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The treatment of respiratory infections is associated with the dissemination of antibiotic

resistance in the community and clinical settings. Development of new antibiotics is

notoriously costly and slow; therefore, alternative strategies are needed. Antimicrobial

peptides (AMPs), the central effector molecules of the immune system, are being

considered as alternatives to conventional antibiotics. Most AMPs are epithelium-derived

and play a key role in host defense at mucosal surfaces. They are classified on the basis

of their structure and amino acid motifs. These peptides display a range of activities,

including not only direct antimicrobial activity, but also immunomodulation and wound

repair. In the lung, airway epithelial cells and neutrophils, in particular, contribute to

AMP synthesis. The relevance of AMPs for host defense against infection has been

demonstrated in animal models and is supported by observations in patient studies,

showing altered expression and/or unfavorable circumstances for their action in a variety

of lung diseases. Of note, AMPs are active against bacterial strains that are resistant to

conventional antibiotics, including multidrug-resistant bacteria. Several strategies have

been proposed to use these peptides in the treatment of infections, including direct

administration of AMPs. In this review, we focus on studies related to direct bactericidal

effects of AMPs and their potential clinical applications with a particular focus on

cystic fibrosis.

Keywords: respiratory infections, antibiotic resistance, antimicrobial peptides, antimicrobial effect, immune

modulation, cystic fibrosis

HISTORICAL OVERVIEW AND DEFINITION

In the early 1920s, Fleming independently discovered both AMPs and penicillin. In 1922, he
identified, in his nasal discharge, an antimicrobial substance, later named lysozyme, which was
able to kill certain bacteria in few minutes. Seven years later, penicillin was carried forward for
clinical application (1). After that, several AMPs were isolated and identified as having activity
against both Gram-positive and Gram-negative bacteria. In 1939, gramicidin was the first natural
peptide-based drug to be introduced in the market. It was isolated from Bacillus brevis and was
active against a wide range of Gram-positive and some Gram-negative bacteria but was not devoid
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of toxicity (2). The real explosion of therapeutic potential of
AMPs began in the early 1980s when Hans Boman isolated and
characterized AMPs, known as cecropins, from the hemolymph
of silk moth (Hyalophora cecropia) (3). Later in 1987, the
significance of AMPs was increased when Zasloff discovered
magainins in frog skin (Xenopus laevis) (4) and showed for
the first time that AMPs are present not only in lower
invertebrates but also in higher vertebrates (5). Antimicrobial
activities in fluids such as blood, saliva, plasma, sweat, leucocytes
secretions, and granule extracts were discovered at that period,
suggesting the natural production of AMPs in humans (6). Since
then, more than 3,000 naturally occurring AMPs have been
isolated from different kingdoms (bacteria, archea, protists, fungi,
plants, animals, and humans) and were registered in the AMP
database (http://aps.unmc.edu/AP/main.php). Thus, AMPs were
discovered at the same time as antibiotics (ATBs) but were
eclipsed by the success of those drugs. Now that the emergence
of ATB resistance is a major threat to human health, global
voices are calling for solutions. Among the existing research lines
for alternatives to conventional ATBs, AMPs, both natural and
synthetic, seem to be promising candidates (7).

AMPs, also referred to as host defense peptides, are
biologically active molecules with a rapid and broad spectrum
of activity against bacteria, yeast, viruses, and fungi in addition
to immunomodulatory activities, wound healing, and cytotoxic
effects on cancer cells (8, 9). To date, the large majority of
identified AMPs are antibacterial peptides representing 83% of
all AMPs (10). AMPs, evolutionarily conserved in the genome,
are produced bymost living organisms as an essential component
of their innate immune system, representing an ancient host
defense mechanism to eliminate invading pathogens and boost
immune response. In mammals, the primary site at which
a host encounters a pathogen is classically the skin or the
mucosal surface, such as the respiratory tract, the gastrointestinal
tract, and the urogenital tract (11). Infections at these sites
are prevented by the innate host defense responses intended
to maintain host integrity (12). AMPs, being an important
component of the innate immune system, constitute one of the
early, rapid, nonspecific mechanisms by which the host immune
system provides protection against infections (13). Studies using
knockout mice and transgenic (Tg) expression systems have
confirmed that AMPs play a major role in limiting microbial
proliferation to skin and mucosal surfaces, therefore preventing
spread to the deep tissues where serious infectionmay occur (14).
AMPs are produced by epithelial cells of vertebrates as a first line
of defense against microbial pathogens.

Abbreviations: AMPs, Antimicrobial peptides; ARDS, Acute respiratory distress

syndrome; ASL, Airways surface liquid; ATBs, Antibiotics; cDNA, complimentary

DNA; CF, Cystic fibrosis; CFTR, cystic fibrosis transmembrane conductance

regulator; EGR1, Early growth response gene-1; GBS, Group B Streptococcus;

HBD, Human β-defensin; HIV, Human immunodeficiency virus; HNP, Human

neutrophil defensin; HSV, Herpes simplex virus; IL, Interleukin; KLF, Krüppel-like

transcription factor; LPS, Lipopolysaccharides; MCP, Monocyte chemoattractant

protein; MIC, Minimum Inhibitory Concentration; MOA, Mechanism of action;

MRSA, methicillin-resistant Staphylococcus aureus; PAMP, Pathogen-associated

molecular pattern; sPLA2, secreted phospholipase A2; sPLA2-IIA, Type-IIA

secreted phospholipase A2;TNF-α, Tumor necrosis factor alfa; Tg, Transgenic;

VRE, vancomycin-resistant Enterococci;WT, Wild-type.

