
Citation: Yi, Y.-S. Regulatory Roles of

Caspase-11 Non-Canonical

Inflammasome in Inflammatory Liver

Diseases. Int. J. Mol. Sci. 2022, 23,

4986. https://doi.org/10.3390/

ijms23094986

Academic Editor: Manuel

Vázquez-Carrera

Received: 11 April 2022

Accepted: 28 April 2022

Published: 30 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Regulatory Roles of Caspase-11 Non-Canonical Inflammasome
in Inflammatory Liver Diseases
Young-Su Yi

Department of Life Sciences, Kyonggi University, Suwon 16227, Korea; ysyi@kgu.ac.kr; Tel.: +82-31-249-9644

Abstract: An inflammatory response consists of two consecutive steps: priming and triggering, to
prepare and activate inflammatory responses, respectively. The cardinal feature of the triggering
step is the activation of intracellular protein complexes called inflammasomes, which provide a
platform for the activation of inflammatory signaling pathways. Despite many studies demonstrating
the regulatory roles of canonical inflammasomes in inflammatory liver diseases, the roles of newly
discovered non-canonical inflammasomes in inflammatory liver diseases are still largely unknown.
Recent studies have reported the regulatory roles of the caspase-11 non-canonical inflammasome
in inflammatory liver diseases, providing strong evidence that the caspase-11 non-canonical in-
flammasome may play key roles in the pathogenesis of inflammatory liver diseases. This review
comprehensively discusses the emerging roles of the caspase-11 non-canonical inflammasome in the
pathogenesis of inflammatory liver diseases, focusing on non-alcoholic fatty liver disease (NAFLD),
non-alcoholic steatohepatitis (NASH), and inflammatory liver injuries and its underlying mechanisms.
This review highlights the current knowledge on the regulatory roles of the caspase-11 non-canonical
inflammasome in inflammatory liver diseases, providing new insights into the development of
potential therapeutics to prevent and treat inflammatory liver diseases by targeting the caspase-11
non-canonical inflammasome.
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1. Introduction

Although inflammation is a body-protective innate immune response, chronic inflam-
mation is a key determinant of numerous inflammatory diseases and cancers [1,2]. An
inflammatory response consists of two main steps, priming and triggering. Priming is a
preparation step of inflammatory responses by upregulating the expression of inflammatory
molecules while triggering is an activation step of inflammatory responses by activating
inflammasomes, which are intracellular protein complexes providing the platforms of
inflammatory signaling pathways [3,4]. Inflammasomes are categorized into canonical
and non-canonical inflammasomes. The initially discovered canonical inflammasomes
include nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family
inflammasomes (NLRP1, NLRP3, NLPC4, NLPR6, NLRP9, and NLRP12 inflammasomes)
and non-NLR-family inflammasomes (absent in melanoma 2 (AIM2) and pyrin inflamma-
somes) [4,5]. Recently identified non-canonical inflammasomes include mouse caspase-11
and human caspase-4 and -5 non-canonical inflammasomes [6–9]. Although many studies
have demonstrated the role of canonical inflammasomes in inflammatory responses and
diseases [10,11], the regulatory roles of non-canonical inflammasomes, which were recently
discovered in inflammatory responses and diseases, remain largely unknown.

Inflammation also induces liver diseases. Non-alcoholic fatty liver disease (NAFLD) is a
chronic disease caused by excessive fat accumulation and inflammation in the liver. NAFLD
can develop into non-alcoholic steatohepatitis (NASH), an aggressive form of fatty liver
disease, which is characterized by liver inflammation and may progress to cirrhosis, liver
injury, and liver failure [12,13]. Many studies have reported that canonical inflammasomes
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play critical roles in inflammatory liver diseases by promoting inflammation-induced
injury in the liver [14–16]. Interestingly, recent studies have reported that non-canonical
inflammasomes are also key players in inflammatory liver diseases and injury. This review
summarizes and discusses the studies that highlight the regulatory roles of caspase-11
non-canonical inflammasomes in inflammatory liver diseases and injury, which can provide
insight into the development of novel and potential therapeutics for inflammatory liver
diseases by selectively targeting the caspase-11 non-canonical inflammasome.

