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Graphs are useful tools to communicate meaningful patterns in data, but their efficacy
varies considerably based on the figure’s construction and presentation medium.
Specifically, a digital format figure can be dynamic, allowing the reader to manipulate
it and little is known about the efficacy of dynamic figures. This present study
compared how effectively static and dynamic graphical formats convey relationship
information, and in particular variable interactions. Undergraduates (N = 128, 56%
female, Mage = 18.9) were given a brief tutorial on main effects and interactions in data
and then answered 48 multiple-choice questions about specific graphs. Each question
involved one of four figure types and one of four relationship types (main effect only,
interaction only, main effect and interaction, or no relationship), with relationship types
and graphical formats fully crossed. Multilevel logistic regression analysis revealed that
participants were fairly accurate at detecting main effects and null relationships but
struggled with interaction effects. Additionally, the static 3D graph lowered performance
for detecting main effects, although this negative effect disappeared when participants
were allowed to rotate the 3D graph. These results suggest that dynamic figures in
digital publications are a potential tool to effectively communicate data, but they are not
a panacea. Undergraduates continued to struggle with more complicated relationships
(e.g., interactions) regardless of graph type. Future studies will need to examine more
experienced populations and additional dynamic graph formats, especially ones tailored
for demonstrating interactions (e.g., profiler plots).

Keywords: graphs, data interpretation, main effects, interaction effects, graph design

INTRODUCTION

The information processing limitations of the human brain make unaided interpretations of
large datasets impractical. This is particularly problematic in science where researchers attempt
to identify trends, covariances, and interdependences within large sets of data in order to gain
insights about variables of interest. Quantitative, theoretically driven research requires effective
ways to meaningfully consolidate and interpret data. One common way to simplify the complexity
of data is through graphical representation (graphs). However, there is no consensus on a “best”
way to graph data and plenty of evidence of frequent misinterpretations of graphs and figures.
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This research investigates the efficacy of various graph
formats, specifically including both simple and more complex
relationships between variables and including graph formats
beyond traditional print representation (e.g., interactive figures).

The purpose of graphical data representations is to condense
the information in the data set, and in particular the
relevant properties (e.g., trends or covariations), while faithfully
maintaining the integrity of the overall dataset representation.
This can aid the researcher both in data analysis and in the
communication of results. However, not all graphs achieve these
goals. Mistakes in the transmission of information via graphs can
either be a consequence of presentation error, in which false or
misleading information is depicted (i.e., lying with statistics) or
they can be the result of misinterpretation of a “correct” graph
on the part of the reader. The willful production of false or
misleading graphs is a matter for ethical discussions. The present
research is concerned with the ability to interpret faithfully
presented graphs with different constructions.

The following subsections briefly describe some known
influential considerations in graph construction and the necessity
of certain graph elements. This leads to the issues associated
with multidimensionality; how one should graph data that co-
vary in more than two dimensions (i.e., two-way and higher
interactions). Higher-order relationships are, by their nature,
more complex and difficult to comprehend. As such, difficulty
of building effective graphs increases, but so does the utility of
graphs to facilitate the interpretation of these relationships.

Principles of Effective Graphs
A seminal review of the essentials of effective graph design
comes from Kosslyn (2006), which includes eight fundamental
principles that will be used in this paper. The first two of these
principles are the principle of Relevance (graphs should have
no more and no less information than necessary to convey the
intended message) and the principle of Appropriate Knowledge
(graph efficacy is contingent on the appropriate prior knowledge
of the reader). The next two principles are those of Salience
(the greatest perceptible differences in a graph should direct the
reader to the most relevant components) and Discriminability
(meaningful differences should differ by large enough margins
to be visually distinguished; e.g., see supporting research by
Hollands and Spence, 2001). The next two principles are the
principle of Compatibility (the information format should map
intuitively onto the intended message; e.g., see supporting work
by Gattis and Holyoak, 1996) and the principle of Information
Changes (the graph display should remain constant to intuitively
signify unchanging information, and should change to signifying
that the information is changing). The final two principles
rest a bit more on the inherent mental characteristics of
people’s memory and visual cognition. The principle of Capacity
Limitations says that graphs should not ask people to balance
more than about four pieces of information simultaneously,
due to the limitations of human working memory capacity
(Cowan, 2010; see also work by Meyer et al., 1997). Lastly, the
principle of Perceptual Organization says that graphs should
utilize the tendencies of the visual system to group objects by their
proximity, orientation, and visual similarity to each other.