AMPs: STRUCTURE AND CLASSIFICATION

Despite their extreme diversity in terms of composition and
length, AMPs share several common structural characteristics
(15). The most studied AMPs are short polypeptides of fewer
than 50 amino acids, cationic with an average net charge of
+3, and having a hydrophobic content of 42% on average. Both
the net positive charge and the hydrophobicity of these AMPs
generate the observed amphipathic structure. This structure
determines their conformational flexibility, enables electrostatic
attraction between these cationic peptides and the anionic
bacterial membranes, and allows penetration into bacterial cells
inducing membrane lysis. Cationic AMPs, however, do not
affect the neutrally charged mammalian cells; this chemical
property favors their use as future drugs (7, 15). The differences
in composition between bacterial cell membranes rich in
phosphatidylglycerols and human cell membranes dominated by
zwitterionic phospholipids is believed to be the major reason of
the selectivity of AMPs (Figure 1) (7).

Based on structural features, AMPs can be classified into three
subgroups: α-helical, β-sheet, and extended AMPs (16–18). These

structures are highly correlated with the functional specificity of
each peptide. Some of these peptides demonstrate no secondary

structure in aqueous solution but become structured when
exposed to a lipid, such as the bacterial cell membrane (19). In

addition to that, some peptidesmight havemixed α-helical and β-
sheet structures; classification is then based on the predominant
one (20).

The first subgroup contains AMPs that form α-helical
structures and are predominately found in the extracellular
matrix of frogs and insects in addition to the extensively
studied human AMP LL-37, which is a member of the
cathelicidins. Cathelicidins, originally isolated from granule
extracts of bovine neutrophils (21), are among the most diverse
AMPs of vertebrates; they can adopt a variety of structures and
play, in addition to their antimicrobial activity, an important
immunomodulatory role (22). Magainins, which are active
against a broad spectrum of microbial agents, present another
example of AMPs with an α-helical structure. They have been
extensively studied and are among the first ones to have been
tested clinically (23). Cecropin is a prototype of this group and
is active against Gram-negative bacteria. Other cecropins, which
can act synergistically against both Gram-negative and Gram-
positive bacteria, have been recently identified (24). Another
final example of the α-helical AMPs is the aureins that are
secreted from the granular dorsal glands of the Australian Green
and Golden Bell Frog Litoria aurea and the southern Bell
Frog L. raniformis. The aurein family is mostly active against
Gram-positive bacteria, such as Staphylococcus aureus and S.
epidermidis, and have anti-cancer activities (20).

The second subgroup includes cyclic AMPs that adopt a β-
sheet structure, such as protegrins, defensins, and tachyplesins.
Although they have antifungal properties in some cases, they
are often considered to be antibacterial peptides (19). Defensins,
the largest group of AMPs produced by mammals, were first
discovered in human neutrophils as small cationic molecules.
They have been found later in mammals, insects, plants,
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FIGURE 1 | Early interactions of cationic antimicrobial peptides with bacterial or host cell membrane. The anionic molecules in the membranes of Gram-negative and

Gram-positive bacteria attract cationic AMPs via electrostatic and hydrophobic interactions. In contrast to bacteria, the cytoplasmic membrane of host cells with a

neutral net charge connects with cationic AMPs via hydrophobic interactions, which are relatively weak.

parasites, and fungi. Defensins are also involved in immune
and inflammation responses (25). Although most defensins
lose much of their antimicrobial activity at the physiological
concentrations of Na+, Mg2+, or Ca2+, they have been shown
to exhibit broad-spectrum antimicrobial activity against bacteria,
fungi, and enveloped viruses in vitro. Of note, electrolytes may
have a more complex effect on peptide-induced antimicrobial
effects (25). Another example of β-sheet AMPs are tachyplesins,
isolated from hemocytes of horseshoe crabs (20).

The third and last subgroup comprises peptides with a unique
extended/random coil structure. In this category, most of the
AMPs are from the cathelicidin family, which are known to
have linear structure rather than secondary structure due to the
presence of proline residues. One of the best studied peptides
in this subgroup is indolicidin, which is produced by bovine
leucocytes and consists of only 13 amino acids (17, 20).

Sources of some AMPs, their classes, and chemical structures
are shown in Table 1.

MODE OF ACTION OF AMPs

Enhanced understanding of the mechanism of action (MOA) of
AMPs is of great importance to facilitate further development
of peptide-based drugs as therapeutic agents. The MOA can
be divided into two major classes: direct antimicrobial activity
and immune modulation (16). Although it has been thought for
many years that membrane destabilization was the sole direct
MOA of AMPs against bacteria, additional mechanisms have
been described. These MOA embrace non-membrane targeting
mechanisms, including inhibition of the cell wall synthesis,
intracellular translocation of AMPs, inhibition of protein/nucleic
acid synthesis, and disruption of enzymatic/protein activity (20,
26). In both cases, electrostatic interaction is the key factor

TABLE 1 | Classification of some antimicrobial peptides along with their chemical

structure and origin.

