26,000 lakes. Our results show that summer lake color seasonality can be generalized into five 
distinct phenology groups that follow well-known patterns of phytoplankton succession. The frequency 
with which lakes transition from one phenology group to another is tied to lake and landscape level 
characteristics. Lakes with high inflows and low variation in their seasonal surface area are generally more 
stable, while lakes in areas with high interannual variations in climate and catchment population density 
show less stability. Our results reveal previously unexamined spatiotemporal patterns in lake seasonality 
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Plain Language Summary Lakes have seasonal cycles that result in yearly peaks in algal 
growth. The size and timing of these peak periods depends on the amount of nutrients available and the 
timing of key events such as freezing and thawing. Bluer lakes with little algae typically have one peak in 
the spring, while greener, high algae lakes can have multiple peaks or longer duration peaks that span the 
summer months. The timing and duration of these peaks manifest in changes to overall lake color. Here, 
we look at how these seasonal cycles changed in over 26,000 lakes across the United States between 1984 
and 2020. We show that seasonal cycles are changing with distinct regional patterns. Specifically, lakes 
are generally moving toward stable blue states in the Pacific Northwest, while high latitude lakes in the 
Northeast are increasingly showing seasonal cycles associated with high algae waterbodies. Lakes at high 
elevations and in catchments with large year-to-year fluctuations in temperature and population density 
are most prone to changes in seasonal cycles over time.
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naked eye, as the predominant color of a lake lies along a spectrum of blue (oligotrophic) to green (eutroph-
ic); or as dissolved carbon concentrations increase, brown (dystrophic) (Webster et al., 2008).

The color of a lake reveals a lot about lake productivity and ecological state. A green lake will have a greater 
abundance of phytoplankton and a higher rate of carbon burial than a blue lake (Heathcote & Down-
ing, 2012). Browning or greening of oligotrophic lakes may result in oxygen depletion and anoxic conditions 
(Knoll et al., 2018; Müller et al., 2012), which impacts nutrient cycling. Shifts in the magnitude and timing 
of annual color changes are indicators of short-term external (weather, nutrient, and carbon loading) and 
internal (biology) factors and/or long-term climate, watershed, and food web changes. These changes are 
not confined to single lakes, with landscape-level drivers impacting the color regimes of entire regions. 
For instance, shortened ice cover durations (Sharma et  al.,  2019) are shifting the spring-phytoplankton 
bloom earlier (Winder & Schindler, 2004), increases in dissolved organic carbon are browning lakes (Mon-
teith et al., 2007; Roulet & Moore, 2006), and invasive zebra mussels are increasing water clarity (Binding 
et al., 2007), all at regional scales.

For a single lake, observing the annual pattern of lake color provides insight into the local ecosystem. At 
larger scales, simultaneously observing the annual patterns of many lakes provides evidence of the impacts 
of climate and land-use change and is critical in understanding the role of inland waters in carbon pro-
duction and sequestration. Remote sensing enables macroscale analysis because it captures a wide range 
of hydrologic conditions (e.g., Allen et al., 2020) with regular sampling intervals and global coverage. The 
Landsat series of satellites specifically provides over three decades of observations and can be used to accu-
rately estimate water quality parameters such as chlorophyll-a (Cao et al., 2020; Lin et al., 2018), colored dis-
solved organic matter (CDOM) (Griffin et al., 2018; Olmanson et al., 2020), suspended sediments (Dekker 
et al., 2001; Ritchie & Cooper, 1988), water clarity (Olmanson et al., 2008; Topp et al., 2021), and primary 
productivity (Kuhn et al., 2020). To infer water quality, these studies build models based on relationships 
between optically active constituent concentrations and their impact on water surface reflectance. These 
efforts are becoming increasingly accessible due to emerging datasets that match satellite observations with 
field measurements of water quality parameters for model training and development (Dethier et al., 2020; 
Ross et al., 2019; Spyrakos et al., 2020), as well as online processing and data storage platforms such as 
Google Earth Engine (Gorelick et al., 2017).

Here, we present a 36 years analysis of U.S. lake color phenology using LimnoSat-US, a new analysis-ready 
remote sensing data set for inland waters. LimnoSat-US contains all cloud-free Landsat observations of U.S. 
lakes larger than 0.1 km2 between 1984 and 2020. As either a stand-alone resource, or when combined with 
existing datasets such as AquaSat (Ross et al., 2019) and RiverSR (Gardner et al., 2021), LimnoSat-US pro-
vides opportunities for novel analyses of remotely sensed, macroscale patterns in U.S. freshwater resources. 
Through this initial application of LimnoSat-US, we identify the dominant phenology patterns in U.S. lakes, 
how those patterns have changed over time, and what lake and landscape level characteristics control the 
stability of a given lake's seasonal cycle.

