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Although deoxyribonuclease I (DNase I) was used to probe the structure of the nucleosome in the 1960s and 1970s, in the

current high-throughput sequencing era, DNase I has mainly been used to study genomic regions devoid of nucleosomes.

Here, we reveal for the first time that DNase I can be used to precisely map the (translational) positions of in vivo nucleo-

somes genome-wide. Specifically, exploiting a distinctive DNase I cleavage profile within nucleosome-associated DNA—in-

cluding a signature 10.3 base pair oscillation that corresponds to accessibility of the minor groove as DNAwinds around the

nucleosome—we develop a Bayes-factor–based method that can be used to map nucleosome positions along the genome.

Compared to methods that require genetically modified histones, our DNase-based approach is easily applied in any organ-

ism, which we demonstrate by producing maps in yeast and human. Compared to micrococcal nuclease (MNase)-based

methods that map nucleosomes based on cuts in linker regions, we utilize DNase I cuts both outside and within nucleosomal

DNA; the oscillatory nature of the DNase I cleavage profile within nucleosomal DNA enables us to identify translational

positioning details not apparent in MNase digestion of linker DNA. Because the oscillatory pattern corresponds to nucle-

osome rotational positioning, it also reveals the rotational context of transcription factor (TF) binding sites. We show

that potential binding sites within nucleosome-associated DNA are often centered preferentially on an exposed major or

minor groove. This preferential localization may modulate TF interaction with nucleosome-associated DNA as TFs search

for binding sites.

[Supplemental material is available for this article.]

The majority of a eukaryotic genome is wrapped around histone
octamers, forming nucleosomes, the basic DNA-packaging units
of chromatin (Kornberg and Lorch 1999). Recent studies have re-
vealed many general positioning properties of nucleosomes. For
example, the barrier model states that +1 nucleosomes (the first
nucleosomes downstream from a transcription start site [TSS])
have relatively fixed positions across a homogeneous cell popula-
tion and function as a barrier for phasing nucleosomes further
downstream, resulting in increasingly fuzzier positions as their dis-
tances from the +1 nucleosomes increase (Mavrich et al. 2008;
Schones et al. 2008). Other nucleosome positioning properties in-
clude a nucleosome free region (NFR) within most promoter re-
gions (Bai and Morozov 2010), as well as canonically positioned
nucleosomes downstream from TSSs (Mavrich et al. 2008; Jiang
and Pugh 2009b; Radman-Livaja andRando 2010) and around rep-
lication origins (Eaton et al. 2010; Méchali 2010).

The precise positioning of nucleosomes affects a variety of bi-
ological processes that require access to the underlying genomic
DNA, including transcription (Li et al. 2007), DNA replication
(Ehrenhofer-Murray 2004; Dorn and Cook 2011), and the binding
of other regulatory proteins (Li et al. 2005; Narlikar et al. 2007;
Koerber et al. 2009). Both computational models (Raveh-Sadka
et al. 2009; Wasson and Hartemink 2009) and experimental data
(Martinez-Campa et al. 2004; Mao et al. 2011) have shown that

small shifts in nucleosome positioning can have a profound im-
pact on these processes.

To map nucleosome positions genome-wide, a few different
experimental protocols have been developed, including FAIRE-
seq (Nagy et al. 2003), ATAC-seq (Buenrostro et al. 2013), and
ChIP-based methods (for example, Albert et al. 2007 and Lee
et al. 2007), but the workhorse of the field has been digestion
withmicrococcal nuclease (MNase). MNase-digested genome frag-
ments were originally hybridized to microarrays (Yuan et al. 2005)
but have more recently been sequenced (MNase-seq) (Field et al.
2008; Mavrich et al. 2008; Jiang and Pugh 2009a; Henikoff et al.
2011). These studies have revealed key features of nucleosome po-
sitioning genome-wide, though the inherent sequence specificity
of theMNase enzyme (Hörz andAltenburger 1981) has led to some
mild controversy regarding the fine-scale interpretation of the re-
sults (Chung et al. 2010; Allan et al. 2012). Partly in response to
this concern, Brogaard et al. (2012) developed a method of chem-
ical cleavage that obviates the need for MNase and can determine
nucleosome positions with high precision. However, this method
requires genetically engineering native histones, making it harder
to apply across organisms than methods using nuclease digestion.

Deoxyribonuclease I (DNase I) was used to probe the structure
of an individual nucleosome before its exact details were known
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(Noll 1974). The oscillatory cleavage patterns of DNase I along the
nucleosome core particle were studied extensively during that pe-
riod (Lutter 1978, 1979; Prunell et al. 1979; Simpson and Stafford
1983). However, in recent years,DNase I has only beenwidely used
to identify DNase hypersensitive sites (DHS), which tend to be
open chromatin regulatory regions like promoters, silencers, and
enhancers (Crawford et al. 2006; Boyle et al. 2008; Hesselberth
et al. 2009; Song et al. 2011). DNase I digestion followed by se-
quencing (DNase-seq) has been employed in multiple large-scale
genomics efforts, including the ENCODE Project (The ENCODE
Project Consortium 2007, 2011; Neph et al. 2012; Thurman
et al. 2012). As a result, we now have high volumes of DNase-seq
data, but to date, these data have largely been analyzed to locate
and study DHSs—regions devoid of nucleosomes—rather than
used to explore the vast majority of the genome that is nucleo-
some-associated.

In this study, we show that DNase-seq data sets also contain
substantial information about nucleosome translational position-
ing and that existing DNase-seq data can be used to infer nucleo-
some positions with high accuracy. To accomplish this, we first
describe and characterize the distinctive DNase I cleavage profile
on nucleosome-associated DNA. The features of this profile in-
clude an overall quadratic shape, an oscillatory cleavage rate, and
a surprising asymmetry of the cleavage of each strand as it winds
along the nucleosome. We show that these features can be built
into a Bayes-factor–based nucleosome scoring method to achieve
high sensitivity and specificity in distinguishing nucleosomal
and nonnucleosomal genomic regions. Applying this method,
we generate the first genome-wide nucleosome maps based on
DNase-seq data for both yeast and human. We show that the re-
sulting maps are highly concordant with previous maps (Brogaard
et al. 2012; Gaffney et al. 2012). Canonical nucleosome position-
ing properties, including highly phased nucleosome arrays around
TSSs and replication origins, are clearly reflected in our DNase-
based maps. The spatial relationships we observe between nucleo-
somes and bound transcription factors (TFs) are also in strong
accord with previous reports. Ourmethod thus adds a nucleosome
positioning capability to the widely used DNase-seq protocol, im-
proving its time and cost efficiency by enabling it to map both
DHSs and nucleosome positions at the same time.