Classification AMP Origin Chemical structure

α-helix LL-37

Melittin

Dermaseptin-

S1

Human

Honey bee

Frog

GIGAVLKVLTTGLPALISWIKRKRQQ

GIGKFLHSAGKFGKAFVGEIMKS

LLGDFFRKSKEIGEFKRIVQRIKDFLR

NLVPRTES

β-helix
Protegrin-1

HNP-1

HBD-1

Pig

Human

Human

RGGRLC[1]YC[2]RRRFC[2]VC[1]VGR

AC[1]YC[2]RIPAC[3]IAGGRRYGTC[2]I

YGGRKWAFC[3]C[1]

DHYNC[1]VSSGGQC[2]LYASC[3]PIF

TKIQGTC[2]YRGKAKC[1]C[3]K

Extended

structure

PR-39

Indolicidin

Tritrpticin

Pig

Cow

Pig

RRRPRPPYLPRRPRPPFFPPLRLPPR

IPPGFPPRFPPRPFP

ILPWKWPWWPWRR

VRRFPWWWPFLRR

AMP, antimicrobial peptide; HBD-1, human β-defensin 1; HNP, human

neutrophil defensing.

for the direct antimicrobial activity of cationic AMPs with
the negatively charged molecules of the bacterial membrane,
enabling further intrusion of the peptides into the inner part of
the cell membrane (27). These interactions occur with the anionic
phospholipids and phosphate groups of lipopolysaccharides
(LPS) in case of Gram-negative bacteria as well with teichoic acids
and lipoteichoic acids in case of Gram-positive bacteria (15, 24).

Direct Antibacterial Activity
AMPs exert their direct antibacterial activity by either disrupting
bacterial membranes or interfering with intracellular processes
following to translocation. The direct antibacterial mechanism of
AMPs is schematized in Figure 2.
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FIGURE 2 | Schematic illustration of direct antibacterial mode of actions of antimicrobial peptides.

Membrane Disruption Mechanism of Action

Upon adsorption into the membrane surface, the AMPs form, if
not already present, an amphipathic secondary structure essential
for interaction with the cell membrane (28). At this stage, several
models have been proposed to describe the next events occurring
at the bacterial cytoplasmic membrane, which ultimately lead to
a remarkable dose-dependent membrane disruption (26). The
three most popular models are the “barrel-stave pore model,”
“toroidal-pore model,” and “carpet model” (10, 20).

In the barrel-stave pore model, when a threshold
concentration of the peptides is reached, AMPs insert
perpendicularly into the lipid bilayer forming transmembrane
pores within the hydrophobic membrane core, in a manner
similar to that of membrane protein ion channels. This model
is consistent with the MOA of alamethicin, pardaxin, and
protegrins (20, 26).

In the toroidal-pore model, once the minimum threshold
concentration is reached, the peptides are perpendicularly
incorporated into the bilayer membranes, enabling the lipid
monolayers to curve around the pore. Consequently, the
hydrophobic residues of peptides interact with the hydrophobic
region of the membrane, forming pores that are partially
bordered by the peptides and partially by the phospholipid head
group, allowing the water core to be lined. Magainins and LL-37
adopt this MOA (10, 21).

In the carpet model, AMPs adsorb parallel to the lipid bilayer
and cover the surface of the target membrane. Once their
concentrations reach a certain threshold, AMPs exert detergent-
like effects, which eventually disintegrate the membrane via the
formation of micelles and pores. This model explains the MOA
of cecropins and some magainins (10, 28). The formed pores act
as non-selective channels for ions, toxins, and metabolites, thus

TABLE 2 | Classification of different antimicrobial peptides according to their

membrane targeting mechanism of action.

Pore-forming

models

Example of

AMP

Origin

Barrel-Stave Ceratotoxin

Alamethicin

Amphotricin B

Ceratitis capitate (Mediterranean fruit fly)

Trichoderma viride (fungus)

Streptomyces nodosu (bacteria)

Toroidal Melittin

LL-37

Piscidin

Pardaxin

Xenopus Laevis (African clawed frog)

Homo sapiens

Morone Saxtilis (Atlantic striped bass)

Pardarchirus marmoratus (Finless sole fish)

Carpet-like Magainin 2

RL-37

Cecropins

Dermaseptins

Ovispirin

Mastoparan X

Xenopus Laevis (African clawed frog)

Macaca mulatta (Rhesus macaque)

Hyalophora cecropia (North American moth)

Phyllomedusa spp. (Frogs genus)

Ovis aries (Sheep)

Vespa xanthoptera (Japanese yellow hornet)

AMP, antimicrobial peptide.

preventing the microbe from maintaining vital homeostasis and
leading eventually to microbial death (16, 27).