Early research, naturally, focused on more straightforward
and clear possible implications of these principles (e.g., graphs
showing a simple difference between two means or a single
correlation). Traditional graphing methods, if they follow the
recommendations detailed above, are well-suited to portray
single effects. A difference between two groups could, for
example, easily be illustrated in a graph of two columns (Principle
of Relevance), and a large effect should be reflected in the
difference between the two columns being easily discriminable
(Principle of Discriminability). Furthermore, it is relatively easy
to make the bars prominent against a plain background (Principle
of Salience), and visually similar in shape and color (Principle of
Compatibility). Such a graph also proffers only a few pieces of
information (per the Principle of Capacity Limitations).

Many research findings, however, are more complex and
nuanced than the basic example described above. A simple
finding often leads to further research that branches and narrows,
with potential moderating and mediating factors or other
complications. As the research shifts to these more contingent
relationships there is a need for graphical representations that can
clearly and effectively portray those complex situations.

Multidimensionality in Graphs
How data are portrayed graphically should reflect the
information those data represent. One would not reasonably
use a line graph to depict the proportion of a population
that likes lemon meringue (a pie chart would surely be better
for this). The challenge that arises when the information is
complex, multivariate, and involves interactions is to have
a graph portrayal that faithfully and effectively conveys
those relationships.

As a starting point, suppose we have data that includes a
simple categorization of people by sex (i.e., male or female) that
can be denoted by two numbers, and also people’s height that
can be defined on a numerical scale. All of the information
about each person is contained in a simple pair of numbers so
far: x (sex) and y (height). Every unique pair of x and y values
in this sample could then be plotted on a Cartesian plane and
the result would be a scatterplot. If one plots the averages of
the y values (height) for both categories of x (sex) and draw
bars from the x-axis up to those points, then the result is the
traditional bar graph described earlier. If one replaces the bars
with a line connecting the two average values, then the result
is an illustration of the bivariate correlation between the two
variables. Regardless of the graphical format, one can see that at
the gross level of examination the number of dimensions used to
display information is equal to the number of dimensions used
to define each participant. The inclusion of additional variables
to the description of the individual therefore complicates the
graph construction.

What happens when we extend this example by incorporating
a third variable? Whereas before each participant was defined
only by a score on x (sex) and y (height), now each can
additionally be described on a third dimension, z, that could
signify the participant’s age. The analysis must consequently
be expanded, as the inclusion of this second predictor variable
increases the number of potential effects from one to three: the
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main effect of sex on height, the main effect of age on height, and
the interaction effect of sex and age on height. After examination
of the two main effects, one sees that age is positively correlated
with height and that males are taller on average than females.
However, both of these effects are qualified by the contingency
between them (i.e., their interaction). While males are on average
taller than females at maturity, females tend to reach their full
height at an earlier age than males. In this example, age acts as
a moderating variable and describes why, during adolescence, it
not uncommon that males tend to be shorter than females of the
same age, a detail lost in the earlier, simpler example.

