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Abstract

Immunotherapies for the treatment of cancer have spurred the development of new drugs that 

seek to harness the ability of T cells to recognize and kill malignant cells. There is a substantial 

need to evaluate how these experimental drugs influence T cell functional outputs in co-culture 

systems that contain cancerous cells. We describe an imaging cytometry-based platform that 

can simultaneously quantify activated T cells and the capacity of these T cells to kill cancer 

cells. Our platform was developed using the Nur77-GFP reporter system because GFP expression 

provides a direct readout of T cell activation that is induced by T cell antigen receptor (TCR) 

signaling. We combined the Nur77-GFP reporter system with a cancer cell line that displays a 

TCR-specific antigen and evaluated the relationship between T cell activation and cancer cell 

death. We demonstrate that imaging cytometry can be used to quantify the number of activated 

cytotoxic CD8+ T cells (CTLs) and the capacity of these CTLs to recognize and kill adherent 

MC38 cancer cells. We tested whether this platform could evaluate heterogenous lymphocyte 

populations by quantifying the proportion of antigen-specific activated T cells in co-cultures that 

contain unresponsive lymphocytes. The effects of a SRC family kinase inhibitor on CTL activation 
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and MC38 cell death were also determined. Our findings demonstrate that the Nur77-GFP reporter 

system can be used to evaluate the effects of diverse treatment conditions on T cell-cancer 

co-cultures in a microtiter plate-based format by imaging cytometry. We anticipate the combined 

analysis of T cell activation with T cell-mediated cancer cell death can be used to rapidly assess 

immuno-oncology drug candidates and T cell-based therapeutics.
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1. Introduction

Immunotherapies have revolutionized cancer treatment by harnessing the ability of T cells 

to target and kill malignant cells (Chen and Mellman, 2013). These successes have led to 

the development of new immuno-oncology treatment strategies (Upadhaya et al., 2020). 

Accordingly, there is an expanded need to evaluate how treatment strategies and potential 

drug targets affect interactions between T cells and cancer cells by ex vivo co-culture 

systems. Plate-based co-cultures that combine T cells and cancer cells can be used to assess 

the killing of cancer cells by cytotoxic T cells (CTLs). These assays generally rely on 

indirect readouts of cell death, such as the release of intracellular contents, which includes 

lactate dehydrogenase (LDH) or chromium (51Cr) (Korzeniewski and Callewaert, 1983; 

Miller and Dunkley, 1974). Although these indirect readouts correlate with cell death, they 

require the use of radioactive isotopes or enzymatic substrates to quantify the relative 

amount of cell death in each sample. Fluorescent membrane impermeable dyes can be 

used to label intracellular contents, such as nucleic acids, that become accessible when cell 

death results in a loss of membrane integrity. Quantification of dead cell numbers can be 

performed by imaging and flow cytometry using dyes, such as propidium iodide (PI) (Chan 

et al., 2011; Piriou et al., 2000). Although methods such as LDH release and PI staining can 

be used to assess cell death, their utility in T cell-cancer co-culture systems can be limited 

by a lack of insight into the activation status of T cells. This consideration is particularly 

relevant because prior to killing a cancer cell, a T cell must recognize and become activated 

by a tumor antigen (Jenkins et al., 2009).

A T cell can become activated by peptide-major histocompatibility complexes (pMHC) 

found on the surface of an adjacent cell. These pMHC ligands are recognized by the T cell 

antigen receptor (TCR) which, upon binding to an antigenic agonist, causes the signaling 

events needed for T cell activation to occur (Courtney et al., 2018; Davis and Bjorkman, 

1988). T cell activation results in changes in transcription, metabolism, and other pathways 

necessary for a T cell response. However, this response may not be uniform across a 

population of T cells. The extent to which cytotoxic T cells recognize and kill cancerous 

cells can be influenced by phenotypic heterogeneity within the T cell population. Such T 

cell heterogeneity can be found within populations of tumor infiltrating lymphocytes (TILs) 

(Oja et al., 2018), but can also be introduced by ex vivo T cell expansion, differentiation, 

and transduction procedures (Piscopo et al., 2018), or by genetic modification with CRISPR/
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Cas9 (Rupp et al., 2017). Therefore, to interpret how observed differences in cell death arise 

in mixed co-culture systems, the extent of T cell activation is a critical consideration.

The analysis of activated T cell populations in mixed cell cultures has generally been 

determined by labeling cells with fluorescent antibodies that are specific for activation 

markers found on the T cell surface followed by quantification using flow cytometry 

(Caruso et al., 1997; Maino et al., 1995). More recently, the Nur77-GFP reporter system 

has been utilized because it provides a robust readout of TCR signaling-mediated activation 

of T cells (Moran et al., 2011; Zikherman et al., 2012). GFP expression occurs when 

the immediate-early gene encoding Nur77 (Nr4a1) becomes upregulated following TCR 

engagement (Osborne et al., 1994). Because flow cytometry requires cellular suspensions, 

it is limited by sample processing requirements and throughput. These considerations create 

a barrier to the use of flow cytometric analysis for microtiter plate-based analyses of 

mixed co-culture systems containing both T cells and the adherent cancerous cells they 

can potentially recognize. Imaging cytometry can address these limitations because it does 

not require the sample to be processed to yield a cell suspension. Moreover, imaging is 

more rapid and nondestructive, which can allow samples to be imaged repeatedly over time. 

Morphological changes can also be observed and absolute cell counts can be obtained.