The carpet-like model is also called the “detergent-like model,”
and the toroidal model is called the “wormhole model.” Table 2
shows different AMPs classified based on their membrane
disruption mode of action.

Intracellular Targeting Mechanism of Action

Apart from the membrane-targeting MOA, some AMPs may
exert other MOA, including the inhibition of extracellular wall
synthesis and may have intracellular targets, thus disrupting
intracellular processes (26). It has been shown that membrane
permeabilization results in AMP translocation into the cytoplasm
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FIGURE 3 | Schematic illustration of immune-regulatory functions of antimicrobial peptides. AMPs, antimicrobial peptides; IL, interleukin; MCP, monocyte

chemoattractant protein; TNF-a, tumor necrosis factor alfa.

without disruption of its integrity, allowing binding to the
anionic charge present in nucleic acids (DNA/RNA), some
intracellular enzymes, and other targets (18, 26). For instance,
AMPs, such as defensins, often confer antibacterial activity by
interacting with various precursor molecules that are required
for cell wall synthesis, such as the highly conserved lipid II
(20). Other AMPs, such as indolicidin, interfere with protein
synthesis, whereas papiliocin induces the production of oxygen
free radicals, which damages both DNA and the cell membrane.
Others can inhibit the activity of a few intracellular enzymes
crucial for metabolism and proliferation of pathogens (26).
Remarkably, it is suggested that AMPs may cause bacterial death
via multiple and complementary actions known as a multi-hit
mechanism, serving in increasing the efficiency of AMPs and
evading resistance development (28).

Immune Modulation
Well-characterized for their antimicrobial activities, AMPs
are also known for their immuno-regulatory functions. The
expression of these AMPs can be constitutive or can be
inducible by infectious and/or inflammatory stimuli, such as
proinflammatory cytokines, bacteria, or bacterial molecules that
induce innate immunity (29). AMP production constitutes one
of the early mechanisms by which the host immune system
provides protection against invaders (13). They can recruit
and activate immune cells, resulting in enhanced bactericidal
activity and/or control of inflammation (20, 28). They act as
effective inflammatory modulators by stimulating chemotaxis
and angiogenesis, modulation of immune cell differentiation, and
initiation of adaptive immunity. The broad range of mechanisms
of action exerted by AMPs also includes toxin neutralization
in an extremely rapid manner (Figure 3) (30). As examples,
human neutrophil defensin (HNP)-1, HNP-2, and HNP-3 have

been shown to upregulate the production of tumor necrosis
factor alfa (TNF-α) and interleukin (IL)-1 by human monocyte
activated upon bacterial infection, which, in turn, produces
pro-inflammatory cytokines to attract immune cells to fight
off the pathogens (31). In addition to that, HBD-2 and HBD-
3 promote bacterial clearance of Pseudomonas aeruginosa by
suppressing macrophage autophagy through downregulation of
early growth response gene-1 (EGR1) and proto-oncogene c-FOS
(32). Moreover, it has been demonstrated that cathelicidin exerts
a direct chemoattractant action on monocytes, neutrophils, and
T cells (33) and induces the transcription and release of IL-8
and monocyte chemoattractant protein (MCP)-1 and MCP-3,
resulting in the recruitment of different immune cells requisite
to remove the invading pathogen (34). LL-37, in addition to
its direct MOA, neutralizes the activity of LPS and, thus, helps
to protect the tissues from its harmful effects. In addition,
it maintains a balance between pro- and anti-inflammatory
mediators in the presence of LPS.

ANTIMICROBIAL SPECTRUM OF ACTIVITY

AMPs have broad-spectrum antibacterial activity and may
exhibit their effects at minimum inhibitory concentrations
(MICs) as low as 1–4µg/ml (10). In addition to their potent
antibacterial impact, some AMPs possess antiviral, antifungal,
antiparasitic, and insecticidal properties. For instance, LL-37,
the sole human cathelicidin, possesses a broad spectrum of
activity against both Gram-positive and Gram-negative bacteria,
such as S. aureus, Enterococcus faecalis, Group A Streptococcus,
Escherichia coli, P. aeruginosa, Klebsiella pneumoniae, Proteus
mirabilis, and Prevotella intermedia among others, including
antibiotic-resistant strains containing methicillin-resistant
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TABLE 3 | Example of peptides with their spectrum of activity.

Targeted microbes/PAMP Examples of AMP

Gram-negative and –positive bacteria IB-367, protegrin, MSI-78, gramicidin S,

indolicidin, CEMA

Gram-negative bacteria

Gram-positive bacteria

Polymyxin B

HNP1, sPLA2-IIA

Fungi Protegrin, indolicidin, gramicidin S, CEMA,

polyphemusin, sPLA2-V

Virus Indolicidin, protegrin, polyphemusin

Parasite Magainin II, indolicidin

Endotoxin* CEMA, polyphemusin variants

AMP, Antimicrobial peptide; PAMP, Pathogen-associated molecular pattern.

*Endotoxin named also LPS, is a PAMP present in the cell wall of Gram-negative bacteria.

