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Hepatocellular carcinoma (HCC) is a common malignancy with a poor prognosis worldwide. However, the pathogenesis of
HCC remains poorly understood. In this study, we found that NOL12 was significantly overexpressed in independent HCC
datasets from TCGA database. We confirmed that the expression level of NOL12 was upregulated in human HCC tissues
and cell lines by RT-qPCR. High expression of NOL12 is associated with worse reduced overall survival (OS), high
pathological grade, node metastasis, and advanced clinical stage in patients with HCC. Moreover, knockdown of NOL12
dramatically inhibits the proliferation and metastasis of HCC cells in vitro and in vivo. CIBERSORTx analysis revealed
that twelve types of tumor-infiltrating immune cells (TICs) are correlated with NOL12 expression. The risk signature based
on 8 NOL12-related genes is an independent prognostic factor for patients with HCC. The OS rate of patients in the low-risk
score group was better than that in the high-risk score group. In addition, the total tumor mutation burden (TMB) in the high-
risk score group increased significantly, and the risk scores could be used as an alternative indicator of immune checkpoint
inhibitor (ICI) response. In conclusion, our findings indicated that NOL12 might be involved in the progression of HCC and
can be used as a potential therapeutic target. Moreover, the NOL12-related risk signature may have predictive relevance with
regard to ICI therapy.

1. Introduction

Liver cancer has become the fourth largest cause of cancer-
related death in the world, with the sixth highest incidence
of all cancers. It is estimated that approximately 1 million
people will die of liver cancer each year [1, 2]. Hepatocellular
carcinoma (HCC), as the most common primary malignant
tumor of the liver, progresses rapidly, and patients are usually
diagnosed at an advanced stage. At present, the treatment of
HCC is limited and mainly depends on hepatectomy, chemo-
therapy, and immunotherapy [3]. However, due to early

metastasis, postoperative recurrence, and the emergence of
drug resistance and other factors, the 5-year survival rate of
patients has not been significantly improved [4, 5]. More-
over, there is still a lack of effective methods to predict the
prognosis of patients and provide individualized treatment
[6]. Therefore, it is urgent to find more reliable diagnostic
biomarkers and develop new indicators to predict patient
survival to provide individualized treatment strategies.

The transcription and regulation of the human genome
are a sophisticated process, in which RNA-binding proteins
participate and play an important role [7, 8]. In recent years,
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an increasing number of studies have found that RNA-
binding proteins are also involved in tumor progression and
immune regulation [9–12]. Nucleolar protein 12 (NOL12), a
multifunctional RNA-binding protein, has been found to be
related to genomic stability, DNA damage repair, and apopto-
sis [13]. Pinho et al. [14] reported that NOL12 can affect the
cell cycle and eventually lead to cell senescence in an RPL11-
dependent manner. In addition, some studies have shown that
NOL12 may be a potential oncogene for a variety of tumors
and may be related to the prognosis of patients [15, 16].

Tumor microenvironment (TME) is an important fac-
tor affecting the progression and treatment of HCC [17].
Some studies have shown that, when all kinds of immune
cells in the TME reach a certain balance, they will spur
immune activation, thus promoting the occurrence of
immune escape [18]. Increasing evidence has shown that
tumor-infiltrating immune cells (TICs) affect the biological
behavior of HCC cells and ultimately affect the prognosis
of patients [19, 20]. In addition, the results of some latest
clinical trials and medical studies showed that immunother-
apy or combined with immunotherapy was more beneficial
to patients with advanced HCC [21, 22]. For those patients
with previously untreated unresectable HCC, the overall
survival and disease-free survival after treatment with combi-
nation ICIs were significantly longer, and patients were more
likely to undergo follow-up surgery [23, 24]. However,
whether NOL12 promotes the progression of hepatocellular
carcinoma, whether it affects the immune infiltration of
HCC, and whether it can be used as a predictor of ICIs ther-
apy have not been reported.