2. The Caspase-11 Non-Canonical Inflammasome
2.1. Structure and Activation of the Caspase-11 Non-Canonical Inflammasome

The caspase-11 non-canonical inflammasome was first discovered in the 129S6 mouse
strain, which has a polymorphism in the caspase-11 gene locus, resulting in the expres-
sion of truncated and non-functional proteins [6]. The caspase-11 gene is not found in
humans; instead, caspase-4 and -5 genes have been identified as human homologs of the
mouse caspase-11 gene, and studies have demonstrated that the caspase-4 and -5 genes
generate caspase-4/5 non-canonical inflammasomes in humans [9]. Unlike canonical in-
flammasomes, non-canonical inflammasomes have similar structures. Mouse caspase-11
and human caspase-4/5 consist of an N-terminal caspase recruitment domain (CARD),
followed by two catalytic domains: a p20 large catalytic domain and a p10 small catalytic
domain at the C-terminus (Figure 1A). Despite the same molecular architecture being
among non-canonical inflammasomes, their sizes are different, and the amino acid lengths
of mouse caspase-11 and human caspase-4/5 are 373, 377, and 434, respectively (Figure 1A).
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Figure 1. Structure and activation of the caspase-11 non-canonical inflammasome. (A) Human
caspase-4, caspase-5, and mouse caspase-11 have similar domain structures, consisting of an N-
terminal CARD, a p20 large catalytic domain, and a C-terminal p10 small catalytic domain. (B) Sensing
LPS by caspase-11. Caspase-11 recognizes LPS by direct interaction between caspase-11 CARD with
LPS lipid A. (C) Activation of the caspase-11 non-canonical inflammasome. Direct interaction between
LPS and caspase-11 forms LPS–caspase-11 complexes, followed by oligomerization of LPS-caspase-11
complexes by CARD–CARD interaction. CARD domains are released from the LPS–caspase-11
oligomer through self processing, resulting in the production of active caspase-11.
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Canonical inflammasomes are activated in response to their specific ligands [4,5].
However, lipopolysaccharide (LPS), an endotoxin derived from Gram-negative bacteria,
has been identified as the only ligand that activates non-canonical inflammasomes [6–9].
Once LPS enters the host cells via receptor-mediated endocytosis [17], mouse caspase-
11 and human caspase-4/5 sense intracellular LPS by direct binding [18–21]. The direct
sensing of LPS by caspase-4/5/11 is mediated by the molecular interaction between LPS
lipid A motifs and caspase CARDs to form LPS-casaspe4/5/11 complexes (Figure 1B). LPS-
caspase-4/5/11 complexes, in turn, are oligomerized by direct CARD-CARD interaction,
followed by the activation of non-canonical inflammasomes (Figure 1C) [18–21].

2.2. Caspase-11 Non-Canonical Inflammasome-Activated Signaling Pathways

As described earlier, the direct interaction between LPS and caspase-11 induces
the oligomerization of the caspase-11 non-canonical inflammasome. The oligomerized
caspase-11 non-canonical inflammasome is subsequently activated by self cleavage at the
285 aspartic acid residue (D285), and this enzymatic activity is mediated by the 254 cysteine
residue (C254) of caspase-11 [22]. The two main inflammatory signaling pathways are
activated by the caspase-11 non-canonical inflammasome. The activation of the caspase-11
non-canonical inflammasome induces the proteolytic cleavage of gasdermin D (GSDMD)
at the 276 aspartic acid residue (D276), resulting in the generation of GSDMD N-terminal
(N-GSDMD) and C-terminal fragments (C-GSDMD). N-GSDMD then moves to the cell
membranes and generates GSDMD pores in the membranes, leading to inflammatory
cell death, known as pyroptosis [18–21]. The activation of the caspase-11 non-canonical
inflammasome also induces the proteolytic activation of caspase-1, and the active caspase-
1 subsequently facilitates the proteolytic maturation and secretion of pro-inflammatory
cytokines, interleukin (IL)-1β and IL-18, through the GSDMD pores, leading to the aug-
mentation of inflammatory responses [18–21].