In comparison with other work, several recent studies have
noted a similar oscillatory cleavage pattern of DNase I in high-
throughput DNase-seq data (Boyle et al. 2008; Gaffney et al.
2012; Winter et al. 2013; Vierstra et al. 2014). However, none of
them utilized this pattern to map genome-wide nucleosome
positions. Winter et al. (2013) used an oscillatory pattern to iden-
tify regions called “DNase I annotated regions of nucleosome
stability” (DARNS), which are not individual nucleosome posi-
tions but rather genomic regions representing typically small por-
tions of nucleosomes that maintain their rotational phasing.
Vierstra et al. (2014) use DNase I to identify “nucleosome architec-
ture” around TF binding sites, but their method requires paired-
end sequencing and relies on the size of reads to distinguish
nucleosome-associated fragments from those within DHSs. More
importantly, their method is designed to map the positions of
nucleosomes adjacent to DHSs and not to position nucleosomes
genome-wide.

An important feature of our approach is that we exploit the
DNase I cuts both within and outside nucleosomes, leveraging
all available information to identify nucleosome positions, while
MNase-based methods primarily rely on MNase cleaving the ge-
nome at linker regions. This enables us to identify the well-known

10.3 base pair (bp) nucleosome translational position offsets
(Gaffney et al. 2012) that MNase is not able to identify. Peaks
and troughs in the oscillatory cleavage pattern of DNase corre-
spond to accessibility of the DNA minor and major groove along
the nucleosome. They therefore reveal the rotational positioning
of nucleosomes, i.e., the orientation of DNA major and minor
grooves relative to the histone surface. The nucleosome rotational
setting at potential TF binding sites has been shown to modulate
the binding of TFs (Li and Wrange 1995; Sekiya et al. 2009; Cui
and Zhurkin 2014). Using this pattern, we systematically study
the rotational context of TF motif matches for 21 yeast TFs and
five human TFs. We observe that TF motif matches within nucle-
osome-associated DNA are often located in a manner that aligns
consistently with either the minor or major groove. This preferen-
tial localizationmay exist to regulate the ability of TFs to search for
their binding sites along the genome.

Results

In the sections that follow, we first collect DNase-seq data in yeast,
use the data to develop our model, and then apply our model to
produce a genome-wide nucleosome map for the yeast genome.
After validating the quality of our DNase-based map, we consider
the required sequencing depth needed to achieve similar quality
in larger genomes like human.We then pool data froma collection
of existing human DNase-seq data sets and use the pooled data to
produce a nucleosome map for the human genome.

DNase cleavage shows a distinctive oscillatory profile

along the nucleosome

We used DNase I to digest chromatin from asynchronous wild-
type yeast cells growing in rich medium. To explore the DNase I
cleavage profile that arises within nucleosomes, we first identified
the 2000 most strongly positioned nucleosomes in the yeast
genome, ranked according to their nucleosome center position
(NCP) score-to-noise ratios, as determined by Brogaard et al.
(2012). For those 2000 nucleosomes, we calculated the average
number of DNase-seq reads (transformed by an inverse hyperbolic
sine function) that mapped to each position of each strand within
the nucleosome (see Methods). We show the resulting cleavage
profile in Figure 1A. To ensure the robustness of our results, we re-
peated this same analysis using DNase-seq data from yeast pub-
lished by Hesselberth et al. (2009); the Hesselberth DNase-seq
data exhibit the same profile we observe in our own data (Supple-
mental Fig. 1).

In the cleavage profile, we see an overall quadratic shape, in-
dicating that DNA nearer the nucleosome dyad is better protected
from DNase I cleavage than DNA nearer the edge of the nucleo-
some. This is most likely due to dynamic nucleosome wrapping
and unwrapping (DNA breathing) (Li and Widom 2004; Li et al.
2005). Overlaid on this quadratic shape, we also observe a signa-
ture oscillatory cleavage pattern, which has been previously well-
established (Noll 1974; Boyle et al. 2008; Winter et al. 2013).
Since DNase I binds within the minor groove, it can more easily
nick nucleosomal DNA when the minor groove is exposed. A har-
monic regression analysis shows that the period of this oscillation
is ∼10.3 bp for our data (Fig. 1C) and 10.4 bp for the data of
Hesselberth and colleagues (Supplemental Fig. 2), values that agree
with earlier studies and with the periodic exposure of the minor
groove along the nucleosome. Comparing the cleavage profiles
for the two different strands, we see a 2- to 3-bp offset in the
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Figure 1. (A) Strand-specific cleavage profile of DNase I along the nucleosome, computed by averaging DNase-seq counts (transformed by the inverse
hyperbolic sine function) within the 2000 most strongly positioned nucleosome sites in the yeast genome. (B) Crystal structure of a nucleosome shown
from two angles (image created using Protein Data Bank entry 1AOI [Luger et al. 1997]). The strand that faces outward as the minor groove is differentially
accessible on opposite sides of the nucleosome dyad. The two positions labeled with arrows have the same relative distance to the dyad. (Left) The blue
strand faces outward and is more exposed to digestion at this position, while the red strand faces inward and is less exposed. (Right) The red strand is now
the one that faces outward, while the blue strand faces inward. In other words, on opposite sides of the nucleosome dyad, each strand is exposed differently
as the minor groove becomes accessible (more exposed upstream of the dyad and less exposed downstream from the dyad). (C) Posterior density of the
period of oscillation, as determined by Bayesian harmonic regression. The most probable period a posteriori for each of the two different strands is ∼10.3
bp. (D) Classification ROC for 10-fold cross-validation on both our data (blue) and the data of Hesselberth et al. (2009) (purple). All test cases from the ten
folds were combined to draw an overall ROC for each data set. The areas under the two ROCs are computed and presented as a bar chart (inset). (E) Example
genomic region from yeast Chromosome IX in which nucleosome positions are mapped using our moving window nucleosome scoring approach. (Top)
Raw DNase-seq counts in this region. Note that DNase-seq analysis has traditionally focused only on finding and exploring DHS regions, such as the one
that corresponds to the strong peak of signal just to the left of coordinate 61,000 (promoter of ESL1). (Middle) Transforming the raw DNase-seq counts
using an inverse hyperbolic sine function allows clearer (but still weak) patterns to be seen in nucleosome-associated DNA. (Bottom) Smoothed moving
window nucleosome score on this region (blue), in comparison with the NCP score-to-noise ratios from Brogaard et al. (2012) (purple). Nucleosome po-
sitions mapped by a greedy algorithm applied to our nucleosome scores, and for comparison the NCP score-to-noise ratios, are shown beneath the nu-
cleosome score curve.
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periodic patterns. This is likely due to the fact that DNase I nicks
one strand at a time in the presence of Mg2+, and the active site
of this nicking activity is not quite centered in the enzyme (Suck
et al. 1988), resulting in a 2- to 3-bp offset between nicks on oppo-
site strands (Cousins et al. 2004; Boyle et al. 2008).