2.  Materials and Methods
2.1.  Database Development

We constructed the LimnoSat-US database by extracting the surface reflectance values of high confidence 
water pixels (Jones, 2019) from Landsat 5, 7, and 8 imagery across 56,792 lakes contained within the Hy-
doLAKES database (Messager et al., 2016). While these surface reflectance images were originally devel-
oped for terrestrial applications, a growing body of research shows that they can be used to accurately 
estimate inland water quality parameters and perform on par with water-specific atmospheric correction 
algorithms (Griffin et al., 2018; Kuhn et al., 2019; Olmanson et al., 2020). To avoid signal noise from sur-
rounding land pixels and bottom reflectance in shallow waters, we take the median reflectance values from 
within 120 meters of the deepest point for each waterbody (Shen et al., 2015), where the deepest point refers 
to the portion of the lake that is furthest away from the lake shoreline. Clouds, cloud shadow, and snow/ice 
in all images were identified using the Landsat pixel quality flags (Zhu et al., 2015). Observations were re-
moved from the database if any clouds, cloud shadows, snow, or ice were detected within 120 meters of the 
deepest point, or if the observation contained fewer than nine high confidence water pixels (Jones, 2019).
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For each observation within LimnoSat-US, we calculate water color. Color is an intuitive measure of lake 
water properties that can be calculated without any knowledge of the inherent optical properties of the wa-
ter column (Gardner et al., 2021; Giardino et al., 2019; Woerd & Wernand, 2015). For each observation with-
in the LimnoSat-US database, we quantified water color as both the dominant wavelength (λd) and Forel-
Ule index (Wang et al., 2015). Dominant wavelength is calculated by converting reflectance values across 
the visible spectrum (blue, green, and red) into the color wavelength (nm) as it is perceived by the human 
eye. By incorporating spectral information across the visible spectrum, this conversion captures nuanced 
changes in color that may not be evident using a simple metric like the reflectance maximum. The Forel-
Ule Index further breaks this dominant wavelength into 21 discrete color categories that are representative 
of overall lake typology. A detailed technical description of database development, including atmospheric 
corrections, sensor standardization, deepest point calculations, and the calculation of dominant wavelength 
can be found in (Sections S1 and S2).

2.2.  Seasonal Lake Color Phenology

The development of the LimnoSat-US database provides novel opportunities for examining macrosystem 
patterns in U.S. lake dynamics. Clustering analysis is one common approach for extracting patterns from 
time series datasets that have no a priori assumptions about group membership (Byrnes et al., 2020; Sa-
voy et al., 2019; Warren Liao, 2005). The overall goal of clustering analysis is to partition group member-
ship based on within-group similarity and between-group dissimilarity. Here, we apply clustering analysis 
to time series of lake color to better understand the drivers of variation in lake seasonality over the past 
36 years.

Lake color observations generated from the LimnoSat-US database were filtered to those between May and 
October to remove missing data caused by snow and ice. Observations were broken into six distinct peri-
ods—(1984, 1990], (1990, 1996], (1996, 2002], (2002, 2008], (2008, 2014], (2014, 2020]—and were filtered to 
those with at least three observations per month per period, resulting in 26,607 lakes with enough data to 
calculate periodic seasonality for the analyses. The choice of six distinct periods balanced data abundance 
with temporal specificity (Figure S1). Using six periods results in a median of 10 cloud free observations of 
lake color per month, per period, for each lake. Within each period, lake color phenology was calculated for 
both raw dominant wavelength and lake/period z-normalized dominant wavelength using a Nadaraya-Wat-
son kernel regression (Nadaraya, 1964; Watson, 1964) implemented with the ksmooth function from the 
stats package in R (R Core Team, 2019). Application of the kernel regression allowed for the calculation of 
a weekly color value based on a Gaussian weighted average of all observations within a window of 21 days 
from the point calculated. Extreme outliers (>4 standard deviations from the lake/period mean) were re-
moved prior to the kernel regression for each series. The resulting time series consist of weekly estimates of 
lake color from May to October for each lake for each period (Figure 1).