Staphylococcus aureus (MRSA) and vancomycin-resistant
Enterococci (VRE) (35–37). It has also a preventive action against
S. aureus biofilm formation (38, 39) and can kill, in vitro and in
vivo, both enveloped and non-enveloped viruses (40). Moreover,
this peptide shows toxicity to tripomastigotes of the protozoan
parasite Trypanosama cruzi at micromolar concentrations (35).
On the other hand, magainins exhibit a broad spectrum of
antimicrobial activity that includes Gram-positive and Gram-
negative bacteria [E. coli (41) and P. aeruginosa (42)] and fungi,
such as Candida albicans (43) at concentrations in the range
of 1–10µg/ml (44). The Type-IIA secreted phospholipase A2

(sPLA2-IIA) kills selectively Gram-positive bacteria (see below)
while sPLA2-V contributes to the innate immune response
against C. albicans by regulating phagocytosis and killing
through a mechanism that is likely dependent on phagolysosome
fusion (45). Defensins are also active against bacteria, fungi, and
some viruses at low concentrations under optimal conditions
(37). The antimicrobial activity of defensins is inhibited in
the presence of increasing concentrations of salts and plasma
proteins (44). Their spectrum of activity includes sexually
transmitted infections causing pathogens, such as Treponema
pallidum, Chlamydia trachomatis, human immunodeficiency
virus (HIV)-1, and herpes simplex virus (HSV)-2 (43); fungal
infections, such as candida species (43); skin infections due
to S. aureus and P. aeruginosa; and other important bacterial
pathogens, such as Salmonella and Haemophilus influenzae
(46). Examples of peptides with their spectrum of activity are
presented in Table 3.

AMPs are generally capable of killingmicrobes independently.
However, they often show enhanced antimicrobial activity when
tested in combination with either other AMPs or conventional
antibiotics (7, 35). Many previous studies have shown that
the use of antibacterial agents in a therapeutic cocktail can
reduce the dose of each drug in the combination, limiting the
development of resistance in vitro (18). For instance, LL-37
and HNP-1 were shown to work synergistically together with
a significant enhancement of both their antimicrobial activities
and membrane permeabilization effects (35). It has been also
demonstrated that the efficacy of conventional antibiotics could
be further boosted through combination with AMPs, and some
studies revealed synergistic relationships between antibiotics and

AMPs (47, 48). For example, Dosler and Mataraci reported
the synergistic effect of indolicidin combined to conventional
antibiotics daptomycin, teicoplanin, and ciprofloxacin against
MRSA biofilm (48). Furthermore, our recent studies showed
that the AMP LL-37 potentiated the bactericidal effects of the
antibiotics colistin and imipenem on both antibiotic susceptible
and multidrug resistant strains of P. aeruginosa (49).

TYPE-IIA SECRETED PHOSPHOLIPASE A2:
A PARTICULAR HOST ANTIMICROBIAL
PEPTIDE

The type-IIA secreted phospholipase A2 (sPLA2-IIA) is a
member of the super-family of enzymes called sPLA2 originally
defined by their ability to catalyze the hydrolysis of phospholipids
from both eukaryotic and prokaryotic cell membranes at the sn-2
position leading to the generation of lysophospholipids and free
fatty acids (50, 51). The sPLA2-IIA can be classified as a member
of the AMP family although it kills bacteria via a different
MOA (see below) and is larger than most AMPs (120 amino
acids). The classifications of sPLA2 in different types is based
on the number and position of their disulfide bridges (50, 51).
The encoding sequences of some sPLA2 complimentary DNA
(cDNA) predicted the presence of the putative signal peptide,
thus indicating that these types of sPLA2 are secreted proteins. To
date, 10 distinct members of sPLA2s have been identified so far
in mammals with around 50% homology among them (50, 51).
It becomes clear now that sPLA2-IIA is a major actor in host
defense against invading bacteria and is produced by host cells
at sufficient levels to ensure this role (52, 53).

Discovery of the Bactericidal Functions of
sPLA2-IIA
sPLA2-IIA, the most studied enzyme of the sPLA2 group, is the
most abundant in human and animal biological fluids, and it
has been initially proposed to play a role in the pathogenesis
of various inflammatory diseases (50, 51). However, this notion
evolved progressively, and it is now accepted that bacterial killing
represents the most physiologically relevant and recognized
function of sPLA2-IIA (52, 53). The group of J. Weiss reported
for the first time that the potent antistaphylococcal activity
present in the inflammatory peritoneal exudate can be attributed
mostly to sPLA2-IIA (54). This bactericidal effect is due to
the ability of sPLA2-IIA to bind and penetrate the cell wall of
Gram-positive bacteria with greater efficiency compared to its
Gram-negative effect (52, 53, 55). Subsequent studies report that
mouse and human sPLA2 exhibit various bactericidal activities
toward twoGram-positive bacteria, Listeriamonocytogenes and S.
aureus, and that sPLA2-IIA is, by far, themost bactericidal sPLA2.