In this study, we first confirmed that the expression of
NOL12 is upregulated in HCC through TCGA database,
and it is associated with poor prognosis. Second, through
CIBERSORTx and functional enrichment analysis, we found
that NOL12 is related to a variety of TICs and tumor-related
signaling pathways. In addition, we developed a risk signa-
ture based on NOL12-related genes and established a nomo-
gram that can independently predict the clinical outcome of
HCC. Patients with different risk scores have been shown to
have different therapeutic potentials for immune checkpoint
inhibitors (ICIs). Finally, we determined the upregulated
expression of NOL12 in HCC and the tumorigenic roles of
NOL12 through a series of in vitro and in vivo experiments.
Overall, our results indicated that NOL12 can act as a novel
prognostic biomarker and a potential therapeutic target for
HCC.

2. Materials and Methods

2.1. Data Acquisition and Processing. The RNA tran-
scriptome dataset, the corresponding clinical data, and the
mutation profiling from TCGA (https://tcga-data. http://
nci.nih.gov/tcga/) database for the liver hepatocellular carci-
noma (LIHC) project were downloaded. The limma package
for R software was employed to further process RNA expres-
sion data. When combining clinical information, missing
and incomplete samples were deleted. The remaining TCGA
dataset contains 370 tumor samples and 50 normal samples
for further analysis.

2.2. TIC Profile. The abundant distribution of TICs in all
tumor samples was estimated using the CIBERSORTx [25]
computational method, and the corresponding R package
was used to visualize them.

2.3. Functional Enrichment and Coexpression Analysis. We
used Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis with Gene Set
Enrichment Analysis (GSEA) software to explore the poten-
tial biological function of NOL12 in HCC. Pathways with
P < 0:05 were considered significantly enriched. The visuali-
zation was performed by the ggplot2 package. In addition, a
protein-protein interaction (PPI) network highly related to
the NOL12 encoded protein was obtained using the Search
Tool for the Retrieval of Interacting Genes (STRING;
http://string-db.org), with the highest confidence (0.9).

2.4. NOL12-Related Risk Signature Construction. We
screened prognosis-related coexpressed genes by univariate
Cox regression analysis. To avoid overfitting, all the selected
genes were involved in the subsequent least absolute shrink-
age and selection operator (LASSO) penalized Cox regres-
sion analysis. The risk score for each patient with HCC
was calculated based on the following formula: risk score =
∑ðCoefi ∗ ExpxiÞ, where Expxi represents each gene expres-
sion and Coefi represents the coefficient of each gene.

2.5. Validation of the Risk Signature. All TCGA LIHC
patients were randomly divided into training sets (186) and
testing sets (184). The patients in the training and testing sets
were further divided into high- and low-risk groups, with the
median risk score as the cutoff value. To evaluate the accuracy
of the risk signature, Kaplan-Meier survival analysis and time-
dependent receiver operating characteristic (ROC) curves
were performed on the training sets and testing sets. The com-
plete dataset with corresponding clinical information was used
for subsequent stratified survival analysis. To identify the
independence of the risk signature, univariate Cox regression
analysis between the risk signature and the clinicopathological
features was performed, and a P < 0:05 was considered to be a
significant independent prognostic factor.

2.6. Construction and Assessment of a Nomogram. The
nomogram was constructed based on the risk score and
independent clinical factors by using the “regplot” R package
to quantify risk evaluation and predict the clinical outcomes
of patients with HCC. The calibration plot was applied to
assess the accuracy of the nomogram for predicting the 1-,
3-, and 5-year overall survival of patients with HCC. Deci-
sion curve analysis (DCA) was used to assess the clinical
practicability of the nomogram.

2.7. TMB and ICI Analysis. The somatic variant data of
patients with HCC were analyzed and visualized by package
maftools. Then, difference, correlation, and survival analyses
were used to evaluate the effects of TMB and risk scores on
the prognosis of patients with HCC.

In addition, we also compared the expression levels of
common immune checkpoints in the high-risk score and
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Figure 1: Continued.
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low-risk score groups and the correlation between immune
checkpoint expression level and risk score.