Normalization of the time series is critical for accurately clustering lake phenologies using the dynamic 
time warping (DTW) method described below (Keogh & Kasetty, 2003; Mueen & Keogh, 2016). However, 
by standardizing the variance across time series, we artificially impose equal seasonal variation between 
lakes/periods that are relatively monotonic (i.e., aseasonal) and those that show true seasonality in the 
phenology of their color. Examination of the mean and standard deviation of dominant wavelength for the 
nonnormalized time series shows that this is particularly problematic for end member lakes on either end 
of the color spectrum that show very little seasonal variation (σ < 5 nm, Figure S2). This can be seen in 
Figure 1, where oligotrophic Crater Lake shows minimal seasonality when compared to known eutrophic 
waterbodies (Lake Mendota and Lake Okeechobee). To address this issue while still following best practices 
of normalization for clustering analysis, those lakes/periods with a dominant wavelength standard devia-
tion of less than 5 nm were classified a priori as aseasonal. To identify this threshold we examined cut-offs at 
the 20th, 30th, and 40th percentiles of standard deviation across lake/period timeseries. The 20th percentile 
failed to fully capture end-member lakes, whereas the 40th percentile removed an unnecessary number 
of time series from the clustering analysis. We therefore chose the 30th percentile (σ = 5.01) as the cutoff 
threshold to maximize the number of timeseries available for clustering analysis, guarantee that seasonal 
variation within those timeseries is at least ∼10 nm around the mean color, and effectively classify aseason-
al, monotonic, and end-member lakes into their own grouping.
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This process resulted in 109,643 individual time series available for cluster analysis and an additional 46,759 
classified a priori as aseasonal. These time series were clustered using DTW (Sakoa & Chiba, 1978) within 
a partitional clustering framework with barycenter averaging (Sarda-Espinosa, 2019). DTW allows points 
within two time series to be compared within a user-defined window as opposed to using a one-to-one com-
parison found in traditional metrics like Euclidean distance. This elasticity reduces the impacts of noise, mi-
nor temporal shifts, and outliers, making it ideal for ecological systems with natural interannual variations 
(Savoy et al., 2019; Zhang & Hepner, 2017). The final number of clusters was determined by comparing 
the Davies-Bouldin (Davies & Bouldin, 1979) and Modified Davies-Bouldin (Kim & Ramakrishna, 2005) 
cluster validity indexes (CVI) across iterations ranging from 2 to 8 clusters. The Davies-Bouldin and Modi-
fied Davies Bouldin were chosen because of their computational efficiency and strong performance when 
compared to other common CVIs (Arbelaitz et al., 2013).

One important validation of clustering analysis is how sensitive final clusters are to sample variations in 
their input, the idea being that stable, or “universal,” clusters will emerge across differing sampling schemes 
(Jain & Moreau, 1987). Here, we addressed issues of cluster stability using the Jaccard Similarity Index 
across 100 iterations of bootstrap sampling of our input time series. At each iteration, the original input time 
series were sampled with replacement, clustered, and the resulting clustering algorithm used to predict 
groupings for the original data. The Jaccard Similarity Index was then calculated based on how similar each 
new cluster was to the corresponding original cluster. The index ranges from 0 to 1, indicating that clusters 
share all or no members, with values greater than 0.5 generally indicating cluster stability and represent-
ativeness of true patterns within the data (Savoy et al., 2019). Significant differences in the distribution 
characteristics of the final clusters were identified using the non-parametric Kruskall Wallace Analysis of 
Variance on Ranks (Hollander & Wolfe, 1973) followed by Dunn's Test with a Bonferroni p-value correction 
(Dunn, 1961). These tests provide a conservative (i.e., strict) measure of significant differences and are ap-
propriate for large datasets that don’t meet parametric assumptions of normality.
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Figure 1.  Examples of the calculated seasonal phenologies for three well studied lakes of different trophic states. Landsat observed color points are plotted in 
the actual color of the observation according to the Forel-Ule index. Phenologies are composed of one observation per 7 days calculated by taking a Gaussian 
weighted average of all points ±21 days from each calculated point. Lakes/periods marked by an asterisk were classified as aseasonal and placed in the a priori 
aseasonal cluster.
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Finally, we examined the spatial autocorrelation of clusters and the overall stability of individual lake phe-
nologies. Spatial autocorrelation was measured by randomly sampling 30% of the lakes, assigning them 
their most common cluster, and calculating the proportion of same cluster lakes versus different cluster 
lakes within 50 km windows moving outward from each lake in the subsample. Lake phenology stability 
was calculated by examining the number of times a given lake shifted between clusters throughout the 
six periods of study. Lakes were categorized on a scale from 0 (stable) to 5 (unstable) based on the total 
number of cluster transitions they made between 1984 and 2020. Lake and landscape level factors from 
HydroLAKES (Messager et al., 2016) and the Global Lake Area, Climate, and Population database (Meyer 
et al., 2020) were then used to assess lake characteristics that influence the stability of a lake's seasonal 
phenology over time. Variables that potentially influence stability were identified through linear regression 
of lake stability (0–5) on the median value of the lake/climate attribute within each stability class. Those 
attributes with a coefficient p-value of less than 0.05 were further examined as correlates with lake stability.