We note two other interesting and important features in the
cleavage profile. First, for each strand, the rate of cleavage is asym-
metric across the nucleosome dyad. Specifically, the oscillatory
pattern is strong upstream of the dyad (on the 5′ side) but is mark-
edly dampened downstream (on the 3′ side). Second, however, the
cleavage profiles of the two strands are almost exact mirror images
of each other, as would be expected (Supplemental Fig. 3). We be-
lieve the within-strand asymmetry across the dyad arises from the
wayDNase I can interact with each strand, given the specific three-
dimensional structure of nucleosome-associated DNA. From the
crystal structure of the nucleosome (Fig. 1B; Luger et al. 1997),
we see that upstream (5′) of the dyad, the minor groove of each
strand faces outward from the histone octamer, but downstream
(3′) from the dyad, access to theminor groove is somewhat imped-
ed by the previous wrap of the DNA around the histone octamer.
This asymmetry was first observed and explained by Lutter
(1978), who reasoned (before the structure of the nucleosome
was determined) that the asymmetry along each strand is the di-
rect consequence of DNA wrapping around the histone core in a
left-hand manner.

It is known that nucleosomes exhibit weak periodic sequence
preferences that enable them to wrap DNA more effectively
(Satchwell et al. 1986; Segal et al. 2006). Theseweak sequence pref-
erences are thus correlatedwith the periodic exposure of theminor
groove along the DNA, leading an alternative explanation of the
oscillatory cleavage pattern: that it instead arises from periodic se-
quence patterns across large stretches of the genome coupled with
sequence bias in the cleavage preferences of DNase I. To explore
this possibility, we took DNase-seq data generated from naked
yeast DNA, entirely devoid of nucleosomes, and repeated our anal-
ysis with this data set (collected by Hesselberth et al. 2009; results
shown in Supplemental Fig. 1). The oscillatory pattern of the
DNase cleavage profile is completely absent in this data set, so
we rule out the possibility that it arises from DNase I sequence
bias acting on periodic sequence patterns. We therefore conclude
it is best explained by the periodic exposure of the minor groove
that occurs along nucleosome-associated DNA.

Distinctive DNase cleavage profile allows nucleosome

positions to be distinguished from nonnucleosome

positions

We hypothesized that the quadratic, oscillatory, and within-
strand–asymmetric DNase I cleavage profile would be very infor-
mative for identifying nucleosome positions along the genome.
To test this hypothesis, we first explored the possibility of utiliz-
ing the profile to distinguish nucleosomal from nonnucleosomal
genomic positions in a classification setting. We built major fea-
tures of the profile into a Bayes-factor–based nucleosome scoring
method (see Methods). We used 147-bp windows centered on the
top 2000 nucleosome center positions from Brogaard et al. (2012)
as the true positive set. We used 147-bp windows centered on a
set of 2000 locations selected uniformly at random from the ge-
nome as the true negative set. To assess classification perfor-
mance, we carried out a 10-fold cross-validation in which both
the nucleosomal and nonnucleosomal windows were randomly
split into 10 equal partitions. Model parameters were trained on

nine of the partitions using an empirical Bayes approach, and
each model so trained was then used to classify windows from
the remaining partition as being nucleosomal or nonnucleoso-
mal. All of the test cases from across the ten folds were combined
to compute a receiver operating characteristic (ROC) curve; area
under the ROC (AUROC) was used to assess classification perfor-
mance (Fig. 1D). Our classifier achieves a good combination of
sensitivity and specificity in distinguishing nucleosomal from
nonnucleosomal windows (out-of-sample AUROC on our data is
0.89, and for comparison, 0.85 on Hesselberth data). The data
we publish here provide mildly better discriminatory power com-
pared to the Hesselberth data, particularly on less well-positioned
nucleosomes (the two ROCs in Fig. 1D overlap at first, but
then diverge beyond a false positive rate around 5%). This differ-
ence might be because the Hesselberth data have a lower sequenc-
ing depth and/or because our data exhibit a less noisy
nucleosomal cleavage profile (Supplemental Fig. 1). In the follow-
ing sections, we only present results using our data (parallel anal-
yses conducted with Hesselberth data exhibit the same general
properties).

Distinctive DNase cleavage profile allows nucleosome

positions to be mapped genome-wide

Encouraged by the classification performance of our nucleosome
score calculated from the DNase I cleavage profile, we investigated
whether we could exploit the same score tomap nucleosome posi-
tions genome-wide. We trained model parameters using all of the
nucleosomes in the top 2000 set above and then calculated a nu-
cleosome score at every position along the genome, using a mov-
ing 147-bp window. Figure 1E shows an example region from
Chromosome IX in yeast, where we plot the raw and transformed
DNase-seq counts, and then the smoothedmoving windownucle-
osome score computed from these data. The figure also compares
our smoothed nucleosome score with the NCP score-to-noise ra-
tios reported by Brogaard et al. (2012). The peaks of our Bayes-fac-
tor–based nucleosome score accord well with NCP score-to-noise
ratio peaks, evenwhen theDNase-seq data seemvisually to exhibit
only a weak positioning signal. This shows the power of using a
Bayesianmethod that not only integrates aweak signal acrossmul-
tiple genomic positions, but also integrates out uncertainty in
model parameters.

We then used a greedy algorithm (see Methods) to select nu-
cleosome center positions across the genome and thereby com-
pute a genome-wide nucleosome map, derived entirely from
DNase-seq data (Fig. 1E, bottom panel). To explore the validity
of this map, using the chemical-cleavage map from Brogaard
et al. (2012) as a reference, we calculated the nucleosome center-
to-center distances fromour nucleosomes to those of the reference
(see Methods). We also counted the number of nucleosomes
shared between our map and the reference map (true positives),
as well as the number of nucleosomes in the reference that do
not overlap ones in our map (false negatives) and the number of
nucleosomes in our map that do not overlap ones in the reference
(false positives). As a comparison, we performed the same calcula-
tions for an MNase-seq–based nucleosome map from Jiang and
Pugh (2009a); note that we used their “consensus set,”which itself
is compiled as a consensus of four separate MNase-seq data sets
(Field et al. 2008; Mavrich et al. 2008; Shivaswamy et al. 2008;
Jiang and Pugh 2009a).