For the graphs described thus far, the information can be
displayed in a two-dimensional (2D) format without violation
of Kosslyn’s principles. However, this is only because one of the
predictors in this scenario, sex, is categorical. Commonly, three
or more of the variables of interest are continuous. In such cases
a researcher faces the choice of either subdividing the continuum
into sections (categorize by section in order to simplify analyses)
or retaining the full continuum. The subdividing tactic is very
common in psychological research (Young, 2016), but research
suggests that maintaining the continuous integrity of one’s data
is almost always the preferable choice. This is because the
categorization of continuous data unnecessarily reduces the
power of the study and masks underlying contingencies/non-
linearities, the discoveries of which may require an intact
continuum (Young, 2016). One way to resolve the conflicting
objectives of clear graph communication is to explore some more
advanced graph options. Three or more continuous variables
are difficult to present and interpret graphically in traditional
2D formats that impose visuo-spatial constraints. The current
research examined the efficacy of four different graph formats
in displaying different types of relationships between three
continuous variables (see Figure 1).

Two-Dimensional Scatterplot With Delineating Color
Bar
The top-left graph in Figure 1 shows a 2D x-y scatterplot and
allows the third variable to vary as a function of color. Color is
easily displayed along a continuum for color (a color scale) that
can be consulted alongside the scatterplot of data points, allowing
for more immediately accurate observations of each data point’s
level on the 3rd dimension. This method is compatible with all
color-enabled print and digital media, but it does not involve any
interactive elements for user manipulation of graphs.

Color Contour Plot
Though strictly for displaying general trends/relationships
among variables rather than the entire set of individual data
points, a color contour plot (top-right in Figure 1) is a natural
extrusion of the 2D scatterplot of predictor variables into a
third dimension (color). The result is a topographical surface
that denotes how a region’s “height” (the level of the dependent
variable, coded by a color continuum) is differentially affected by
various combinations of the values of the two predictor variables
(i.e., “height” fluctuates across graphical regions). This method
may permit a more intuitive interpretation of trend than that of
the above method, given that both predictor variables are assigned

to the 2D space while the dependent variable is afforded its own,
unique dimension. Indeed, there is evidence that interpretation
accuracy depends upon the assignment of the variables to either
the x-axis or legend space (Ali and Peebles, 2013). This method
also requires color-enabled media but does not make use of
interactive elements.

Three-Dimensional Static Graph in Perspective
The third graph type (Figure 1, bottom-left) is a 3D scatterplot
on which the three continuous variables are plotted along the
x-, y-, and z-axes. This image is static and is “tilted” at an angle
to give the illusion of depth perception. This perspective mimics
the visual sense of depth and should facilitate discrimination of
distances and relationships among data points in a graph. By
nature, a 3D graph requires observers to make use of such depth
cues as occlusion, proximity, and gridline reference (Dosher
et al., 1986). However, consigned to a single static viewpoint, the
observer may have trouble resolving the overall trend depending
on how much variability is present and how well any one
particular viewpoint can capture it. Even though this method
may pose a more viable option to traditional outlets that lack
color-enabled media, the loss of informative function is costly.

Three-Dimensional Rotatable Graph in Perspective
The last graph type (Figure 1, bottom-right) is a rotatable variant
of the 3D perspective graph and takes advantage of digital
publishing’s capability to mitigate some of the weaknesses of the
static variant. With this version readers can utilize cues such
as motion parallax to better judge the distances and relative
positions of data points as they rotate the graph. However, this
method’s ostensible functional advantages over static graphs are
hampered by its compatibility shortcomings; only certain types
of media (e.g., interactive digital outlets) will be able to employ it.

The 3D rotatable graphs are by far the most versatile of these
four options in terms of functionality; they display all variables
along three principle axes and so avoid the relegation of any
variable to a symbolic space like a legend (Principle of Capacity
Limitations). The intuitive correspondence between a number
line and a continuum of numerical data also, in principle, makes
the changes in values of each variable easier to grasp (Principle of
Compatibility). Inasmuch as humans are biologically accustomed
to localizing and tracking objects through 3D space, people
should be very capable of discerning relationships among
those data points (Principle of Perceptual Organization). The
complication for the 3D rotatable graph is that it runs up against
the limitations of traditional (2D paper) media.