2.8. Cell Lines and Culture. Human liver cancer cells (BEL-
7404, Hep3B, Huh-7, and HepG2) and human liver cell
L02 were obtained from Shanghai Cell Bank (Shanghai,
China) or ATCC (the American Type Culture Collection).
All the cell lines used in this study were approved by the
Ethics Committee of the First Affiliated Hospital of Nan-
chang University. All cell lines were cultured in 90% DMEM
and 10% FBS at 37°C in a 5% CO2 incubator humidified
atmosphere as recommended.

2.9. RT-qPCR. The mRNA levels of NOL12 in fresh liver
cancer tissues and liver cancer cell lines were examined using
RT quantitative PCR (RT-qPCR). RNA was reverse-
transcribed into cDNA and subjected to PCR reactions using
the EasyScript One-Step RT-PCR kit (TRAN, AE311-03).
GAPDH was used as control. The primers used in this study
were as follows: NOL12 (F: GCCGCAAAAAGGTCAA
GAGG, R: CCCAAAAACCTGCCCTTGTG) and GAPDH
(F: CTGCCTCTAC TGGCGCTG, R: GGTCAGGTCCA
CCACTGAC). The relative expression of NOL12 mRNA
was normalized to the expression level of mRNA using the
2−ΔCt method.

2.10. Lentivirus Cell Transfection. Lentiviral vectors encod-
ing short hairpin RNAs (shRNAs) that target NOL12 were
purchased from GenePharma (Shanghai, China). NOL12
shRNAs were transfected into Huh-7 and HepG2 cells
according to the manufacturer’s instructions. In order to
obtain stable cell lines, the transduced cells were selected in
the medium containing puromycin (5.0μg/mL).

2.11. Cell Functional Assays. The MTT assay was used to
evaluate cell viability. The steps were as follows: 1000 cells
were placed in a 96-well plate. From day 1 to day 5, 20μL
of MTT solution (5mg/mL) was added to each well, and
the wavelength of 570 nm was measured with a 96-well plate
reader. For the cell colony formation assay, 1000 HepG2 and
Huh-7 cells/well from the control and experimental groups

were inoculated into 6-well plates, and colony formation
was detected 10 days later.

In the migration assay, 5‐10 × 104 HepG2 and Huh-7
cells were added to the top 8μm chamber without Matrigel,
while in invasion assays, Matrigel was added. After 24-48 h
of incubation, the inserts were rinsed with PBS and stained
with 0.1% crystal violet solution for 5min. Images were
taken with an Olympus IX-70 microscope.

2.12. Xenograft Assays. All experiments involving animal sub-
jects were in accordance with the institutional animal welfare
guidelines and approved by the First Affiliated Hospital of
Nanchang University. Five-week-old male nude mice main-
tained in the Public Platform Laboratory Animal Center were
used in xenograft assays. A total of 5 × 106 Huh-7 cells were
mixed with the same volumes of Matrigel and subcutaneously
injected into the flanks or tail veins of each animal (6 animals
per experimental group). The volumes of tumors were mea-
sured every 3 days when tumor masses were identified.
Tumor volume = ½ðlengthÞ × ðwidthÞ × ðwidthÞ�/2. All mice
were sacrificed by injection of a deadly dose of pentobarbital
sodium (150mg/kg) at the 28th day after tumor cell injection,
and cervical dislocation was performed to confirm death. Sub-
sequently, the mice were dissected and tumors were removed
and weighed.

2.13. Immunohistochemistry. Tissue samples were paraffin
embedded, sliced, and used for immunohistochemical test-
ing according to standard procedures. Antibodies against
NOL12 (1 : 100, A302-733A, Thermo Fisher Scientific,
USA) and antibodies against Ki-67 (1 : 100, ab15580, Abcam,
UK) were used.

2.14. Statistical Analysis. Data between two groups were
examined using a two-tailed paired Student t-test or
ANOVA (Bonferroni post hoc test). Correlation analysis
was performed using the Pearson chi-square test or Spear-
man rank correlation test. All statistical analyses were per-
formed by GraphPad Prism 7 or R (4.0.0); P values < 0.05
denoted statistically significant differences.