3.  Results
The final LimnoSat-US database includes reflectance values spanning 36  years for 56,792 lakes across 
>328,000 Landsat scenes. After initial quality control measures, the database contains over 22 million in-
dividual lake observations with an average of 393 ±233 (mean ± standard deviation) observations per lake 
over the entire study period. While observations date back to 1984, the total number for any given year 
approximately doubles with the launch of Landsat 7 in 1999 (Figure 2).

3.1.  Classes of Lake Color Phenology

Our final clustering partitions resulted in one of three membership classes for each lake/period that was 
not a priori classified as aseasonal (Figure 3). We describe these groups as Spring Greening, Summer Green-
ing, or Bimodal. High mean Jaccard Similarity Indices across bootstrap sampling iterations (0.77, 0.80, and 
0.94 respectively) show these clusters are relatively universal, and that regardless of the initial sample, the 
same lakes are consistently clustered together. Within these clusters, we refer to red-shifted portions of 
the time series (increasing values) as greening or green-shifted and blue shifted portions of the time series 
(decreasing values) as blueing or blue-shifted. We highlight this terminology because even though red is 
the end-member of the upper wavelengths, the vast majority of the colors do not extend beyond the green 
portion of the spectrum. It is important to note that while increases in chlorophyll-a from phytoplankton 
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Figure 2.  Temporal and spatial distributions of satellite observations contained within the LimnoSat-US database.
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growth can lead to “greening” patterns, increases in CDOM and non-algal particles can also cause a lake to 
move from bluer wavelengths toward the green and red portions of the spectrum. Descriptions of the sum-
mary attributes for each cluster are as follows:

1.  Spring Greening (n = 55,378, 35.4%): Lake color is green-shifted in May/June and gradually moves to-
ward the blue end of the spectrum throughout the summer and fall months. Median dominant wave-
lengths for these phenologies are significantly bluer (p < 0.0001) than those in the Summer Greening, 
Bimodal, or Aseasonal clusters (median λd = 513). They have the highest average coefficient of variation 
within each individual time series (p < 0.0001), with an average range of 37 nm for a given lake/period 
compared to 34, 33, and 12 nm for Summer Greening, Bimodal, and Aseasonal clusters, respectively. The 
distribution of colors within the cluster is concentrated around a mode 498 nm and skewed toward the 
greener portion of the spectrum.

2.  Summer greening (n  =  24,580, 15.7%): Lake color is characterized by gradual greening from May to 
August after which time it drops toward the blue end of the color spectrum. The distribution of colors 
shows a mode of 542 nm and a median of 524 nm with a blue-skewed distribution. On average, each 
individual time series within this class shows significantly less variation than Spring Greening lakes/
periods (p < 0.0001) but no significant difference from Bimodal lakes/periods.
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Figure 3.  Results of cluster analysis for over 26,000 lakes and 156,000 seasonal time series. Black lines represent 
medians with gray ribbons representing the first–third quartile of each cluster. Clusters are shown both in their (a) 
z-normalized form used in the cluster analysis and (b) their raw dominant wavelength form. Distributions of color 
observations in each cluster (c) are colored by their associated Forel-Ule Index value and represent the distribution of 
the human perceived watercolor within each cluster. Note that the range of wavelengths associated with each Forel-Ule 
Index value varies.
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3.  Bimodal (n = 29,685, 19.0%): Lake color is most green-shifted in May/June and again in September/Oc-
tober, with a somewhat blue-shifted phase in the intervening months. Phenologies within this cluster are 
significantly more green-shifted (p < 0.0001) than lakes within either the Spring or Summer Greening 
clusters and show less variation (p < 0.0001) than those in the Spring Greening clusters. The distribution 
of colors is concentrated around 553 nm with a much less pronounced peak at 507 nm.