Two-dimensional color graphs are currently common for
several reasons: they are easily constructed, similar to bar and
line graph formats (Principle of Appropriate Knowledge) and
the overall relationship between the x- and y-axis variables
can be quickly gauged. Ali and Peebles (2013) found that
people perform well in discerning the relationship between the
dependent y variable and a legend-bound z variable delineated
by color. Interactions between the two independent variables,
however, may present a greater difficulty for 2D color graphs
than for the 3D rotatable format. It is not immediately clear, for
instance, how the effect on y of any specific x value would be
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FIGURE 1 | Examples of the four graph types, each displaying the same main effects(s) only relationship. Clockwise from top left: 2D Color Plot, Contour Plot, 3D
Rotatable Plot, and 3D Static Plot.

modulated by color shifts (the representative z value), or vice
versa. Indeed, unless the observer knows to scrutinize specific
patterns (“twisting” or “spreading” in the data points), she may
be at a loss. It should also be noted that inspection of spatial
patterns alone does not give one much insight into the specifics
of an interaction. One must attend to color changes while also
attending to spatial patterns if one is to discover anything of
import about the interaction, and this can overtax one’s working
memory (Principle of Capacity Limitations).

Although lacking actual rotatable functionality, the 3D static
graph has been utilized in research media (e.g., Khemlani et al.,
2012). The features of a 3D rotatable graph (described above)
similarly apply to the static version, except the critical element
of rotation functionality. This one missing element, though,
can critically hamper an observer’s understanding of data sets
containing important interactions that cannot be orientated in
such a way that guarantees the visibility of all relationships and
interactions (Principle of Salience).

There is relatively little precedence for 2D contour plots in
the psychological literature. There is, however, reason to believe
that the discernibility of main effect relationships is differentially
affected by the assignment of the independent variables to either
the axis or the legend (Ali and Peebles, 2013). From this,
it is not unreasonable to assume that a similar phenomenon
may exist for the assignment of the dependent variable. The
unconventionality of this graph type, however, may impair its
being accurately interpreted.

Hypotheses
Two hypotheses guided the following research. The first
hypothesis is that there will be an effect of graph type on accurate
interpretation, with average accuracy being, from best-to-worst:
3D rotatable, 2D color, 3D static, and 2D contour. This hypothesis
is consistent with Kosslyn’s principles, Ali and Peebles (2013),
and most people’s intuitions. The second hypothesis is that there
will be an effect of relationship type on accurate interpretation,
with accuracy being, from best-to-worst: no relationship, main
effect(s) only, interaction only, and main effect(s) with an
interaction. This order follows directly from the increasing level
of complexity across these four types.

METHOD

Participants
A total of 179 undergraduate students enrolled at a state
university in the Midwest participated in the study. Of these,
responses from 51 participants were dropped due to failing
a priori exclusion criteria (38 were removed for completing the
study in under 5 min, two for completing less than 75% of the
study, and 11 for answering correctly at or below chance levels,
all indicators of low-quality responding). Therefore, data from
128 participants (56% female, Mage = 18.9) were analyzed. All
participants were recruited from a general psychology course
that required participation in their choice of research studies at
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the university. This study was carried out in accordance with
the recommendations and with the approval of the researchers’
Institutional Review Board (IRB).

Design and Materials
Participants all completed a randomized series of graph
interpretation tasks, followed by basic demographic questions
(age, sex, education, major, and standardized test scores). The
graph interpretation task consisted of 48 different graphs that
varied by type and depicted relationship, but that all exhibited
three continuous variables labeled x, y, and z. For the sake of
simplicity, participants were instructed to treat y as the dependent
variable and x and z as the two independent variables. Each graph
was one of four possible types (2D Color Plot, 2D Contour Plot,
3D Static, or 3D Rotatable; see Figure 1) and depicted one of
four possible relationships:(1) only main effect(s); (2) only an
interaction; (3) main effect(s) and an interaction; and (4) no
main effects and no interaction (see Figure 2 for examples).
In the 2D contour plot, the x-axis was the horizontal axis,
the z-axis was the vertical axis, and the y-axis was a vertically
presented color gradient located to the right of the graph. In
the other three graphs, the x- and y-axes denoted the horizontal
and vertical axes, respectively, while the z-axis denoted an axis
orthogonal to the first two in the 3D graphs and a color gradient
in the 2D color plot graph similar to that of the contour
plot. This effectively split the stimuli into 16 type/relationship
pairings, and three distinct sets of randomly generated data were