The concentrations of sPLA2-IIA in biological fluids are sufficient
to kill all Gram-positive bacteria that may infect mammals (52,
53). Whereas, the concentrations of sPLA2-IIA in the normal
human tear exceed 30µg/ml, only 1.1 ng/ml of the enzyme
is sufficient to achieve the killing of L. monocytogenes (56).
Concentrations at 15–80 ng/ml of sPLA2-IIA are necessary for
S. aureus killing. The sPLA2-IIA efficiently kills Gram-positive
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bacteria due to the high net positive charge of this enzyme
compared to that of other sPLA2s, allowing rapid and highly
efficient binding of sPLA2-IIA to the negatively charged surface
of these bacteria (52, 53). The cell wall bacterial component
lipoteichoic acid has been reported to play a key role in the
tight binding of sPLA2-IIA to Gram-positive bacteria, such as
S. aureus (57).

The contribution of sPLA2-IIA to antibacterial host defense
is supported by in vivo experiments using sPLA2-IIA Tg mice
(52, 53). sPLA2-IIA Tg mice were generated in the C57Bl/6
background. This mouse strain contains an inactivating point
mutation in murine sPLA2-IIA, making them natural knockouts
(58, 59). Therefore, expression of sPLA2-IIA in this strain
background is not confounded by the co-expression of murine
sPLA2-IIA. Using these mice, it has been established that sPLA2-
IIA protects from lethal infections of S. aureus, Bacillus anthracis,
and Streptococcus pyogenes (60–64).

AMPs AND DISEASES

The skin or the mucosal surface, such as the respiratory tract, the
gastrointestinal tract, and the urogenital tract (11), are classically
considered as the primary sites at which a host encounters a
pathogen. At these sites, infections are controlled by the innate
defense responses that allow the host to maintain its integrity
(12). Knockout mice and Tg expression systems have confirmed
that AMPs play a central role in limiting microbial proliferation
in various host sites, thus preventing spread to the deep tissues
where serious infection may occur (14). AMPs are produced by
epithelial cells of vertebrates as a first line of defense against
microbial invaders and tend to exhibit intrinsic specificity for the
encountered pathogens. For instance, HNPs are expressed at high
levels in lesions of superficial folliculitis due to skin infection by
S. aureus (11). As an initial part of the inflammatory response,
AMPs are produced by inflammatory cells, such as neutrophils
and tissue phagocytes, including macrophages (31). For example,
HBD is upregulated in monocytes exposed to bacteria, LPS, or
IFNÈ (65). Furthermore, the immunomodulatory activities of
AMPs enable the activation of adaptive immune responses. LL-37
represents a classical example of AMPs that binds to LPS leading
to repressed LPS-induced responses and targeting the NF-κB
pathway. Moreover, studies have shown that a downregulation
of AMP expression is associated to an increase in susceptibility to
infections by viruses and other microorganisms (13).

AMPs play an integral role in a large number of respiratory
diseases [for example, tuberculosis, cystic fibrosis (CF), rhinitis,
etc.], gastrointestinal diseases (shigellosis, inflammatory bowel
disease, etc.), and cutaneous diseases (atopic dermatitis, psoriasis,
wound healing, and rosacea) among others (13, 66). Group B
Streptococcus (GBS) is killed by human serum from patients
with GBS-related infections in an sPLA2-IIA-mediated manner
(63). In healthy patients, sPLA2-IIA is the only sPLA2 isoform
that is constitutively present at low ng/ml concentrations in
the circulation (67–69). Increased levels of sPLA2-IIA have
been observed in biological fluids in various inflammatory
and infectious diseases, such as allergic rhinitis, rheumatoid

arthritis, pancreatitis, septic shock, acute respiratory distress
syndrome (ARDS), or CF, and correlated to symptom severity
of these diseases (50, 70). However, it remains unclear whether
upregulation of sPLA2-IIA expression is the cause and/or
the consequence of inflammation (e.g., increased cytokine
production) in these diseases. Elevated sPLA2-IIA levels have
also been observed in arterial plasma and in bronchoalveolar
lavage fluids of patients with septic shock. These levels have
a prognostic value and correlated with the development of
pulmonary failure (50). We focus in more detail in the following
paragraph, the potential relevance of AMPs in CF.

Cystic Fibrosis
Patients with disruptions in lung immunity or mucosal clearance,
such as patients with CF, suffer from bacterial infections that
typically don’t resolve even with antibiotic treatment (71). CF
is a well-characterized, lethal, autosomal, recessive, inherited
disorder found predominantly in Caucasians due to mutation in
the cystic fibrosis transmembrane conductance regulator (CFTR)
gene, characterized by chronic lung bacterial infections (72).
These infections are major causes of morbidity and mortality
of CF patients. Ultimately, 80 to 95% of patients with CF
succumb to respiratory failure brought on by these chronic
bacterial infections associated with airway inflammation (73). P.
aeruginosa is arguably the major colonizing infection for people
with CF (74).

The main AMPs detected in lung tissues and secretions of
CF patients are neutrophil α-defensins/HNPs, HBDs, LL-37, and
sPLA2-IIA that play a major role in lung immunity and protect
them against infection with harmful microorganisms (75). The
persistence of lung bacterial infection may be partly explained
by an acidification of the airway surface liquid (ASL) within
the CF lung that exhibits reduced bacterial killing due to the
compromised function of AMPs (72, 76). Our recent studies
showed that ASL was significantly more acidic in CF than in wild-
type (WT) respiratory cells. This was consistent with a defect in
bicarbonate secretion involving CFTR and SLC26A4 (pendrin)
and a persistent proton secretion by ATP12A. This was associated
to a defect in S. aureus clearance, which was improved by pH
normalization (72).