Although the caspase-11 non-canonical inflammasome induces the secretion of pro-
inflammatory cytokines by activating caspase-1, it indirectly activates caspase-1 via func-
tional cooperation with the NLRP3 canonical inflammasome. NLRP3 canonical inflam-
masome, the most-studied inflammasome, is activated in response to various pathogen-
associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs).
Among the PAMPs and DAMPs, the potassium ion (K+) efflux induced by GSDMD pore-
mediated membrane damage and gate proteins, such as P2X7 channels, pannexin 1 chan-
nels, and bacterial pore-forming toxins, play a key role in the activation of the NLRP3
canonical inflammasome [4,5]. Recent studies have reported that the activation of the
caspase-11 non-canonical inflammasome induces K+ efflux through gate proteins and GS-
DMD pore-mediated membrane damage, leading to the activation of the NLRP3 canonical
inflammasome [23–25]. The activated NLRP3 canonical inflammasome then directly acti-
vates caspase-1, leading to the maturation and secretion of pro-inflammatory cytokines.
The caspase-11 non-canonical inflammasome-activated caspase-1 mediated by the NLRP3
canonical inflammasome strongly suggests that caspase-11 non-canonical inflammasome-
activated inflammatory responses are accomplished by functional interplay with the canon-
ical inflammasome, rather than functioning in a canonical inflammasome-independent
manner. The caspase-11 non-canonical inflammasome-activated inflammatory signaling
pathways are described in Figure 2.
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Figure 2. Caspase-11 non-canonical inflammasome-activated signaling pathways. Activation of
caspase-11 non-canonical inflammasome induces the proteolytic processing of GSDMD. The pro-
cessed N-GSDMD fragments move to the cell membrane and then generate GSDMD pores, leading
to pyroptosis. Activation of caspase-11 non-canonical inflammasome also induces NLRP3 canonical
inflammasome-mediated proteolytic activation of caspase-1, and the active caspase-1 induces the
proteolytic maturation and secretion of IL-1β and IL-18 through GSDMD pores.