50

40

20

30

10

0

Tr
an

sc
rip

t p
er

 m
ill

io
n

Expression of NOL12
in LIHC based on individual cancer

TCGA samples

Normal
(n=50)

Stage 1
(n=168)

Stage 2
(n=84)

Stage 3
(n=82)

Stage 4
(n=6)

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

(i)

Figure 1: NOL12 is upregulated in HCC, and its expression is associated with poor survival in HCC patients. (a) Differential and (b) paired
differential analysis of NOL12 in normal liver tissue and HCC tissue (P < 0:01). (c) Kaplan-Meier curve was used to analyze the overall
survival (OS) rate of patients with high and low expression of NOL12 (P = 0:037). The correlation of NOL12 expression with
clinicopathological characteristics: (d) race; (e) gender; (f) age; (g) grade; (h) metastasis status; (i) stage. ∗∗∗P < 0:001.
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3. Results

3.1. NOL12 Is Upregulated in HCC and Associated with a
Poor Prognosis. First, we downloaded the transcriptome data
of LIHC and the corresponding clinical data fromTCGAdata-
base, including 50 normal and 370 tumor samples. To evaluate
the significance of NOL12 in HCC, these datasets were used to
study the expression of NOL12 in HCC. The results showed
that the mRNA expression of NOL12 in HCC tissues
increased significantly (Figure 1(a)). This result was also fully
verified in the paired analysis of HCC tissue and adjacent nor-
mal tissue in the same patient (Figure 1(b)). In addition, we
found that the overall survival rate of the NOL12 high expres-
sion group was lower than that of the low expression group,
which was statistically significant (Figure 1(c)). We further
examined the correlation of NOL12 with the clinicopathologic
features of HCC. In a subgroup analysis based on race, sex,
age, grade, metastasis status, and stage in the UALCAN data-
base, the transcription level of NOL12 in patients with LIHC
was significantly higher than that in normal controls, and
the higher the expression of NOL12 was, the later the tumor
grading and staging (Figures 1(d)–1(i)). The above results
show that NOL12 may be a potential diagnostic marker for
HCC.

3.2. Correlation of NOL12 with the Proportion of TICs. We
next systematically described the pattern of tumor-
infiltrating immune cells (TICs) by processing the signature
gene expression profile in HCC with the CIBERSORTx algo-
rithm. The results of Supplementary Figure 1 show the
distribution landscape and correlation of infiltrating immune
cells in LIHC specimens. According to the results from the
difference and correlation analyses, we concluded that
NOL12 might regulate the immune activity of the TME in
HCC mainly through twelve kinds of TICs (Figure 2).
Among them, seven kinds of TICs were negatively correlated
with NOL12 expression, including naïve B cells, resting

CD4+ T cell memory, activated NK cells, monocytes, M2
macrophages, resting mast cells, and activated mast cells.
Five kinds of TICs were positively correlated with NOL12
expression, including memory B cells, M0 macrophages,
activated CD4+ T cell memory, follicular helper T cells, and
regulatory T cells. In addition, the results from GO
enrichment analysis indicated that the functions of NOL12
correspond to immune-related activities (Figure 3(a)). These
results suggested that the level of NOL12 might be a key
indicator to reflect the state of the TME. Figure 3(b) shows
that a variety of tumor-related signaling pathways were
enriched, including the MAPK, PI3K-Akt cAMP, and Ras
signaling pathways.

3.3. Construction of a NOL12-Related Gene Risk Signature.
We constructed a PPI network of NOL12 using the Search
Tool for the Retrieval of Interacting Genes (STRING) data-
base, with the highest confidence (0.9) (Figure 3(c)).