Abnormal salinity of ASL has also been suggested to impair
the bactericidal activity of AMPs, which can form bacterial
proliferation within CF airways (77). We recently showed that
the defensin BigDef1 from the oyster Crassostrea gigas exhibits
natural salt-stable and broad-range bactericidal activity against
various bacterial species. We took advantage of this salt-stability,
due to an evolutionary adaptation of oyster defensins to sea
environment, to treat bacteria from CF patients. We showed that
BigDef1 efficiently kills multidrug-resistant clinical isolates of S.
aureus from CF patients even at high salt concentrations (78).

In the early stages of CF, the airways are mainly colonized
by S. aureus, whereas in later stages, P. aeruginosa is the
major pathogen (46). This shift in infection is a characteristic
feature of CF. Once it colonizes the CF airways, P. aeruginosa
induces a robust expression and secretion of sPLA2-IIA by
airways epithelial cells via a Krüppel-like transcription factor
(KLF)-2-dependent pathway, leading to subsequent and selective
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killing of S. aureus by sPLA2-IIA, a process contributing to the
infection shift (16). A similar phenomenon has been reported
during periodontal diseases caused by Porphyromonas gingivalis.
The latter induces sPLA2-IIA production and secretion by oral
epithelial cells via activation of the Notch-1 receptor (45). The
sPLA2-IIA concentrations reach levels leading to the killing of
other oral bacteria muchmore susceptible to this enzyme sPLA2-
IIA compared to P. gingivalis (45). This process is a potential
cause of dysbiosis associated with periodontal disease. Thus, it is
of great importance to examine the role of individual bacterial
species within the microbiome in the induction or inhibition
of sPLA2-IIA expression at mucosal sites and whether this may
contribute to occurrence of dysbiosis at mucosal surfaces in
diseases characterized by polymicrobial infections.

ADVANTAGES OF AMPs AND
CHALLENGES

As the emergence of super-bacteria is causing a serious concern
across the globe, researchers are working on the development of
new anti-infective therapies. Among the alternatives to combat
antimicrobial resistance, AMPs have garnered much attention
over the years (79). AMPs, which are widely expressed in
all kind of living organisms and have been preserved in the
long evolutionary process, are with no doubt effective natural
immunologically active molecules (80). AMPs have excellent in
vitro antimicrobial activity against a wide range of microbes and,
therefore, represent a promising alternative to combat resistance
(18). The rapid bactericidal activity of AMPs constitutes a strong
advantage to the future of peptide-based antibacterial therapy.
In addition, AMPs are active against multidrug-resistant bacteria
(49, 81). Furthermore, AMPs possess concomitant broad anti-
inflammatory and immunomodulatory activities. Besides, AMPs
exhibit synergistic or additive effects upon co-administration
with conventional ATBs to treat both susceptible and multidrug-
resistant bacteria at non-toxic concentrations (70, 71).

Due to the overlapping MOA of AMPs involving multiple
low-affinity targets, unlike the MOA of conventional ATBs
characterized by one defined, high-affinity target, the
development of bacterial resistance toward AMPs has generally
been considered to be improbable (28, 82). In particular, given
that the bacterial cell membrane is the primary target of AMPs,
it is challenging for microbes to preserve the cell membrane
functional and structural integrity while at the same time
avoiding the membrane disruption activity of AMPs (28).
Because the AMP is composed of amino acids with no specific
primary sequence signature, the microbe is unable to synthesize
a protease that can cleave the AMP but not its own proteins.
Furthermore, our recent study showed that the AMPs LL-37
and CAMA, a derivative of cecropin, were associated with only
transient and low levels of induced resistance compared to the
induced resistance by the antibiotic gentamicin (49). However,
it appears somehow that some bacteria, such as Serratia
marcescens, present natural resistance to AMPs (83). Moreover,
some bacteria exposed to AMPs may evolve under selective
pressures to develop resistance mechanisms. Even though the

existence of these selective pressures are, evolutionarily speaking,
quite old, human AMPs still possess a broad spectrum of effective
activity against a diverse range of microorganisms (14).

In the last 30 years, various pharmaceutical companies have
tried to develop AMPs as clinically useful antimicrobials. To date,
several AMPs are currently undergoing laboratory testing, and
a few have already reached clinical trials (19). The review (18)
shows a number of AMPs and AMP derivates already at the
preclinical stage and in clinical trial.