3. Regulatory Roles of the Caspase-11 Non-Canonical Inflammasome in Inflammatory
Liver Diseases
3.1. NAFLD

NAFLD is the most prevalent chronic metabolic disease caused by the accumulation
of fat in the liver, which affects a quarter of the global population and is likely observed
in people who are overweight or obese [26]. NAFLD includes a wide range of fatty liver
diseases, including fibrosis, cirrhosis, NASH, and hepatocellular carcinomas. NAFLD is
associated with chronic inflammation in the liver, which causes systemic alterations in
the immune system [27,28]. Obesity directly correlates with inflammatory responses and
the accumulation of inflammatory cells, which contribute to chronic low-grade inflam-
mation [29,30] and play a critical role in insulin resistance and NAFLD development [31].
In addition, a large number of innate immune cells that induce inflammatory responses,
such as macrophages, monocytes, and neutrophils, are actively involved in the onset of
chronic inflammation in the liver with NAFLD [32–35], indicating that NAFLD is a chronic
inflammatory liver disease.
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Given the evidence that NAFLD is caused by inflammation, studies have investi-
gated the role of inflammasomes in NAFLD and demonstrated that the canonical in-
flammasome, particularly the NLRP3 inflammasome, plays a critical role in NAFLD
pathogenesis [14–16,36–38]. Recent studies have also reported the regulatory role of non-
canonical inflammasomes in NAFLD pathogenesis. Anderson et al. investigated the
role of the caspase-11 non-canonical inflammasome in steatotic allograft-induced liver
inflammation and injury. Steatotic allograft increased endoplasmic reticulum (ER) stress,
which led to liver inflammation and injury in rats, and these steatotic allograft-induced
liver inflammations and injuries were mediated by the activation of the caspase-11 non-
canonical inflammasome and caspase-11 non-canonical inflammasome-induced IL-1β
production [39]. TUDCA, an ER stress inhibitor, alleviated steatotic allograft injury and
inflammation in rat livers and also inhibited the activation of the caspase-11 non-canonical
inflammasome and IL-1β production [39], suggesting that ER stress and the activation
of the caspase-11 non-canonical inflammasome in the liver play a critical role in steatotic
allograft-induced liver inflammation and injury. Yin et al. reported that Jiangzhi Ligan
Decoction (JZLGD), a Chinese herbal formula, affects NAFLD pathogenesis by regulating
the caspase-11 non-canonical inflammasome in obese mice. JZLGD ameliorated NAFLD by
reducing serum-lipid levels and lipid-droplet contents in the liver, resulting in the improve-
ment of liver inflammation, injury, and function in HFD-fed rats [40]. Moreover, JZLGD
inhibited the activation of the caspase-11 non-canonical inflammasome and, consequently,
suppressed the proteolytic activation of GSDMD and the production of pro-inflammatory
cytokines, IL-1β and IL-18, in the liver of HFD-fed NAFLD rats [40]. These results suggest
that the caspase-11 non-canonical inflammasome is activated in NAFLD, leading to liver
inflammation, injury, and dysfunction, and that the pharmacological effect of JZLGD on
NAFLD is mediated by the inhibition of the caspase-11 non-canonical inflammasome in
the liver.

Interestingly, an inhibitory role of the caspase-11 non-canonical inflammasome in
NAFLD pathogenesis has also been reported. De Sant’Ana et al. demonstrated the pro-
tective effect of the caspase-11 non-canonical inflammasome in hepatic steatosis in obese
mice. Lipid accumulation in the liver of standard-fat-diet (SFD)- and high-fat-diet (HFD)-
fed caspase-11−/− mice [41]. Additionally, caspase-11−/− mice were more susceptible to
HFD-induced obesity and exhibited enhanced development of hepatic steatosis in both
SFD-fed and HFD-fed obese mice [41]. These results indicate that obesity and obesity-
induced lipid accumulation and inflammation in the liver are associated with NAFLD
development by regulating the function of the caspase-11 non-canonical inflammasome,
which provides evidence of the crucial role of the caspase-11 non-canonical inflammasome
in lipid accumulation in the liver and NAFLD pathogenesis. Drummer et al. performed
genomic analyses and reported the regulatory role of the caspase-11 non-canonical inflam-
masome in the expression of genes upregulated in NAFLD using an NAFLD mouse model.
Caspase-11 deficiency led to the upregulation and downregulation of genes associated
with NAFLD-upregulated canonical and non-canonical inflammasomes, pro-inflammatory
cytokines, and lipid peroxidation enzymes in mice [42]. These results indicate that the
caspase-11 non-canonical inflammasome may play both aggravating and protective roles
in NAFLD pathogenesis by modulating the expression of genes associated with NAFLD.
Taken together, these studies suggest that the caspase-11 non-canonical inflammasome
plays either pro- or anti-inflammatory roles in NAFLD, to exacerbate or protect against
the disease.

3.2. NASH

NASH is an aggressive form of fatty liver disease characterized by liver inflammation
and damage, which may progress to advanced scarring, known as cirrhosis; fibrosis; liver
injury and failure; and hepatocellular carcinoma, eventually causing death [43,44]. NASH
is an advanced and more serious form of NAFLD. Currently, a quarter of the world’s
population has NAFLD, and approximately 20–25% of patients with NAFLD can develop
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NASH [45]. Epidemiological studies have revealed that more than 80% of patients with
NASH suffer from obesity and hyperlipidemia, and approximately 50% of patients with
NASH are also diagnosed with type-2 diabetes mellitus [46]. The major risk factors for
the development of NASH include the increasing epidemics of obesity, dyslipidemia,
and insulin resistance [47]. Therefore, the percentage of patients with NASH and their
associated health-care costs will increase, thus warranting the early diagnosis and treatment
of NASH.