We obtained the 20 genes most closely related to
NOL12 and then performed univariate Cox regression
analysis to further evaluate the relationship between these
coexpressed genes and the survival of patients with HCC.
The results showed that 16 NOL12 coexpressed genes were
closely related to the prognosis of HCC (Figure 3(d)). All
patient samples were randomly assigned to a training set
(n = 186) or a testing set (n = 184). Least absolute shrink-
age and selection operator (LASSO) proportional Cox
regression analysis was performed to construct an eight-
gene risk signature model (Figures 3(e) and 3(f)). The risk
score of each patient in the training and testing sets was
calculated as follows: risk score = ðexpWDR43 ∗ 0:00322Þ +
ðexpNOP58 ∗ 0:08182Þ + ðexpRCL1∗−0:13789Þ + ðexpUTP
3 ∗ 0:01855Þ + ðexpEBNA1BP2 ∗ 0:16428Þ + ðexpNOP56 ∗
0:19824Þ + ðexpBMS1 ∗ 0:08048Þ + ðexpRBM28 ∗ 0:55925Þ.

3.4. Prognostic Value of the NOL12-Related Gene Risk
Signature. The patients in the training and testing sets were

Intersection

Diff Cor

(Coincidental)

12 12

(c)

Figure 2: Correlation of NOL12 with the proportion of TICs. (a) Violin plot displaying the differentially infiltrated immune cells between
LIHC tumor samples with high or low NOL12 expression relative to the median NOL12 expression level. Green represents the NOL12 low
expression group and red represents the NOL12 high expression group. (b) Scatter plot showed that 12 kinds of immune cells correlated
positively or negatively with the expression of NOL12 (P < 0:05). (c) Venn diagram displaying twelve kinds of immune cells that
correlated with NOL12 expression codetermined by difference and correlation tests shown in violin and scatter plots, respectively.
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Figure 3: Gene set enrichment analysis and construction of a risk signature based on NOL12-related genes. (a) GO and (b) KEGG
enrichment analysis. (c) The network view provides the predicted association network of proteins that are highly related to the protein
product of NOL12. (d) Forest map showing 16 genes strongly associated with HCC prognosis identified by the univariate cox regression
method. (e) Partial likelihood deviance of different numbers of variables revealed by the LASSO regression model. (f) LASSO coefficient
profiles of the NOL12-related genes.
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Figure 4: Continued.
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further divided into high- and low-risk groups, with the
median risk score as the cutoff value. The results showed
that in both the training and testing sets, the number of
deaths in the high-risk group was significantly higher than
that in the low-risk group (Figures 4(a) and 4(b)). The
results of K-M survival analysis also confirmed that the
prognosis of the low-risk group was better than that of the
high-risk group (Figures 4(c) and 4(d)). Time-dependent
receiver operating characteristic (ROC) curves were gener-
ated to estimate the efficacy of the risk signature for predict-
ing the survival of patients with HCC. The areas under the
curve (AUCs) of the 1-, 3-, and 5-year risk scores were
0.762, 0.705, and 0.728 in the training sets, respectively. In
the testing sets, the AUC values were 0.713, 0.662, and
0.609 at the 1-, 3-, and 5-year time points, respectively
(Figures 4(e) and 4(f)). In addition, to further evaluate the
value of the risk signature in clinical application, we con-
ducted a stratified survival analysis of patients with different
clinicopathological features, including age, sex, grade, T
stage, N stage, M stage, and clinical stage. For different strat-
ifications, patients in the low-risk group had a higher overall
survival rate than those in the high-risk group (Supplemen-
tary Figure 2). These results indicated that the NOL12-
related risk signature can accurately predict the prognosis
of patients with HCC without considering clinical factors.
Univariate Cox regression analyses also showed that the
risk score was an independent prognostic factor for
patients with HCC (Figures 4(g) and 4(h)).

3.5. Construction of a Nomogram and Evaluation of Its
Prediction Ability. To provide a quantitative method with
clinical value to predict the probability of 1-, 3-, and 5-year
OS in HCC, we constructed a nomogram based on the inde-
pendent prognostic factors (Figure 5(a)). The total scores
were calculated according to the points of all variables in
the nomogram, and then, the 1-, 3-, and 5-year survival rates
of each patient with HCC could be predicted by drawing a
vertical line from the total points to the survival prediction
axis. The prediction values of the 1-, 3-, and 5-year nomo-
grams in the calibration plot were close to the 45-degree line

in the complete dataset, which indicates that the nomogram
demonstrates good prediction ability (Figure 5(b)). The
ROC curves showed that, compared with other clinical
factors related to prognosis, the nomogram had the highest
accuracy in predicting HCC survival, with an AUC of
0.804 (Figure 5(c)). In addition, decision curve analysis
(DCA) was performed to evaluate the net clinical benefits
of multiple prognostic factors (Figure 5(d)). The results
showed that using a nomogram to predict survival probabil-
ity can bring more benefits to patients.