Figure 2A shows a density estimation of the center-to-center
distances between the different maps. Overall, our DNase-seq–
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based map achieved a precision similar to the consensus MNase-
seq–based map. However, a notable 10.3-bp fluctuation is appar-
ent in the distances between the reference and the map based on
DNase-seq. This indicates that if a DNase-based nucleosome center
does not coincidewith a reference nucleosome center, it is farmore
likely to be amultiple of 10.3 bp away from it. Many have reported
that nucleosomes exhibit this translational positioning offset
property, in which a nucleosome is likely to position itself at “rota-
tionally in-phase” positions that are multiples of 10.3 bp away
from each other (Albert et al. 2007; Brogaard et al. 2012; Gaffney
et al. 2012; Winter et al. 2013). We believe that our DNase-seq–
based approach identifies genuine nucleosome centers, and where
the map does not perfectly coincide with the reference, the dif-
ferences appear to represent translational offsets with respect to
reference nucleosome centers. In contrast, the MNase-seq–based
map is not able to identify the precise translational offsets associ-
ated with alternative nucleosome positions. Furthermore, our
DNase-seq–basedmap has both a higher sensitivity and specificity
than the MNase-seq–based map (Fig. 2B), even when the latter is
compiled as the consensus of multiple data sets (each individual
data set performs worse than the consensus; see Supplemental
Figs. 4, 5). The superior ability of our approach to produce an accu-
rate nucleosome map is most likely due to the fact that it uses
DNase I cuts both within and outside the nucleosome. The oscilla-
tory cut information can bemaintained even at fuzzy nucleosomes
because of the stability of nucleosome rotational positioning
(Gaffney et al. 2012; Winter et al. 2013). However, MNase-seq
methods rely primarily on the digestion signals fromwithin nucle-
osome linkers, which are weaker when nucleosomes are not well
positioned.

DNase-seq–based map recapitulates known features

of nucleosome positioning

We next sought to ensure that our DNase-seq–based nucleosome
map recapitulates well-known features of nucleosome positioning
genome-wide. Specifically, we computed composite nucleosome
positioning patterns around TSSs, ARS consensus sequences
(ACSs) that mark origins of replication, and TF binding sites, and
confirmed that they are essentially identical to previous reports
that map nucleosomes by other methods (Fig. 3).

Around the TSS (Fig. 3A), we see that the +1 nucleosome is the
most strongly positioned, while subsequent downstream nucleo-
somes become progressively weaker as one moves further into
the gene body (consistent with the barriermodel).We also observe
a strong depletion of nucleosomes immediately upstream of the
TSS, in a location called the nucleosome free region (NFR). The
spacing of nucleosomes upstream of the NFR is somewhat less reg-
ular and again becomes progressively weaker as one moves further
upstream. These patterns all agree with previous reports (for exam-
ple, Mavrich et al. 2008 and Brogaard et al. 2012). Similarly, we
observe strong and regular nucleosome positioning around repli-
cation origins (Fig. 3B). According to previous reports thatmap nu-
cleosomes withMNase (Eaton et al. 2010), the ACS site is known to
be closer to the upstream nucleosome, with the upstream and
downstream nucleosome centers at –90 and 160 bp relative to
the origin, respectively, and our results accord well with this obser-
vation. Both of these composite nucleosome score patterns can
also be seen at individual genomic loci (Supplemental Fig. 6).

Figure 3, C and D, shows median nucleosome scores around
Abf1 and Reb1 binding sites. Abf1 and Reb1 can both act as bar-
riers for nucleosome positioning, and we see regularly positioned
nucleosome arrays both upstream and downstream of their bind-
ing sites, in close correspondence with the scores from Brogaard
et al. (2012). Note that in both our DNase-seq–based map and
the Brogaard map, we observe weak nucleosome center signals
very close to the TF binding sites. Although it is possible that
some of these TFs are bound to nucleosome-associated DNA, it
seemsmore likely that the binding of a TF and the binding of a nu-
cleosome at overlapping genomic locations aremutually exclusive
events in each individual cell, but that the data represent amixture
of different binding configurations across the population of cells
in the assay. Again, the composite score patterns can also be
seen at individual genomic loci (Supplemental Fig. 7).

Sequencing depth influences DNase-seq–based mapping

of nucleosomes

We have demonstrated we can use DNase-seq data to accurately
map nucleosome positions genome-wide in yeast. Yeast has a rel-
atively small genome that can be easily sequenced to high depth.
We were interested to explore how well our approach might scale
to larger genomes, so we started by evaluating how sequencing
depth influenced the performance of our method in the classifi-
cation setting. To this end, we uniformly subsampled 80%, 60%,
40%, 20%, 5%, and 1% of our DNase-seq data and performed
the same classification as in section “Distinctive DNase cleavage
profile allows nucleosome positions to be distinguished from non-
nucleosome positions” on those subsampled data sets. Figure 4
shows the classification performance as a function of the subsam-
ple percentage. Since our DNase-seq counts scale with the number
of reads rather than the number of sequenced nucleotides, the
ratio of the number of reads to the overall size of the genome
(reads/nt) is the appropriate measure of sequencing depth for our
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and the Brogaard reference map (dashed curve). (B) The number of true
positives (TP), false negatives (FN), and false positives (FP) of our DNase-
seq–based nucleosome map and the consensus MNase-seq–based nucle-
osome map, in each case using the Brogaard nucleosome map as a refer-
ence (gold standard).
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purposes. The full data set we report here consists of 83,053,784
reads across the yeast genome, which corresponds to 6.9 reads
per genomic nucleotide. As Figure 4 indicates, a sequencing depth
of 1.4 reads/nt (corresponding to a 20% subsample) still achieves a
good classification performance (AUROC> 0.85). However, fur-
ther subsampling of the data starts to decrease the performance
more dramatically.

Most currently available human DNase-seq data sets have se-
quencing depths around 0.05 reads/nt (Boyle et al. 2008; Degner
et al. 2012; Winter et al. 2013). However, certain data sets, for ex-
ample Degner et al. (2012), havemultiple replicates from the same
cell type that can be pooled together to increase the overall se-
quencing depth. In the following section, we use the data from
Degner et al. (2012) to demonstrate the application of our method
across the human genome.

Mapping nucleosome positions in the human genome

Degner et al. (2012) performed DNase I sequencing in 70 Yoruba
lymphoblastoid cell lines. We pooled all their DNase-seq data
sets together (overall sequencing depth ∼0.9 reads/nt) and applied
our method to this combined human data set. We used the model

parameters trained on our yeast DNase-
seq data, so we did not require any prior
knowledge about human nucleosome
positioning for training. We compared
our results to those derived from the
MNase-seq data reported by Gaffney
et al. (2012) (paired-end MNase-seq on
lymphoblastoid cell lines derived from
seven Yoruba individuals). Figure 5A
shows the comparison in one example
region from Chromosome 12. As before,
we used a greedy algorithm to identify
nucleosome centers fromboth our nucle-
osome score and the paired-end MNase-
seq fragment middle point counts of
Gaffney et al. (2012). Figure 5A also
compares DARNS from Winter et al.
(2013) with nucleosomes identified
from DNase-seq and MNase-seq. DARNS
are regions over which nucleosomes
maintain their rotational positioning,
and by design, usually represent only
part of a nucleosome (Supplemental
Fig. 8 shows the length distribution of
all DARNS across the genome, as reported
by Winter et al. 2013).