Many studies have reported the roles of canonical inflammasomes in NASH [14,48–50].
Emerging studies have also demonstrated the regulatory role of non-canonical inflam-
masomes in NASH pathogenesis. Hendrikx et al. reported the role of the caspase-11
non-canonical inflammasome in hepatic inflammation and NASH development in mice
lacking the low-density lipoprotein receptor (Ldlr−/−), which shows hepatic inflammation
in Kupffer cells [51]. Ldlr−/− mice transplanted with caspase-11−/− bone marrow showed
less-severe hepatic inflammation and NASH symptoms [52]. Cellular and molecular mech-
anism studies have revealed that Kupffer cells from Ldlr−/−/caspase-11−/− mice exerted less
cholesterol accumulation and enhanced cholesterol efflux [52]. Moreover, bone marrow-
derived macrophages (BMDMs) from Ldlr−/−/caspase-11−/− mice showed decreased au-
tophagy induced upon oxidized low-density lipoprotein (oxLDL) stimulation [52]. These
results suggest that the caspase-11 non-canonical inflammasome exacerbates NASH by
increasing cholesterol crystal formation and decreasing cholesterol efflux, thereby inducing
disturbed autophagy and inflammation in the liver. ER stress is an initiator of inflammatory
signaling pathways and cell death and is linked to various diseases, such as obesity, type-2
diabetes mellitus, fatty liver diseases, and liver cancer [53,54]. Moreover, hepatic inflam-
mation and cell death increase in NASH, eventually inducing liver injury and failure [55].
Lebeaupinn et al. investigated the functional crosstalk between ER stress and the caspase-11
non-canonical inflammasome in NASH pathogenesis in obese mice. LPS challenge induced
liver inflammation and NASH-like pathological features by increasing ER stress and ac-
tivating the caspase-11 non-canonical inflammasome, leading to subsequent hepatocyte
pyroptosis and IL-1β secretion in obese mice [56]. ER stress inhibition by TUDCA decreased
caspase-11 expression and caspase-11 non-canonical inflammasome activation, resulting
in the amelioration of LPS-induced NASH-like pathological features in obese mice [56].
These results indicate that ER stress is a critical determinant of caspase-11 non-canonical
inflammasome-activated hepatic inflammation and injury, leading to NASH pathogenesis.
As described earlier, one of the most critical outcomes of caspase-11 non-canonical in-
flammasome activation is inflammatory cell death, known as pyroptosis [18,19]. Zhu et al.
investigated the role of caspase-11 non-canonical inflammasome-mediated hepatic pyrop-
tosis in NASH pathogenesis in methionine- and choline-deficient diet (MCD)-induced
NASH in mice. The caspase-11 non-canonical inflammasome was activated in the liver of
MCD-induced NASH mice; however, MCD-treated caspase-11−/− mice showed significantly
reduced hepatic inflammation, pyroptosis, fibrosis, and injury [57]. Additionally, prote-
olytic activation of GSDMD and IL-1β secretion was markedly suppressed in MCD-treated
caspase-11−/− mice, and overexpression of caspase-11 exacerbated MCD-induced hepatic
steatosis in mice [57]. These results strongly indicate that the caspase-11 non-canonical
inflammasome induces NASH by inducing hepatic inflammation and pyroptosis. Taken
together, these studies suggest that the caspase-11 non-canonical inflammasome induces
hepatic inflammation, injury, and NASH pathogenesis by promoting hepatic pyroptosis
and the secretion of pro-inflammatory cytokines, as well as by orchestrating the differential
expression of NASH-associated genes.