3.6. Estimation of TMB and ICIs by the Risk Signature. We
analyzed the mutation profiles of each LIHC patient and
associated the patient’s risk score with TMB for difference
and correlation analyses. The results showed that the level
of TMB in the high-risk group was higher than that in the
low-risk group and was positively correlated with the risk
score (Figures 6(a) and 6(b)). Subsequently, we performed
a K-M survival analysis to evaluate the effects of high and
low TMB and risk scores on the prognosis of patients with
HCC. As shown in Figures 6(c) and 6(d), the survival rate
of patients with h-TMB was significantly lower than that of
patients with l-TMB. Among all the groups, the survival rate
of patients with h-TMB+h-risk was the worst, while that of
patients with l-TMB+l-risk was the best. Since patients with
elevated TMB tend to benefit more from ICI treatment, we
further investigated the relationship between ICIS and risk
scores. The results showed that the expression levels of
PD-1, PD-L1, CTLA-4, and LAG3 in the high-risk group
were significantly higher than those in the low-risk group
and were positively correlated with the risk score, indicating
that the high-risk group could benefit more from ICI treat-
ment (Figures 6(e)–6(l)).

3.7. Knockdown of NOL12 Inhibits the Proliferation of HCC
Cells. To further confirm the upregulated expression of
NOL12 in HCC, RT-qPCR experiment was carried out.
We collected 12 pairs of fresh tumor tissues and adjacent
nontumor tissues from HCC patients. As shown in
Figure 7(a), the expression level of NOL12 mRNA in HCC
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Figure 4: Validation of risk signatures of NOL12-related genes in the training and testing cohorts. (a, b) Distribution of risk score, survival
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tissues was significantly higher than that in adjacent nontu-
mor tissues. In addition, NOL12 expression in human liver
cell L02 and four different HCC cell lines (BEL-7404,
Hep3B, Huh-7, and HepG2) was examined by RT-qPCR.
The results showed that compared with human liver cell,
the expression level of NOL12 mRNA in HCC cell lines
was significantly increased, especially in Huh-7 and HepG2
cells (Figure 7(b)). Considering that the previous data results
supported the potential tumor-promoting effect of NOL12
in HCC, a series of experiments were carried out in vitro
and in vivo. We selected Huh-7 and HepG2 cells with the
highest expression of NOL12 in HCC cells for knockdown
experiments. Two shRNAs targeting human NOL12
(shNOL12-1, shNOL12-2) were introduced into HepG2
and Huh-7 cells to detect changes in endogenous NOL12
protein. As shown in Figure 7(c), we confirmed NOL12
silencing by comparison with the corresponding negative
control (shCtrl). The results of the cell proliferation assay
showed that the number of cells in the NOL12-knockdown
group was significantly lower than that in the shCtrl group
(Figure 7(d)). The results of the MTT assay also showed that
cell viability was significantly inhibited after NOL12 knock-
down in vitro (Figure 7(e)), and the colony numbers of HepG2
and Huh-7 cells decreased significantly (Figures 7(f) and 7(g)).
To further confirm the carcinogenicity of NOL12 in vivo, we
established an HCC xenograft model by injecting Huh-7 cells
with stable knockdown of NOL12 and shCtrl cells into the
abdominal flanks of five-week-old male nude mice and then
monitoring the growth of tumors. The results showed that
tumor growth in xenograft samples formed by shNOL12-
treated cells was impaired compared with shCtrl cells, and
tumor volume and weight were significantly reduced
(Figures 7(h) and 7(i)). In addition, the proportion of Ki67-
positive cells in tumors derived from NOL12 knockdown cells
was significantly lower (Figure 7(j)). Together, these findings
suggested that knockdown of NOL12 significantly inhibited
the growth of HCC cells in vitro and their tumor formation
ability in vivo.