To compare the MNase-seq and
DNase-seq nucleosome maps more glob-
ally, we calculated the center-to-center
distances between nucleosome centers
identified by these two methods. The
low sequencing depth of the human
DNase-seq data meant that large stretch-
es of the genome had almost no cuts.
For efficiency, these regions were not
processed, and all comparisons below
are on those regions where sufficient
DNase-seq depth was present to iden-
tify nucleosomes. Figure 5B shows the
distribution of these center-to-center
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C D

Figure 3. Median nucleosome score around all mRNA TSSs (A), around ACS sites at all origins of rep-
lication (B), and around all binding sites of Abf1 (C) and Reb1 (D) across the yeast genome. TSS coordi-
nates are taken from Rhee and Pugh (2012), ACS coordinates are taken from Eaton et al. (2010), and TF
binding site coordinates are taken fromMacIsaac et al. (2006). For comparison, the bottom of each panel
shows the average NCP score-to-noise ratios from Brogaard et al. (2012) at corresponding positions.
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Figure 4. Classification performance (AUROC) as a function of data sub-
sampling percentage. Sequencing depths (measured in reads/nt) corre-
sponding to the subsample percentages are displayed next to the curve.
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distances, and we observe that when predicted center positions do
not coincide, they aremore likely to be translational offsets of each
other that are rotationally in phase (multiples of 10.3 bp away
from each other). In Figure 5C, we display numbers of overlapping
and nonoverlapping nucleosomes between the two maps, calcu-
lated the same way as in Figure 2B. More than 70% of the nucleo-
somes identified from DNase-seq data overlap with nucleosomes
identified fromMNase-seq data.We see that we are able to identify
nucleosome positions with good precision (but as mentioned
above,with low recall; we expect the recall would improvemarked-
ly with greater sequencing depth, as was the case in the yeast
genome).

Additional genome-wide nucleosome positioning features,
including canonically positioned nucleosomes around TSSs and
TF binding sites, are also recapitulated by our DNase-seq–derived
nucleosome map (Supplemental Fig. 9). Finally, using MNase-
seq–identified nucleosome centers as an approximate ground
truth, we were able to compute a DNase I cleavage profile in hu-

man and see an oscillation profile largely similar to the one we ob-
served in yeast using the more precise nucleosome centers of
Brogaard et al. (2012) (Supplemental Fig. 10).

TF motif matches within nucleosomal DNA are often located

preferentially on major or minor groove

The oscillatory DNase I cleavage pattern provides information
about nucleosome rotational positioning (the orientation of the
major and minor grooves of DNA with respect to the histone sur-
face as it wraps around the histone core). Nucleosome rotational
positioning has been shown to be able to regulate the binding of
TFs to sites along the DNA (Li and Wrange 1995; Sekiya et al.
2009; Cui and Zhurkin 2014). Here, we used the oscillatory pattern
(detrended, see Methods) to examine nucleosome rotational posi-
tioning at the centers of TFmotif matches of 21 yeast TFs that bind
DNA directly in rich medium (Gordân et al. 2009) and five human

A

B C

Figure 5. (A) Comparison of DNase-seq–identified nucleosomes andMNase-seq–identified nucleosomes in human Chromosome 12 (intronic region of
CACNA1C). Nucleosome centers are identified by the same greedy algorithm on our nucleosome score curve and on theMNase-seq fragmentmiddle point
counts, respectively. Nucleosomes identified from the two types of data overlap significantly, especially considering the large noise in the MNase-seq data.
The middle panel also shows the DARNS from Winter et al. (2013), which likely represent portions of phased nucleosomes. (B) Distribution of center-to-
center distances between our DNase-seq–based nucleosomemap and theMNase-seq–basedmap of Gaffney et al. (2012). (C) The number of nucleosomes
shared between the DNase-seq and MNase-seq maps, as well as the number of nucleosomes that appear in only one of the maps.
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TFs with well-defined motifs that have been shown to be pioneer
factors (Sherwood et al. 2014).

For a TF with Nmotif matches, we calculated the average nu-
cleosome-associated oscillation around theseNmotifmatches; as a
control, we calculated the average oscillation around N randomly
selected genomic sites (we call these “motif oscillation” and “ran-
dom oscillation,” respectively; see Methods for more details). The
peaks and troughs of the oscillation correspond to the minor and
major grooves of nucleosomal DNA, respectively. Since randomly
selected genomic sites are equally likely to lie anywhere along a he-
lical twist of DNA, their oscillatory peaks and troughs should large-
ly cancel, resulting in a low-amplitude oscillation. However, the
motif oscillations ofmany TFs have significantly higher amplitude
than random oscillations (Fig. 6 shows four examples: Abf1 and
Reb1 in yeast, and CTCF and GABPA in human). This indicates
that TF motif matches seem to locate preferentially with respect
to the rotational phasing of the DNA along the nucleosome.

We then placed these 26 TF motifs along a scale fromminor-
groove–associated to major-groove–associated according to the
distance between the motif center and the nearest peak or trough

(Fig. 7). Notably, most TF motif matches are strongly enriched to
be centered close to either themajor or theminor groove. A similar
calculation on randomly generated GC- or AT-rich motifs suggests
that such preferential localization may at least partly be due to the
coincidence between motif sequence composition and nucleo-
some sequence preference at DNA major and minor grooves
(Supplemental Fig. 11; Satchwell et al. 1986; Segal et al. 2006).
Regardless of the reason, this result indicates that nucleosome ro-
tational positioning is tightly coupled with the sequence prefer-
ences of many TFs.

Discussion

To date, DNase-seq data have primarily been used to discover
DHSs, but here we develop a Bayes-factor–based method that
uses DNase-seq data to map nucleosome positions and can do so
along the whole genome. DNase I cleavage of nucleosomal DNA
produces a distinctive within-strand–asymmetric oscillatory pro-
file reflective of the nucleosome structure rather than the sequence
bias of DNase I. We modeled this profile and used a Bayes factor as

Figure 6. Average oscillations around motif matches of Abf1 and Reb1 in yeast, and CTCF and GABPA in human (“motif oscillations,” black). “Random
oscillations” (gray) are average oscillations around randomly chosen genomic sites. One hundred randomoscillations are calculated and shown for each TF.
Dashed lines indicate the boundaries and centers of the TF motifs. For many TFs, including those shown here, their “motif oscillation” has a significantly
higher amplitude than their corresponding “random oscillations,” indicating their TF motif matches locate preferentially with respect to the rotational
phasing of the DNA along the nucleosome.
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a nucleosome score to build a highly sensitive and specific nucle-
osome position classifier. This same nucleosome score allowed us
to derive a genome-wide nucleosome map in yeast, with similar
precision to maps based on MNase digestion but greater accuracy,
exhibiting fewer false positives and false negatives. Our method
explicitly models the oscillatory DNase cutting pattern within nu-
cleosomal DNA, which is often maintained even at fuzzy nucleo-
somes because of their rotational positioning stability. This
enables us to identify nucleosome translational positioning offsets
that other methods cannot. Our maps recapitulate canonical asso-
ciations between nucleosome positions and other genomic fea-
tures, such as TSSs, ACSs, and TF binding sites.