3.3. Inflammatory Liver Injury

Hepatic inflammation is considered a critical risk factor for liver injury and failure,
which triggers various liver diseases associated with poor survival in patients [58,59].
Therefore, much effort has been made to understand the role and underlying mechanism of
hepatic inflammation in inflammatory liver diseases and to develop effective therapeutics
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to treat inflammatory liver diseases. Canonical inflammasomes, especially the NLRP3
inflammasome, play key roles in hepatic inflammation, injury, and the pathogenesis of
various inflammatory liver diseases [15,60–62]. However, the regulatory role of non-
canonical inflammasomes in hepatic inflammation, injury, and inflammatory liver disease
is poorly understood. Recent studies have demonstrated the protective and potential
pharmacological effects of bioactive molecules on liver inflammation and injury. These
bioactive molecules ameliorate inflammatory liver diseases by inhibiting the caspase-11
non-canonical inflammasome.

Heat shock protein A12A (HSPA12A) is a novel member of the HSP70 family that plays
a role in the development of HFD-induced NAFLD and NASH [63]. Liu et al. investigated
the protective function of HSPA12A in LPS-induced acute liver injury by inhibiting the
caspase-11 non-canonical inflammasome in mice. Hspa12a−/− mice were more susceptible
to LPS-induced acute liver inflammation and injury [64]. Activation of the caspase-11 non-
canonical inflammasome was inhibited in the hepatocytes of Hspa12a−/− mice, resulting
in the suppression of GSDMD pore formation and GSDMD pore-mediated hepatocyte
pyroptosis [64]. These results suggest that HSPA12A plays a critical role against LPS-
induced hepatic inflammation and liver injury by inhibiting activation of the caspase-11
non-canonical inflammasome and downstream inflammatory responses in hepatocytes.

Hepatic ischemia-reperfusion injury (IRI), a major complication of hepatic transplanta-
tion, resection, and hemorrhagic shock, often results in systemic hepatic inflammation and
liver injury by activating macrophage-induced innate immune responses [65–67]. Lu et al.
investigated the protective role of isoflurane, a halogenated anesthetic, and the mechanism
underlying hepatic inflammation and IRI by targeting the caspase-11 non-canonical inflam-
masome in mice. Isoflurane alleviated hepatic IRI and liver injury in mice and decreased
LPS-induced inflammation in hepatic macrophages [68]. Isoflurane also inhibited the
activation of the caspase-11 non-canonical inflammasome, leading to the suppression of
pyroptosis and the secretion of IL-1β and IL-18 in hepatic macrophages [68]. The above
results indicate that isoflurane exerts a protective effect on hepatic IRI and liver injury by
inhibiting caspase-11 non-canonical inflammasome-activated hepatic inflammation.

Samotolisib is a novel dual inhibitor targeting phosphoinositide 3-kinase (PI3K) and
the mammalian target of rapamycin (mTOR), and has undergone several phase-II clinical
trials as a potential treatment for different cancers. Zhao et al. screened out samotolisib
after a systemic analysis of an FDA-approved compound library and reported the pro-
tective effect of samotolisib against LPS-induced hepatic inflammation and acute liver
injury in mice. Samotolisib attenuated LPS-induced hepatic inflammation and acute liver
injury, and improved survival in mice [69]. A mechanistic study revealed that samotolisib
relieved the activation of the caspase-11 non-canonical inflammasome and hepatic pyrop-
tosis by inhibiting PI3K/AKT/mTOR signaling pathways in the livers of LPS-injected
mice [69], indicating that samotolisib protects against hepatic inflammation and acute liver
injury by inhibiting the activation of the caspase-11 non-canonical inflammasome and
hepatic pyroptosis-mediated liver injury. Taken together, these studies suggest that the
caspase-11 non-canonical inflammasome promotes hepatic inflammation and liver injury in
various inflammatory liver diseases and that agents targeting the caspase-11 non-canonical
inflammasome may be potential therapeutics for inflammatory liver diseases.