utilized across the graph types for each of the four relationships,
resulting in a total of 48 tasks. All stimuli were created using the
Plotly graphing website1. The study design thus was a repeated-
measures experiment (per the criteria in Keppel, 1991; Shadish
et al., 2002; Rosenthal and Rosnow, 2008).

Procedure
The survey was presented through an online survey software
(Qualtrics) and included an informed consent process and
instructions about the nature of the task. Prior to the actual
tasks, participants were shown a tutorial page with definitions for
“main effect” and “interaction”, followed by two examples (one
containing only a main effect and one containing a main effect
and an interaction). The examples displayed the data sets in each
of the four representative graph types and were accompanied by
a brief explanation of how one could go about interpreting the
correct relationship.

During the test itself a small key containing shorter definitions
of the terms “main effect” and “interaction” was located above
each graph so that participants could reference these during the
test. Graphs were presented one at a time in conjunction with four
response options (the four possible relationships), from which
participants were told to choose the option that best described
what they saw in the data. Afterward, participants supplied
demographics information and were debriefed.

1https://plot.ly/

FIGURE 2 | Examples of the four relationship types, each displayed by a 2D Color Plot. Clockwise from top left: Main Effect Only, Main Effect with Interaction, no
Effects, and Interaction only.
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RESULTS

The data were analyzed using multilevel logistic regression in
order to model the within-subject dependencies inherent in
repeated-measure data and to appropriately account for the
dichotomous nature of the outcome variable (i.e., correct or
incorrect). When using multilevel modeling, it is important
to determine the appropriate random effects structure for the
model before analyzing any fixed effects. To do this, the Akaike
information criteria (AIC) of three models were compared to
assess random effect model fit (Burnham and Anderson, 2004).
These models were: (1) a random effects structure that only
allowed the intercepts to vary by participant; (2) a random
effects structure that allowed both the intercepts and slopes (i.e.,
main effects) to vary by participant and; 3) a random effects
structure that allowed the intercepts, slopes, and interactions
between slopes to vary by participant. The AIC with the
lowest value indicates the best-fitting model (Burnham and
Anderson, 2004), with a difference of 10+ units demonstrating
considerable evidence for a superior fit. The three random
effect structures had AICs of 8224.31, 7566.23, and 7629.04,
respectively, providing strong evidence that the random effects
structure allowing both the slope and intercepts to vary by
participant fits best.

Subsequently, the fixed effects were added to the random
effect structure to examine any effects of the predictor variables
(i.e., graph type and relationship type) on the outcome variable
(participant performance). This was done by comparing the fit
of two models, again using the AIC. The first model contained
the main effects of both graph type and relationship type only.
(Both predictors were included simultaneously based on two
considerations: (a) both are experimentally manipulated variables
with associated hypotheses, and (b) atheoretically testing all
possible models would needlessly increase the likelihood of
spurious results.) The second model tested was identical to the
first with the addition of an interaction coefficient between graph
type and relationship type.

When the AICs of these models were compared, the second
model containing both main effects and the interaction had
a considerably lower AIC (AIC = 7456.42) than did the
simpler model lacking the interaction term (AIC = 7494.61)
suggesting the more complex model fits the data better.
Figure 3 displays participants’ overall performance across
the different graph types by relationship type and Table 1
displays the model coefficients. Performance decreased as a
function of relationship complexity, supporting Hypothesis 2.
Performance generally did not vary across graph type, however,
with the exception that the interpretation of main effects
was significantly worse on the static 3D scatterplots and this
negative effect was mitigated when participants could rotate the
3D scatterplot. Thus, graph type did not affect performance
in most cases, contrary to Hypothesis 1. The results suggest
that the efficacy of a particular graph format may, in some
situations, depend on the type of relationship it is intended to
communicate, and specifics of this conjecture should be pursued
in further research.