3.8. Knockdown of NOL12 Inhibits the Metastasis of HCC
Cells. Our previous results suggested that the high expres-
sion of NOL12 was related to nodal and distant metastasis
in HCC patients (Figures 1(h) and 1(i)). To further deter-
mine whether NOL12 participates in the regulation of

migration and invasion process in HCC cells, the transwell
experiment was executed to examine the effect of NOL12
knockdown on cell migration and invasion. The results
showed that knockdown of NOL12 significantly inhibited
migration of Huh-7 and HepG2 cells in vitro (Figures 8(a)
and 8(b)). The results of Figures 8(c) and 8(d) showed that
knockdown of NOL12 also inhibited invasion of Huh-7
and HepG2 cells in vitro. Furthermore, we further study
the effect of NOL12 on the metastatic ability of HCC cells
in vivo by tail vein injection of Huh-7 cells. The results
showed that only one tumor metastasis was observed in
the lungs of the mice in the NOL12-knockdown group (1/
6), while lung metastases were observed in each mouse in
the shCtrl group (6/6) (Figure 8(e)). These results suggested
that NOL12 played an important role in the metastasis of
HCC cells.

4. Discussion

In recent years, although some new drugs have been
approved for the treatment of HCC, the therapeutic effect
of patients with advanced HCC is not satisfactory, and the
5-year survival rate has not been significantly improved
[26]. How to realize the early diagnosis of HCC is still a great
challenge for clinicians, so it is necessary to find new bio-
markers to provide new targets for the early diagnosis and
treatment of HCC [27, 28]. Previous studies have shown that
RNA-binding proteins play an important role in tumorigen-
esis and development. Iino et al. [9] reported that the RNA-
binding protein NONO can promote the proliferation of
breast cancer by regulating cell proliferation-related genes
and may become a potential therapeutic target for breast
cancer. Li et al. [29] constructed a prognostic model that
can accurately predict the prognosis of patients with lung
cancer by using a variety of RNA-binding proteins. In our
study, we identified a new RNA-binding protein, NOL12,
that may be an oncogene of HCC.

Through bioinformatics analysis, we found for the first
time that the expression of NOL12 in HCC was significantly
increased, and high expression was associated with a low
overall survival rate. To confirm the upregulated expression
of NOL12 in HCC, RT-qPCR experiment was carried out.
The results showed that the expression level of NOL12 was
significantly upregulated in HCC tissues and cell lines. In
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Figure 6: Estimation of tumor mutation burden (TMB) and immune checkpoint inhibitors by risk signature. (a, b) Analysis of the difference
and correlation between tumor mutation burden and risk scores. (c, d) The effect of tumor mutation burden and risk scores on the overall
survival of HCC patients. High risk scores were correlated with upregulated (e, f) PD-1 and (g, h) PD-L1, (i, j) CTLA4, and (k, l) LAG3 in
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addition, we also found that the high expression of NOL12 is
closely related to high pathological grade, node metastasis,
and advanced clinical stage. To further confirm the tumor-
promoting effect of NOL12 in HCC, we carried out a series
of experiments in vitro and in vivo. The results showed that
NOL12 knockdown significantly inhibited growth, prolifera-
tion, migration invasion, and distant metastasis of HCC cells
both in vitro and in vivo. In addition, KEGG analysis also
showed that NOL12 was associated with a variety of
tumor-related signaling pathways, including the MAPK,
PI3K-Akt, cAMP, and Ras signaling pathways. These results
strongly suggest that NOL12 can be used as a new diagnostic
and prognostic marker and promote the development of
HCC.