The regulatory roles of the caspase-11 non-canonical inflammasome in the pathogene-
sis of NAFLD, NASH, and inflammatory hepatic injury are described in Figure 3.
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4. Conclusions

Inflammasomes are inflammatory signalosomes that provide innate immunity against
pathogens and cellular dangers, triggering a wide range of human diseases. Several studies
have demonstrated that canonical inflammasomes, particularly NLRP3 inflammasomes,
are key players in numerous inflammatory diseases [10,11], and sufficient evidence has
demonstrated that canonical inflammasomes play critical roles in the pathogenesis of
inflammatory liver diseases, such as NAFLD, NASH, and inflammatory liver injury [14–16].
The caspase-11 non-canonical inflammasome was recently discovered; therefore, its role is
still largely unknown. Efforts have been made to demonstrate the role of the caspase-11 non-
canonical inflammasome in inflammatory responses and diseases [19,70–78]. Interestingly,
recent studies have also investigated the regulatory role of the caspase-11 non-canonical
inflammasome in the pathogenesis of inflammatory liver diseases, which suggests that
the caspase-11 non-canonical inflammasome is a key player in NAFLD, NASH, and liver
diseases caused by inducing hepatic inflammation and GSDMD-dependent pyroptosis.
In addition, hepatocytes expressing a low level of caspase-11 are resistant to pyroptotic
cell death, and the overexpression of caspase-11 induces the activation of the caspase-11
non-canonical inflammasome in hepatocytes, resulting in GSDMD-dependent hepatocyte
pyroptosis [79].

This review comprehensively summarizes and discusses the current knowledge of
the regulatory role of the caspase-11 non-canonical inflammasome in the pathogenesis of
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inflammatory liver diseases and the underlying molecular mechanism (Table 1), which
might improve our understanding of how the caspase-11 non-canonical inflammasome
participates in exacerbating, or protecting from, inflammatory liver diseases. Despite the
evidence from the studies discussed in this review, the regulatory roles of the caspase-11
non-canonical inflammasome in the pathogenesis of inflammatory liver diseases and the
underlying mechanisms remain largely unknown. Moreover, the roles of caspase-4/5 non-
canonical inflammasomes in human patients with inflammatory liver diseases have not yet
been investigated. Therefore, further studies investigating the roles of the caspase-4/5/11
non-canonical inflammasome in various inflammatory liver diseases in appropriate animal
models and human patients and the underlying mechanisms are required.

Table 1. Regulatory roles of the caspase-11 non-canonical inflammasome in inflammatory liver diseases.

Diseases Roles Models Ref.

NAFLD

• Steatotic allograft increased ER stress, liver inflammation, and
injury in rats

• TUDCA alleviated steatotic allograft injury and inflammation in
rat livers

• TUDCA inhibited caspase-11 non-canonical inflammasome
activation and IL-1β production

Steatotic liver
transplanted rats [39]

• JZLGD ameliorated NAFLD and improved liver function in
HFD-fed rats

• JZLGD reduced the serum-lipid level and lipid-droplet contents
in livers of HFD-fed rats

• JZLGD inhibited caspase-11 non-canonical inflammasome
activation in HFD-fed NAFLD rats

• JZLGD inhibited proteolytic activation of GSDMD and
production of IL-1β and IL-18 in HFD-fed NAFLD rats

HFD-fed obese rats [40]

• Lipid accumulation in the livers of SFD- and HFD-fed
caspase-11−/− mice

• Caspase-11−/− mice were more susceptible to
HFD-induced obesity

• Caspase-11−/− mice exerted enhanced development of hepatic
steatosis in both SFD-fed mice and HFD-fed obese mice

HFD-fed obese mice [41]

• Gene expression of NAFLD-upregulated canonical and
non-canonical inflammasomes, pro-inflammatory cytokines, and
lipid peroxidation enzymes were upregulated and downregulated
in caspase-11−/− NAFLD mice

HFD-fed obese and
genetic-induced

NAFLD mice
[42]

NASH

• Ldlr−/−/caspase-11−/− mice showed less severe hepatic
inflammation and NASH symptoms