4.  Aseasonal (n = 46,759, 29.9%): The overall color distribution of this cluster is distinctly bimodal, with 
a primary mode at 559 nm and a secondary mode at 492 nm. This bimodal distribution, combined with 
the small variance in any given lake/period in the cluster, suggests it contains predominantly blue and 
predominantly green time series with very few observations in the intermediate green/blue space com-
mon within the three other clusters. The cluster also contains both the most green-shifted and most 
blue-shifted time series included within the analyses. Because of the crisp partition contained within the 
cluster and the ecological significance of blue versus green aseasonal time series, we further partition this 
cluster into Aseasonal (Blue) (n = 15,934) and Aseasonal (Green) (n = 30,825) lakes for the remainder of 
the analysis. Time series with a median dominant wavelength less than or greater than the anti-mode of 
the distribution (525 nm) are considered Aseasonal (Blue) and Aseasonal (Green) respectively.

3.2.  Lake Stability Over Time

Aseasonal Green lakes showed the most stability over time, with an average of 73% ± 6% (mean ± standard 
deviation) of lakes remaining within the cluster between consecutive time periods. Aseasonal (Blue) and 
Spring Greening clusters showed similar retention rates of 57% ± 17% and 57% ± 9% respectively, while Bi-
modal and Summer Greening showed similar retention rates of 46% ± 8% and 45% ± 7% (Figure 4). Howev-
er, of these, only the differences between Aseasonal (Green) and Bimodal/Summer Greening clusters were 
statistically significant at a 95% confidence interval. For Spring Greening, Aseasonal (Green), and Aseason-
al (Blue) distributions, the number of lakes retained between each period was significantly higher than the 
number of lakes that transitioned to a different cluster (p = 0.047, p = 0.007, and p = 0.0001 respectively). 
Summer Greening and Bimodal clusters showed no significant difference between the proportion of lakes 
retained and lakes that transitioned to other clusters, indicating less stability than the other three classes. 
However, these transitions showed distinct patterns, with lakes transitioning more commonly between sim-
ilar clusters. As an example, on average 27% of Summer Greening lakes transitioned to Spring Greening 
lakes between periods, but only 4% of Summer Greening lakes transitioned to Aseasonal (Green). Similarly, 
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Figure 4.  Sankey diagram showing the distribution of lake phenology transitions between periods. Each ribbon is 
proportional to the number of lakes that moved from one cluster class to another.
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less than 0.2% of lakes in Aseasonal (Green) and Aseasonal (Blue) transitioned between the two clusters 
in any two consecutive periods, indicating that state shifts between dominantly blue lakes and dominantly 
green lakes are very uncommon.

Lake stability, or the number of times a lake moved from one cluster to another (ranging from 0 transitions 
to 5), showed that lakes with three transitions were most common (n = 6,458) and lakes with five transitions 
least common (n = 1,254) (Figure S3). We also calculated the number of unique clusters a lake occupied 
throughout its transitions. For instance, a lake could change states between all five periods, giving it a 
stability score of five, but only be changing between two of the potential five clusters, giving it two unique 
states. Of the 26,067 lakes, 4,339 (16.6%) remained within the same cluster through all periods while only 
21 (<0.1%) occupied all five clusters at some point. For those lakes in between, lakes occupying two distinct 
states (n = 11,091; 42.5%) were most common followed by three states (n = 8,942; 34.3%) and four states 
(n = 1,674; 6.5%) respectively. Linear regressions between lake and landscape level metrics with overall lake 
stability showed significant relationships (p < 0.01) with 5 out of 26 possible metrics (Table S1), although 
some of these metrics have significant cross-correlation (Figure 5).