Although AMPs have very attractive qualities, the challenges
for successful development for clinical application are
considerable (84). One of the biggest restraints in the large
scale of development and commercialization of AMPs may be
their high production costs estimated around US$300–$500 per
gram, which is several hundred times more expensive than the
production of conventional ATBs (17). In addition to that, the
excellent antimicrobial activity in vitro is rarely translated in
vivo (41). In most studies in the field, the killing effects of AMPs
on bacteria have been examined in vitro and in the absence
of host cells, which do not reflect real life. Indeed, in human
and animal infectious diseases, infecting bacteria multiply
within biological fluids and/or in contact with host cells, which
may interfere with AMP bactericidal activity. This led us to
compare the bactericidal effects of LL-37 on P. aeruginosa in a
cell-free system and when this strain was added to a bronchial
epithelial cell line IB3, isolated from a CF patient, prior to
addition of LL-37. These studies show that the presence of IB3
cells markedly reduces the bactericidal effects of LL-37 on P.
aeruginosa. Although the mechanisms involved in this alteration
are still under investigation, we hypothesized that degradation
of LL-37 by a protease produced by IB3 cells upon infection by
P. aeruginosa may explain the alteration of LL-37 bactericidal
activity (unpublished data). Thus, most peptides have relatively
short circulating plasma half-lives and are cleared primarily by
proteolytic degradation and by renal filtration, generally leading
to suboptimal pharmacokinetic properties (84). Indeed, the most
obvious cause of poor or incomplete in vivo activity of AMPs is
the lack of stability due to the peptide susceptibility to protease
degradation if they are ingested. In regard to drug delivery, oral
bioavailability of peptides is often no more than 2% (79). Thus,
oral administration of AMPs can lead to proteolytic digestion
by enzymes in the digestive tract, such as trypsin and pepsin,
making intravenous or subcutaneous injections the only viable
routes of administration to treat people. Moreover, systemic
administration outcomes with short-half lives in vivo, protease
degradation, and cytotoxic profiles in blood (20). In addition, the
direct antibacterial activity of some of these AMPs is certainly
prevented due to the affinity of these AMPs to polyvalent anions,
such as glycosaminoglycans (29). AMPs can also bind avidly to
host cells, which may reduce their availability to bind to and kill
bacteria (unpublished data).

Another key factor to consider is the potential of these
peptides to elicit an immunogenic response that can significantly
reduce their efficacy and alter their pharmacokinetic profile (84).
An additional challenge to overcome is the differences in pH,
salt, and serum concentrations in vivo, resulting in decreased
antimicrobial activity (10). Hence, a number of AMPs have failed
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approval by the FDA after reaching phase II clinical trials due to
their short-half life and their poor physical-chemical properties
(17). However, even with limitations, AMPs still possess a
broad spectrum of potent antimicrobial activity (14). Another
potential issue includes the cytotoxicity to mammalian cells when
bactericidal concentrations are high. However, there are very few
studies of AMP cytotoxicity on human cells (10).

Methods to overcome these challenges have been evaluated.
Scientists and pharmaceutical companies have invested in
research and development to overcome the barriers limiting
the practical application of AMPs. To circumvent proteolysis,
sequence modifications, and half-life, advances in peptide
formulation have ended in the development of improved
formulas with sufficient plasma exposure using a delivery
system (for example, a lipid self-assembly system, inorganic
systems, nanoparticles, etc.), chemical modifications of AMPs,
and altering structure to have cyclic peptides with strained
peptide bonds displaying a resistant profile (41, 85). Another
approach is to identify possible molecular cleavage sites
followed by substitution of the relevant amino acids (86). The
recognized route of administration for therapeutic peptides
remains parenteral, in which AMPs pierce the membrane
barriers where they are poorly absorbed. Nevertheless, other
challenges remain, pre- and post-administration, in achieving
both the desired pharmacokinetic profile and high patient
compliance (84). Specific cell-penetrating peptide sequences
have been identified and can be used to transport AMPs
across membranes (79). More tools to increase AMP activity
include modifications in charge and hydrophobicity. Among
the various methods for peptide optimization, quantitative
structure-activity relationship, and the introduction of fluorine
atoms or trifluromethyl groups have been recently used
(25). Besides, recent studies have focused on designing
a sequence of AMP analogs with modified yet improved
antibacterial, cytotoxic, and hemolytic activities. Thus, synthetic
peptides have been designed to mimic the structure, function,
and mode of action of AMPs with enhanced properties,

resulting in low cytotoxicity and high resistance to proteolytic
degradation, resulting in prolonged half-lives and cost-effective
molecules (18). Furthermore, the progress in designing
non-immunogenic peptides is rapid, resulting in disarming
the immunogenic response, which should increase clinical
success (84).

CONCLUSIONS AND PERSPECTIVES

AMPs, owing to their broad spectrum of antibacterial activity
and their effectiveness against multidrug-resistant bacteria, are
a promising replacement for conventional ATBs, invoking a
multi-hit mechanism that cannot be easily overcome by bacteria.
However, the future of peptide-based anti-infective drugs is still
uncertain. The major barriers that hinder their clinical use are
mainly their stability in vivo, their non-well-studied toxicity, and
their high production costs. Thus, the development of optimal
formulations of AMPs at a reasonable cost, finding the preferred
route of their administration, and evaluating their cytotoxicity
remain the main interest to scientists. Regardless of the field
of applications, AMPs constitute the most promising drug
candidate in a foreseeable future in overcoming the alarming rise
of bacterial resistance.
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