• Kupffer cells from Ldlr−/−/caspase-11−/− mice exerted less
cholesterol accumulation and enhanced cholesterol efflux

• BMDMs from Ldlr−/−/caspase-11−/− mice showed
decreased autophagy

Ldlr−/− mice [52]

• LPS induced liver inflammation and NASH-like pathological
features in obese mice

• LPS increased ER stress and activated the caspase-11
non-canonical inflammasome, leading to hepatocyte pyroptosis
and IL-1β secretion in obese mice

• ER stress inhibition by TUDCA decreased caspase-11 expression
and caspase-11 non-canonical inflammasome activation in
obese mice

• TUDCA treatment ameliorated LPS-induced NASH-like
pathological features in obese mice

LPS-injected obese mice [56]
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Table 1. Cont.

Diseases Roles Models Ref.

NASH

• The caspase-11 non-canonical inflammasome was activated in
livers of MCD-induced NASH mice

• MCD-treated caspase-11−/− mice showed reduced hepatic
inflammation, pyroptosis, fibrosis, and injury

• Proteolytic activation of GSDMD and IL-1β secretion was
suppressed in MCD-treated caspase-11−/− mice

• Overexpression of caspase-11 exacerbated MCD-induced hepatic
steatosis in mice

MCD-treated mice [57]

Inflammatory
liver injury

• Hspa12a−/− mice were more susceptible to LPS-induced acute
liver inflammation and injury

• Activation of the caspase-11 non-canonical inflammasome was
inhibited in the hepatocytes of the Hspa12a−/− mice

• GSDMD pore formation and hepatocyte pyroptosis was inhibited
in the hepatocytes of the Hspa12a−/− mice

LPS-injected mice [64]

• Isoflurane alleviated hepatic IRI and liver injury in mice
• Isoflurane decreased LPS-induced inflammation in

hepatic macrophages
• Isoflurane inhibited caspase-11 non-canonical inflammasome

activation in hepatic macrophages
• Isoflurane suppressed pyroptosis and secretion of IL-1β and IL-18

in hepatic macrophages

Hepatic IRI mice [68]

• Samotolisib attenuated hepatic inflammation and acute liver
injury in LPS-injected mice

• Samotolisib improved survival of LPS-injected mice
• Samotolisib relieved caspase-11 non-canonical inflammasome

activation and hepatic pyroptosis by inhibiting
• PI3K/AKT/mTOR signaling pathways in livers of

LPS-injected mice

LPS-injected mice [69]

In conclusion, the caspase-11 non-canonical inflammasome is a key player in the
pathogenesis of inflammatory liver diseases. The caspase-11 non-canonical inflammasome
induces GSDMD-mediated pyroptosis and the secretion of pro-inflammatory cytokines,
and caspase-11 non-canonical inflammasome-induced pyroptosis and pro-inflammatory cy-
tokine secretion are independent of the canonical inflammasomes, which strongly suggests
that the caspase-11 non-canonical inflammasome could be an independent therapeutic
target of inflammatory liver diseases. Understanding the mechanisms that modulate the ac-
tivity of the caspase-11 non-canonical inflammasome may contribute to the development of
a wide range of therapeutic agents that can selectively target the caspase-11 non-canonical
inflammasome in not only inflammatory liver diseases but also various inflammatory
diseases caused by the activation of the caspase-11 non-canonical inflammasome.
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Abbreviations

NAFLD Non-alcoholic fatty liver disease
NASH Non-alcoholic steatohepatitis
NLR NOD-like receptor
AIM2 Absent in melanoma 2
CARD Caspase recruit domain
LPS Lipopolysaccharide
GSDMD Gasdermin D
PAMP Pathogen-associated molecular pattern
DAMP Danger-associated molecular pattern
SFD Standard-fat diet
HFD High-fat diet
BMDM Bone-marrow-derived macrophage
oxLDL Oxidized low-density lipoprotein
MCD Methionine- and choline-deficient diet
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