Genomic data are in general quite noisy. This is evident in the
visually weak nucleosome positioning signals shown in Figure 1E.
Still, our method is able to effectively extract a nucleosome posi-
tioning signal from this noisy data by combining the following
modeling strategies: (1) data for all base pairs across the entire
nucleosomewindoware jointlymodeled to leverage all relevant in-
formation; (2) the nucleosome-structure–specific oscillatory pat-
tern is incorporated in our model, increasing its specificity; (3) the
use of strand-specific data further increases the specificity of the
model, although the two genomic strands are modeled to share a
mirror-symmetric profile, reducing the number of parameters; (4)
data are transformed using a log-like inverse hyperbolic sine func-
tion to decrease their variance; and (5) we adopt a Bayesian ap-
proach to integrate out remaining uncertainty in the model
parameters. This last point is particularly important when model-
ing noisy data.

Our method is also applicable to other organisms, which
we demonstrated by applying it to human DNase-seq data to pro-
duce a map of nucleosome positions in human. Owing to the
lower sequencing depth, large stretches of the genome have
insufficient reads to make any determination of nucleosome posi-

tion, so we filtered these regions out, resulting in lower recall.
However, in regions where the number of reads is sufficient, we
have good accuracy, based on the analyses in sections “Sequencing
depth influences DNase-seq–based mapping of nucleosomes” and
“Mapping nucleosome positions in the human genome.” The
alignment with nucleosome positions determined from the
MNase-seq data of Gaffney et al. (2012) is reasonable, considering
the lowDNase-seqsequencingdepth, thevariabilityofnucleosome
positionsacrosshumancell lines (Radman-LivajaandRando2010),
the use of a model trained on yeast data, and the fact that Gaffney
et al. (2012) studied seven cell lines, while the DNase-seq data
from Degner et al. (2012) are derived from 70 cell lines.

The oscillatory pattern utilized by our method reveals im-
portant insights about minor and major groove accessibility of
nucleosome-associated DNA. Many studies have shown that nu-
cleosome rotational positioning can regulate the binding of TFs
to sites along the DNA (Li and Wrange 1995; Sekiya et al. 2009;
Cui and Zhurkin 2014), and we observed that for many TFs, their
motif matches within nucleosomes tend to center near either the
major or minor groove of DNA. We expect several factors are cou-
pled together, including the sequence preferences of TFs, the se-
quence preferences of nucleosomes as they contact major and
minor grooves of DNA, and the structural exposure of major and
minor grooves along the nucleosome. Such couplingmay contrib-
ute to the complex regulation of TF binding when TFs and nucle-
osomes compete with each other for binding sites. For example,
certain TFs that are able to bind their target sites inside a nucleo-
some may act as pioneer factors to open chromatin and facilitate
the binding of other TFs.

Themethodwe develop here adds a nucleosomemapping ca-
pability to the already widely used DNase-seq protocol, a standard
tool for studying genomic regulatory elements inmanyorganisms,
including those in the ENCODE and modENCODE projects. Since

Figure 7. Most TFmotifs are centered near either themajor or minor groove. Twenty-one yeast TFs are shown as circular dots. Five human TFs are shown
as square dots. For each TF, the distance between its motif center and the nearest peak of its motif oscillation is calculated and converted to an “oscillation
phase”within [−π/2, π/2]: If the motif center is located at the peak of the composite oscillation and thus tends to be centered on an exposedminor groove,
its phase is −π/2; conversely, if the motif center is located at a trough and thus centered on a major groove, its phase is π/2. The y-axis shows the ratio
between each TF’s motif oscillation amplitude and the amplitude of randomoscillations. This is ameasure of the significance of the preferential localization.
Most TFs have a phase ≥ π/4 or ≤−π/4 and a ratio >3, indicating that they are significantly associated with the major or minor groove, respectively.
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nucleosome structure is well conserved across eukaryotic species,
our method is readily applicable to any DNase-seq data set with
sufficient sequencing depth, as we demonstrated using human
DNase-seq data. The previous work of Winter et al. (2013) showed
that DNase-seq has the ability to identify nucleosome rotational
positioning, and numerous other studies have shown that
DNase-seq can be used to identify and study DHSs, as well as TF
binding sites (Luo and Hartemink 2013). Those results, together
with our results here, show that DNase-seq is a highly time- and
cost-efficient protocol that is able to map both DHSs and nucleo-
some positions simultaneously. Our method provides a basis for
mining additional insights about nucleosome binding from al-
ready available DNase-seq data sets, as well as future ones. The
method can also be incorporated into a more general framework
for inferring a whole-genome protein–DNA interaction landscape
(Zhong et al. 2014), which includes the binding of both nucleo-
somes and transcription factors.

Methods

DNase-seq data

The DNase-seq data generated in this study were derived from a
W303 strain of yeast, grown asynchronously in rich medium.
Protocols for nucleus isolation, DNase I digestion, and sequencing
library preparation were adapted from Henikoff et al. (2011) and
Song andCrawford (2010), withminor changes (see Supplemental
Material for details). Reads generated by the sequencer were 50 bp
each, but only the first 20 bp of each read is genomic DNA because
of the MmeI digestion step in the protocol. So, only the first 20 bp
were used when aligning reads to the genome.

The DNase-seq raw reads from Hesselberth et al. (2009) were
obtained from the Sequence Read Archive (SRA, http://www.ncbi.
nlm.nih.gov/sra), with accession numbers SRX002990 (in vivo)
and SRX003233 (in vitro).

Raw reads from the above yeast data sets were mapped to the
June 2008 build of the Saccharomyces cerevisiae genome using
Bowtie (Langmead et al. 2009). Only uniquely mapped reads
were retained for further analysis.We counted the number of reads
that map to each genomic location (only the 5′ end of a read is
counted, not its full length).

HumanDNase-seqdatawere collected byDegner et al. (2012).
We obtained the mapped reads made available from http://eqtl.
uchicago.edu/dsQTL_data/MAPPED_READS/. All of their DNase-
seq data were pooled to increase sequencing depth.