4.  Discussion
4.1.  Lake Seasonal Phenology Types

Existing paradigms regarding the seasonality of lake color are generally derived from individual lakes with 
rich sampling histories of water quality observations; however, these long-term field records are rare and 
limited to a small subsample of lakes (Stanley et al., 2019). While these data-rich study lakes are essential 
for understanding fine-scale ecosystem processes, they lack the spatial coverage to generalize across entire 
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Figure 5.  Correlation matrix for variables from HydroLakes and GLPC used to analyze drivers of lake phenology 
stability. Both the size and color of the squares indicate the strength of the Pearson's correlation coefficient between any 
two given variables.
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landscapes (Collins et al., 2019; Soranno et al., 2014). Within our clustering analysis, we found that lake 
color phenology can largely be categorized as Aseasonal, Spring Greening, Summer Greening, or Bimodal. 
These phenologies show distinct regional patterns and spatial auto-correlation, with the probability of two 
lakes being in the same cluster showing a significant relationship to the distance between those two lakes 
(p < 0.0001) up to a distance of ∼1,500 km (Figure 6b).

Each cluster has a unique distribution of dominant wavelengths (Figure 3), which suggests that the tim-
ing of seasonal variation in color is connected with lake biogeochemistry. This conclusion is supported by 
long-standing models of freshwater phytoplankton succession (Sommer et al., 1986) and observations of 
annual cycles of chlorophyll-a, a proxy for phytoplankton biomass (Winder & Cloern, 2010). Oligotrophic 
temperate lakes often show the archetypal pattern of a spring phytoplankton bloom followed by low sum-
mer concentrations. This was the dominant phenology in our observations (35.4%), which is in-line with a 
study of 125 aquatic systems that found that nearly half of the sites displayed a dominant 12-months cycle 
with one phytoplankton peak per year (Winder & Cloern, 2010). As nutrient availability increases, eutroph-
ic lakes tend to experience discrete phytoplankton blooms in the spring and late-summer/fall (Marshall & 
Peters, 1989). This pattern is captured in our Bimodal cluster, where the raw dominant wavelength values 
are significantly greener than those in any other cluster except for Aseasonal (Green). The summer-green-
ing cluster captures eutrophic to hyper-eutrophic lakes featuring prolonged summer blooms with highly 
variable summer algal concentrations (Carpenter et al., 2020; Huisman et al., 2018). The characterization 
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Figure 6.  (a) The modal cluster within each 100 × 100 km grid across time periods. Mixed grids are those where 
there is no dominant cluster (i.e., two or more clusters are equally prevalent). (b) The frequency of same cluster pairs 
to different cluster pairs using each lake's modal cluster. The frequency distributions were calculated within 50 km 
windows for a random sample of 30% of the study lakes. The dotted line represents the expected frequency if the 
distribution was random without any spatial autocorrelation.
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of Bimodal and Summer Greening lakes/periods as eutrophic is further supported by the low levels of var-
iation we observe in dominant wavelengths when compared to Spring Greening lakes/periods. Dominant 
wavelength saturates with high amounts of suspended matter, chl-a, and/or CDOM (Bukata et al., 1997), 
meaning that highly productive, algae-filled lakes with significant amounts of these constituents would 
show low variation as dominant wavelength saturates. It is also possible that some lakes in these categories 
are dystrophic CDOM-dominated lakes, as they include some of the more red-shifted (brown) waterbodies 
within the study.

The proportion of lakes that fall within different clusters does not show an overall trend over time; howev-
er, since the 1996–2002 period, the number of lakes classified as either Bimodal or Aseasonal (Blue) have 
increased while the number classified as Spring Greening have been decreasing (Figures 4 and 6). Much of 
the increase in Aseasonal (Blue) lakes is concentrated in the Pacific Northwest and occurred prior to 2008, 
whereas the decrease in Spring Greening Lakes has predominantly occurred in higher-latitude lakes that 
may be more sensitive to changes in snowmelt and ice cover regimes which control nutrient and sediment 
fluxes that influence lake productivity (Gerten & Adrian, 2002; Sharma et al., 2019). Patterns in the Asea-
sonal (Green) cluster show much less variation both spatially and temporally, being largely concentrated 
in the agriculturally dominated central and northern plains and showing no distinct temporal pattern in 
quantity. While the increase in Aseasonal (Blue) lakes is potentially indicative of reduced sediment and nu-
trient inputs in certain parts of the country, the increase in Bimodal lakes, when taken with its close match 
to eutrophic phytoplankton succussion patterns, indicates increases in lake productivity across portions of 
the U.S. since the mid 1990s. This pattern supports recent research showing a transition from bluer lakes 
to murky chlorophyll-a and CDOM-dominated lakes throughout the US between 2007 and 2012 (Leech 
et al., 2018), as well as work highlighting that while overall clarity in U.S. lakes has increased since 1984, 
these increases largely took place prior to the mid-1990s, after which time clarity improvements began to 
plateau (Topp et al., 2021). However, dominant wavelength, and optical water color more generally, is con-
trolled by a variety of optically active water color constituents in addition to phytoplankton (Mobley, 1994), 
and partitioning these optical components is beyond the scope of this analysis. The result does, however, 
merit further research using a database like LimnoSat-US to examine countrywide trends in lake chloro-
phyll-a content.