There is growing evidence that oncogenes or tumor sup-
pressor genes can recruit different immune cells in the TME
to promote or inhibit tumor progression [30, 31]. RNA-
binding proteins have been shown to affect the composition
of the TME through immune activation and immune regula-
tion [10, 12]. Zhao et al. [32] reported that the RNA-binding
protein SORBS2 can inhibit the TME and ultimately inhibit
the metastasis of ovarian cancer by affecting the polarization
of M2-like macrophages. In our study, through GO analysis,
we found that NOL12 may be related to immune activation.
Further research showed that NOL12 can regulate the
immune activity of the TME in HCC mainly through twelve
kinds of TICs. Therefore, we speculate that NOL12 can pro-
mote the immune infiltration of HCC to promote its prolif-
eration and metastasis, but this finding needs further study
to be confirmed.

Currently, access to public high-throughput gene expres-
sion datasets has contributed to the discovery of potentially
reliable biomarkers of HCC [33–35]. Many research groups
have found that signals based on specific gene expression
can accurately predict the prognosis of patients with HCC.
Dai et al. predicted the survival time of patients with HCC
and the efficacy of immunotherapy by constructing an

immune-related gene-based prognostic index [36]. Tang
et al. constructed a prognostic signature based on four
ferroptosis-related genes. This prognostic signature shows
superior diagnostic and predictive performance and pro-
vides a new possibility for individualized treatment of
patients with HCC [37]. Since our previous studies have
shown that NOL12 can be used as a reliable biomarker for
the diagnosis and prognosis of HCC, we wondered whether
the signature based on NOL12-related genes can accurately
predict the prognosis of patients. Here, we constructed a
NOL12-related gene risk signature by LASSO regression
analysis and verified it using a training set and test set. The
ROC curve results showed that the risk signature has high
accuracy in predicting 1-, 3-, and 5-year survival rates. Inde-
pendent prognostic analysis showed that the risk signature
can be used as an independent prognostic determinant of
patients with HCC. In addition, the results of a stratified sur-
vival analysis showed that the risk signature could accurately
predict the prognosis of patients with HCC without consid-
ering clinical factors. Because nomograms can directly show
prognosis, they are widely used to predict the survival and
prognosis of patients with tumors [38]. Subsequently, a
nomogram was constructed based on the NOL12-related
gene risk signature and other independent clinical features
to predict the 1-, 3-, and 5-year overall survival rates of indi-
vidual patients with HCC. The results of the calibration
curve, ROC curve, and decision curve showed that the
nomogram we constructed can provide clinicians with a
more accurate, convenient, and practical prediction tool.

Numerous studies have shown that immune checkpoint
is an important factor affecting the prognosis and treatment
of advanced HCC [39]. PD-L1 expression, TIC density,
TMB, and mismatch repair deficiency have been associated
with the effect of ICI treatment and used to screen patients
before ICI treatment [40]. In the present study, we found
that the predictive power of risk signatures was related to
TMB. In addition, TMB was significantly higher in the
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high-risk score group and predicted a poor prognosis.
Therefore, we speculated that risk scores, such as TMB,
may help to improve the efficacy of ICIs in patients with
high risk scores. The results showed that the expression level
of immune checkpoint molecules increased in patients with
high risk scores, indicating that patients with high risk scores
may be more sensitive to ICI treatment and benefit more. To
date, this study demonstrates for the first time the important
role of NOL12 in the prognosis of HCC. We believe that, for
a long time, the treatment options of patients with advanced
HCC are limited, and the overall survival has not been sig-
nificantly improved. Fortunately, more and more drugs are
used to treat advanced HCC. Among many types of drugs,
ICIs may become a routine drug for patients with advanced
HCC. We identified NOL12, a prognostic biomarker for
HCC, and found that NOL12-related risk signature can pre-
dict the response to ICI therapy, which can provide ideas for
ICI treatment for advanced HCC. However, we acknowl-
edged that more clinical samples were needed to validate
these results. In addition, more work on finding out the
exact NOL12 regulatory network needs be done in the future
as well as novel inhibitors targeting NOL12.

5. Conclusions

In conclusion, our findings revealed the expression pattern
and prognostic and tumorigenic roles of NOL12 and identi-
fied NOL12 as a novel oncogene and potential therapeutic
target in HCC that may be achieved by affecting the TME.
In addition, the risk signature based on NOL12-related
genes can guide clinicians to judge the prognosis of patients
with HCC and evaluate the effect of ICI treatment.
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