In both yeast and human data, the read count at each geno-
mic coordinate was transformed using an inverse hyperbolic sine
function (asinh):

asinh(u) = ln(u+
��������
1+ u2

√
).

This transformation has been used by others inmodeling genomic
read counts (Hoffman et al. 2012). It is quite similar to a log trans-
formation: Like a log transformation, it reduces both the variance
in the data and the influence of large outliers, but unlike a log
transformation, it handles zero values gracefully.

Nucleosomal positions and nonnucleosomal positions

The 2000 nucleosome centers with the highest NCP score-to-noise
ratios, as reported by Brogaard et al. (2012), were selected as bona
fide nucleosome centers. Genomic windows around those nucleo-
some centers were used for training our models. They were also
used as positive examples in the binary classification task.

To create negative examples for the classification task, we uni-
formly randomly selected 2000 genomic windows as nonnucleo-
somal positions. Note that whenever a genomic window of size
147 bp is called nucleosomal in this paper, it means a nucleosome
dyad is positioned at the exact center of that window. So, although
nucleosomes cover a large portion of the genome, most genomic
positions will not be nucleosome centers. Therefore, our random
genomicwindows are reasonable approximations of nonnucleoso-
mal windows (error rate <1/147).

Note that the nucleosomal and nonnucleosomal positions
defined here are for yeast. We did not require bona fide nucleo-
some centers in human because we used parameters trained in
yeast when applying our model to human data.

DNase I cleavage profile on nucleosomal DNA

To calculate the cleavage profile of DNase I on nucleosomal
DNA, we extracted the asinh-transformed counts of the 147-bp
windows around each of the 2000 nucleosome centers identified
above. The count vectors were stacked to form two matrices of
size 2000 × 147, one for each strand. The column averages of the
twomatrices are called DNase I cleavage profiles and are visualized
in Figure 1A.

To isolate the oscillatory pattern from the overall quadratic
trend, we computed a detrended pattern by smoothing the cleav-
age profile shown in Figure 1A using LOWESS (Cleveland 1979).
We then subtracted the smoothed version from the original cleav-
age profile. We call the resultant 147-bp series the detrended oscil-
lation pattern.

Bayesian harmonic regression analysis

We used harmonic regression to analyze the oscillatory cleavage
pattern of DNase I on nucleosomal DNA.We describe the method
briefly here; for more details, see Prado and West (2010).

For a given strand, we denote its detrended oscillation pattern
as

z−73, z−72, . . . , z0, . . . , z72, z73.

This series is then modeled using linear regression:

zt = A× cos(vt) + B× sin(vt) + 1t 1t � N(0,s2)
∀ t [ [−73,−72, . . . ,0, . . . ,72,73].

Note that for mathematical convenience, we parameterize the
model using ω, the oscillation frequency of the series, even though
the parameter we are interested in estimating is the period, which
is 2π/ω. We can rewrite the linear regression in matrix form:

Z = Fb+ 1,

where F is the design matrix and b (A B)T. For a given ω value, we
can calculate the maximum likelihood estimate for b as

b̂ = (FTF)−1FTZ.

By assuming a reference prior, p(b,s|v)/s−1, we can calculate the
(unnormalized) posterior of ω as

p(v|Z)/ |FTF|−1/2{1− b̂
T
FTFb̂/(ZTZ)}(2−T)/2p(v),

where T is the total number of data points in Z. If we assume
a uniform prior for the frequency parameter, we can use the
above expression along with a change of variables to calculate
the unnormalized posterior density of the period (as shown in
Fig. 1C) and can use that density to identify the posterior mode
of the period.
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Bayes-factor–based nucleosome score

Likelihoods and Bayes factor computation

Given a genomic window of size 147 bp, we wish to assess how
likely it is that a nucleosome is centered at this window.We there-
fore define two statistical models: a nucleosome model and a
background (nonnucleosome) model. We describe the likelihood
functions for the two models in the following paragraphs.

Denote the strand-specific asinh-transformed DNase-seq
counts within a 147-bp window as

Forward strand X = x−73, x−72, . . . , x0, . . . , x72, x73,

Reverse strand Y = y−73, y−72, . . . , y0, . . . , y72, y73.

Wemodel the data using normal distributions, with variance pro-
portional to the mean:

xt�N(m(x)
t , k× m(x)

t ) yt�N(m(y)
t , k× m

(y)
t ) k . 0.

The mean-variance relationship is intrinsic to the data (see
Supplemental Fig. 12).

For the nucleosome model, we parameterize the mean
curve as

m(x)
t = m

(y)
−t = ea + eb × t2 + zt ,

where t is the nucleosome base-pair index, zt is the observed,
detrended oscillation pattern described in section “DNase I cleav-
age profile on nucleosomal DNA,” and a and b are parameters that
describe the baseline level of cleavage and the curvature of the
curve, respectively. This parameterization captures the main fea-
tures shown in Figure 1A. The likelihood for this nucleosomemod-
el is therefore:

Ln(a, b, k|X,Y)

=
∏73

t=−73

(2pk(ea + eb × t2 + zt ))−
1
2 exp − (xt − ea − eb × t2 − zt )2

2k(ea + eb × t2 + zt )

( )

× (2pk(ea + eb × t2 + z−t ))−
1
2 exp −(yt − ea − eb × t2 − z−t )2

2k(ea + eb × t2 + z−t )

( )
.

(1)

For the background model, we parameterize the mean curve
as a flat line:

m(x)
t = m

(y)
−t = ea.

This follows from the observation that, when averaged over a
large number of randomly selected 147-bp genomic windows,
DNase-seq cleavage profiles are essentially flat, modulo random
sampling noise (see Supplemental Fig. 13). The likelihood for the
background model is thus:

Lr (a, k|X,Y) =
∏73

t=−73

(2pkea)−1
2 exp −(xt − ea)2

2kea

( )

× (2pkea)−1
2 exp − (yt − ea)2

2kea

( )
. (2)

The likelihood ratio between the nucleosome model and the
backgroundmodel is ameasure of how likely the genomicwindow
is to be a nucleosomal window and could therefore be used as a nu-
cleosome score. However, individual windows exhibit a significant
amount of variation in the DNase-seq data (as with any genomic

data). So we instead calculate a Bayes factor that is able to integrate
out the uncertainties of the model parameters:

BF =
�
a Ln(a, b̂, k̂|X,Y) pn(a)da�
a Lr (a, k̂|X,Y) pr(a)da

.

Here, we take the uncertainty in the baseline cleavage level into
account by integrating out a in both likelihood functions. The
prior distribution for a in both likelihood functions is nor-
mal, with mean and variance hyperparameters determined using
an empirical Bayes approach (see next section); other param-
eters are kept fixed at their maximum likelihood estimates (MLE)
(see next section). We evaluated our approach in comparison
with a few alternative approaches and chose it because of its
high accuracy and low computational cost (see section
“Alternative approaches for computing nucleosome scores” and
Supplemental Fig. 14).