4.2.  Factors Influencing Lake Stability Over Time

Lake stability, or the number of times a lake moved between clusters during the study period, showed 
significant relationships with multiple lake and landscape level metrics from HydroLAKES and the GLCP 
database (Figure 7, Table S1). These relationships can generally be categorized as either hydrological prop-
erties or landscape properties. Important hydrological properties related to stability include lake size and 
lake inflow (both positively correlated with stability). This result supports existing research suggesting that 
larger water bodies are less reactive to perturbations than smaller, shallower lakes that can fluctuate among 
multiple productivity regimes (Scheffer & van Nes, 2007). We also find that hydrologically dynamic lakes 
are consistently less stable, with lakes showing large interannual variations in seasonal surface extent ex-
hibiting less stability. It is likely that these hydrologically dynamic lakes are more sensitive to seasonal var-
iations in runoff and resuspension of lakebed sediments leading to large interannual variations in nutrient 
and sediment load.

The landscape-level metrics that showed the strongest relationship with lake stability were catchment pop-
ulation and elevation (p < 0.01) followed by mean temperature and mean monthly precipitation (p < 0.05). 
Similarly, for the subset of these variables where we had observations at annual timescales, we found that 
coefficients of variation between years (interannual variation) of these metrics showed strong linear rela-
tionships to stability. The impact of these landscape-level metrics on stability supports work showing that 
lakes integrate surrounding climatic and land cover changes (Rose et al., 2017). These results are of particu-
lar interest for relatively pristine high-elevation lakes that will be disproportionately impacted by changing 
precipitation and temperature regimes through climate change (Oleksy, Baron, et al., 2020; Oleksy, Beck, 
et al., 2020). Finally, we found that lakes in catchments with higher populations were generally more stable; 
however, lakes in catchments with high variation in population (likely increasing urban areas) showed less 
stability. Overall, our examination of landscape level metrics shows that the stability of a lake often follows 
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the stability of its environment, with lakes subject to interannual variations in climate or anthropogenic 
stressors generally showing less stability in their overall seasonal phenology.

5.  Conclusion
Remote sensing has the capability to substantially increase macroscale understanding of aquatic ecosys-
tem processes. Here, we contribute to a growing body of inland water remote sensing resources with Lim-
noSat-US, which contains >22,000,000 remotely sensed lake observations. Prior to this study, large-scale 
analyses of lake phenologies were limited to dozens to hundreds of waterbodies (Ho et al., 2019; Marshall 
& Peters, 1989; Winder & Cloern, 2010). Here, we were able to analyze U.S. summer lake color phenology 
across more than 26,000 lakes over 36 years, showing both temporal and spatial patterns and trends, as well 
as linking phenology to lake and landscape-level metrics. Better understanding the full distribution of lake 
phenology will allow for more accurate scaling of global nutrient and carbon cycling. While the analysis 
presented here relies simply on lake color, combining LimnoSat-US with databases such as AquaSat (Ross 
et al., 2019), RiverSR (Gardner et al., 2021), and LIMNADES (Spyrakos et al., 2020), will allow for more 
explicit modeling and analysis of specific water quality components, allowing researchers to partition the 
patterns observed here into optically active water quality components including chlorophyll-a, suspended 
sediments, and CDOM.
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Figure 7.  Lake and landscape level metrics that showed the most significant relationships with stability, or the number 
of times a given lake moved from one cluster to another between periods (p < 0.01 with the exception of lake inflow, 
p = 0.019). Center bars represent median values while boxes span the first-third quartiles.
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Data Availability Statement
The LimnoSat-US database and code associated with its production can be found at https://doi.org/10.5281/
zenodo.4139695. All code used in this analysis can be found at https://github.com/GlobalHydrologyLab/
LakeReflectanceRepo. The data for this paper comes from the Landsat Archive (via LimnoSat-US), Hydro-
LAKES, and The Global Lake Area, Climate, and Population database. All this data are free to download 
with appropriate links in the analysis code.
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