FIGURE 3 | Proportion of questions answered correctly by Graph and
Relationship Type. “ME” indicates a main effect and “I” indicates an interaction
effect (i.e., “ME”+“I” is a main effect and an interaction. Note error bars
represent 95% confidence intervals.

TABLE 1 | The effects of graph type, relationship type, and their interaction on
participant performance.

Predictors Fixed effects Estimate Std.
Error

p

– Intercept 0.37 0.16 0.017

Graph types 3D Static −1.1 0.17 <0.001∗

3D Rotatable −0.31 0.17 0.075

Contour plot −0.22 0.17 0.19

Relationship No effect 0.15 0.23 0.509

types Interaction only −1.19 0.21 <0.001∗

Main effect and interaction −1.07 0.2 <0.001∗

Interactions 3D Static ∗ No relationship 1.32 0.24 <0.001∗

3D Static ∗ Main effect and 0.81 0.24 <0.001∗

interaction

3D Static ∗ Interaction only 1.31 0.24 <0.001∗

3D Rotatable ∗ No relationship 0.42 0.24 0.083

3D Rotatable ∗ Main effect and 0.19 0.23 0.419

interaction
3D Rotatable ∗ Interaction only 0.08 0.24 0.728

Contour Plot ∗ No relationship 0.45 0.24 0.059

Contour Plot ∗ Main effect and −0.08 0.23 0.73

interaction
Contour Plot ∗ Interaction only 0.07 0.24 0.773

∗ indicates a statistically significant effect.

DISCUSSION

Interpreting interactions in data is difficult, as many research
methods and statistics instructors know well, yet there is scant
work directly addressing how to improve this issue. Conventional
wisdom is that graphical representations help in recognizing
interaction effects. Kosslyn’s (2006) eight principles can serve
as a useful foundation for basic graph construction, but these
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principles are insufficient when building a graph to portray
higher dimensions. There are unresolved disagreements at
this level about fundamental properties of visual displays and
the efficacy with which different graphs convey the requisite
information. It is also imperative to remember that the most
effective methods of communicating complex results may be
emerging methods that leverage modern technologies and
graphing methods. An empirical and experimental approach to
graph optimization can help identify better methods and thereby
help to make those methods a part of standard research practices.

The present study found that the lack of any effect is
decently perceivable by people, and interactions (either alone
or with a main effect) remain difficult to perceive across all
graph formats used in the present study (Table 1). Main
effects are relatively difficult to perceive in static 3D graphs,
relative to other graph formats (see Figure 3). Unfortunately,
static 3D graphs seem to also be a currently popular
presentation option because it does not require dynamic- or
color-enabled media. An implication of the present study,
however, is that 3D static graphs should be discarded in
favor of either their 2D counterparts or, format permitting,
their 3D rotatable variants. Further study is warranted for
graphs of more complex relationships, for which the results
were inconclusive.

The present study points toward a few future research
directions. Overall performance, though above chance, was poor.
Introductory psychology undergraduates (and perhaps people
in general) are ill-equipped to identify complex continuous
relationships in graphs. Graphical literacy should be a concern
for educators and employers across all fields that work with data.

The poor overall performance in the current study also limits the
extent to which broader effects of graph and relationship type
on statistical interpretation can be measured. Assessing a more
graph-savvy population (e.g., researchers in a quantitative field)
could reveal clearer effects with greater variability in performance
ability. Additionally, there is clear potential for creating and
implementing novel graph types that are geared to facilitate the
interpretation of interactions (e.g., a profiler plot).
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