Prior distributions and MLE of model parameters

To determine the prior distributions needed to calculate Bayes fac-
tors, we adopted an empirical Bayes approach (Carlin and Louis
1997). For each of the 2000 nucleosomal positions, we computed
the MLE of a, b, and k in our likelihood function (1):

âi, b̂i, k̂i ∀i [ {1,2, . . . ,2000}.
To determine the prior distribution for a in the nucleosomemodel,
all 2000 âis were used to fit a normal distribution through maxi-
mum likelihood estimation. The prior distribution for a in the
background model was determined similarly, but using back-
ground data windows. Any parameters that were not integrated
out were fixed at their MLE values, these being calculated by
pooling the 2000 nucleosomal (or background) data windows
together.

Alternative approaches for computing nucleosome scores

Our approach (listed as Approach 4 below) was evaluated and se-
lected from the following alternative approaches for computing
nucleosome scores, reflecting different levels ofmodel complexity:

1. The mean curve for the nucleosome model is parameterized as
ea + eb × t2 (without the oscillatory pattern), and the nucleo-
some score is simply the likelihood ratio between the nucleo-
some model and the background model (no Bayes factor).

2. Similar to Approach 1, but the nucleosome score is a Bayes fac-
tor in which the level parameters a of both likelihood functions
are integrated out.

3. Similar to Approach 2, but the curvature parameter b of the nu-
cleosome model is also integrated out.

4. Similar to Approach 2, but the oscillatory pattern series (zt) is
added to the mean curve of the nucleosome model.

5. Similar to Approach 3, but the oscillatory pattern series (zt) is
added to the mean curve of the nucleosome model.

Approach 1 has the lowest computational cost because it does not
require numerical integration; conversely, Approaches 3 and 5
have the highest computational cost because they require numer-
ical integration in two dimensions. The performance of different
approaches in distinguishing nucleosomal from nonnucleosomal
windows (as measured by AUROC) is shown in Supplemental
Figure 14. Based on these results, we conclude that the simple like-
lihood ratio (Approach 1) performs significantly worse than all of
the Bayes-factor–based approaches (Approaches 2–5). Among the
Bayes-factor–based approaches, those that integrate out both a
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and b do not performmarkedly better than those that integrate out
only a, despite requiring significantly more computation time.
Therefore, we decided to use an approach that only integrates
out a. Finally, adding the oscillation pattern zt provides better per-
formance, and this improved performance arises without incur-
ring additional computation time, so we included it in our final
approach: Approach 4.

Mapping nucleosome positions with a greedy algorithm

We wanted to produce a genome-wide map of nucleosome posi-
tions, given the moving window nucleosome scores across the ge-
nome. To identify the nucleosome centers that would comprise
our map, we used the following greedy algorithm, which is quite
similar to the one used by Brogaard et al. (2012):

1. Rank the series of nucleosome scores in descending order.
2. The genomic position corresponding to the highest nucleo-

some score is called a nucleosome center.
3. The nucleosome scores in the 117-bp window centered on the

position identified in the previous step are removed from the se-
ries. We chose 117 bp instead of 147 bp to allow some overlap
between two selected nucleosomes; this can partially mitigate
the greediness of the algorithm. We confirmed that the result
shown in Figure 2B is largely unchanged for parameter values
between 97 bp and 127 bp (see Supplemental Fig. 15).

4. Repeat all of the above steps until no nucleosome score greater
than zero remains in the series.

Applying this algorithm to the whole genome or separately
for each chromosome gives identical results, so we did the latter
when computing our genome-wide nucleosome position map
(to reduce memory usage).

Comparing pairs of nucleosome maps

To compare a given nucleosomemapwith a reference nucleosome
map, we calculated three quantities: the number of nucleosomes
shared between the two maps (true positives), the number of nu-
cleosomes that only appear in the reference map (false negatives)
and the number of nucleosomes that only appear in the given nu-
cleosome map (false positives). If two nucleosome centers on the
two different maps were <73 bp away from each other, they were
said to overlap and thus be shared between the two maps; other-
wise, they were either false negatives or false positives. The total
number of true positives, false negatives, and false positives were
computed and reported. In addition, for all nucleosomes shared
between two maps, we calculated the center-to-center distances
between corresponding shared nucleosomes. We used kernel den-
sity estimation (with a kernel bandwidth of 1 bp) to visualize the
distribution of these distances, as shown in Figures 2A and 5B.

Identifying TF motif matches with motif scanning

We used TF motifs from MacIsaac et al. (2006) for yeast TFs and
from the JASPAR database (Mathelier et al. 2014) for human TFs.
We confirmed that the yeast TFs used in this paper have similar
motifs when they are computed from in vitro PBM data (Gordân
et al. 2011). We defined candidate binding sites by scanning a
position weight matrix (PWM) across the genome, using a per-
missive threshold on the PWM score (the log-likelihood ratio of
seeing a motif-width DNA sequence under the PWMmodel versus
under a fourth-orderMarkov background sequencemodel), greater
than four.

Calculating nucleosome-associated oscillation around

TF motif matches and random genomic sites

We first computed a “nucleosome-associated oscillation series” for
the entire genome by applying our 147-bp detrended oscillation
pattern to the 147 positions associated with every called nucleo-
some along the genome. With this in hand, we then evaluated
whether the locations of each TF’s motif matches tended to align
themselves consistently with this series. For a given TF withNmo-
tif matches, we examined a 147-bp window centered on each mo-
tif match, and averaged the values of the nucleosome-associated
oscillation series within those N windows to obtain the “motif os-
cillation.” As a control, we randomly selected N genomic sites and
carried out the same calculation to obtain a “random oscillation.”
To assess the significance of the amplitude of a TF’s motif oscilla-
tion within its motif match (i.e., the amplitude inside the dashed
lines of Fig. 6), we computed 100 random oscillations for that TF
and calculated their average amplitude. The ratio between the am-
plitude of the motif oscillation and the average amplitude of 100
random oscillations was used as a measure of how significantly
the motif oscillation deviates from a random oscillation.

Data access

TheDNase-seqdata generated in this study havebeen submitted to
the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE69651. Our computa-
tional tools have been released as a Python package called NucID
(Nucleosome Identification using DNase), available in the Supple-
mental Material, as well as on GitHub at https://harteminklab.
github.io/NucID/. Pre-computed tracks of genome-wide nucleo-
some scores are available at http://trackhub.genome.duke.edu/
harteminklab/NucID/. Links to all of these resources are also avail-
able from a single location on the web at http://www.cs.duke.edu/
~amink/software/.
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