Imaging cytometry methods have been developed to evaluate T cell-mediated cytotoxicity 

(Chan et al., 2019; Maldini et al., 2020). These studies incorporated a fluorescent protein 

(GFP) that was released by cancer cells following cell death. This fluorescent readout was 

used to quantify cancer cell death mediated by T or NK cells in co-cultures by assessing 

the number of viable GFP+ cells. Imaging cytometry provides a rapid readout of cancer cell 

death compatible with microtiter plate-based co-culture systems, but methods are needed 

that provide an integrated, direct readout of the activated T cells that mediate this process. 

Because of potential T cell heterogeneity, it is often necessary to determine the proportion of 

activated T cells that mediate a functional response. For example, receptor-targeting drugs, 

such as co-stimulatory agonists, may act on a specific subpopulation of T cells if expression 

of the targeted receptor is restricted to a T cell subset. We anticipated that methods to assess 

cell death by imaging cytometry could be combined with reporters of T cell activation, such 

as Nur77-GFP. In this way, the proportion of activated T cells responsible for mediating a 

functional output, such as cancer cell death, can be determined by imaging cytometry-based 

assays.

The Nur77-GFP reporter is upregulated within several hours following stimulation by an 

antigenic TCR agonist. In comparison to activation markers, such as CD69, it is a more 

faithful readout of TCR-mediated activation because its upregulation is less sensitive to 

inflammatory or mitogenic signals, such as those caused by cytokines (Ashouri and Weiss, 

2017). Accordingly, the Nur77-GFP reporter system can be used to assess antigen-induced 

activation of T cells by both in vivo and ex vivo systems (Au-Yeung et al., 2014; Courtney 

et al., 2019; Moran et al., 2016). We sought to determine whether the Nur77-GFP reporter 

could be used to quantify activated T cells by imaging cytometry and to test its utility in 

mixed co-culture systems. Our goal was to monitor populations of activated T cells that 

mediate the targeted killing of cancer cells. We combined Nur77-GFP CTLs with cancer 

cells that displayed an antigenic agonist. We determined that both the proportion of activated 
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T cells, based on their expression of GFP, and the extent of cancer cell death could be 

quantified by imaging cytometry. Our results indicate that this platform provides a robust, 

integrated readout of T cell activation and cancer cell death in heterogenous co-culture 

systems.

2. Methods

2.1. Mice and cell lines

All mice were bred and maintained on the C57BL/6 genetic background. The Nur77-GFP 

reporter has been previously described (Moran et al., 2011; Zikherman et al., 2012). Nur77-

GFP transgenic mice were crossed to OT-I TCR transgenic mice (Hogquist et al., 1994). For 

all experiments, mice were used between 6 and 12 weeks of age. All animals were housed at 

U-M in a specific-pathogen-free (SPF) facility and were treated according to protocols that 

were approved by U-M animal care ethics and veterinary committees and are in accordance 

with NIH guidelines. Lenti-X 293T (LX293T) cells were obtained from Takara. MC38 

cells were generously provided by Dr. Weiping Zou (University of Michigan). Cells were 

maintained in a tissue culture incubator at 37 °C with 5% CO2 in culture medium. Adherent 

cell lines were maintained in DMEM supplemented with 10% fetal bovine serum and 2 mM 

glutamine.

2.2. Reagents

Chemicals: PP2 inhibitor (Tocris), propidium iodide (PI) and Hoechst stains (Biolegend), 

LT-1 transfection reagent (Mirus). For imaging analysis, #0030730119 (tissue culture (TC) 

treated) and #0030730011 (non-TC culture treated) Eppendorf 96-well plates were used. 

Non-TC treated plates were used for agonistic antibody adsorption. Sterile carrier-free 

anti-CD3 (2C11) and anti-CD28 (37.51) were obtained from Biolegend. Fluorescent anti-

TCRβ (AF647) (H57–597) and anti-CD8α (PE) (53–6.7) were obtained from Biolegend. 

Streptavidin nanospheres were obtained from Biolegend (#480016). Biotinylated antibodies 

used for negative selection cocktail were obtained from Biolegend: Biotin anti-CD11b 

(M1/70) (#101204), Biotin anti-CD11c (N418) (#117304), Biotin anti-CD19 (6D5) 

(#115504), Biotin anti-CD24 (M1/69) (#101804), Biotin anti-CD45R (B220) (RA3-6B2) 

(#103204), Biotin anti-CD49b (DX5) (#108904), Biotin anti-TER119 (clone TER-119) 

(#116204), Biotin CD4 (GK1.5) (#100404). Antibodies (0.5 mg each, except for 0.1 mg 

anti-CD11c) were pooled and dialyzed in PBS before sterile filtration and storage at 80 °C.

2.3. Plasmids

The gene encoding the full-length Ovalbumin protein was ordered as a synthetic gene 

fragment (IDT). BP Clonase II (ThermoFisher #11789020) was used to insert the gene into a 

pDONR221 plasmid (ThermoFisher #12536017). PCR mutagenesis was used to remove the 

N-terminal secretion sequence (Diebold et al., 2001). The resulting plasmid was linearized 

by PCR and HiFi DNA assembly (NEB #E2621) was used to insert an IRES sequence 

followed by iRFP713 (obtained from Addgene #31857) (Fig. S1). The pDONR plasmid was 

combined with the pLEX307 destination vector obtained from Addgene (#41392) and the 

insert transferred using LR Clonase II (ThermoFisher #11791020). The resulting pLEX307 

OVA IRES iRFP713 plasmid was used to generate cell lines by viral transduction. The 
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pMD2.G (#12259) plasmid was obtained from Addgene. The pCMV dR8.91 plasmid was 

generously provided by the Lim laboratory (UCSF).

2.4. MC38-OVA cell line

Viral supernatants were prepared by transfecting LX293T cells with pLEX307 OVA IRES 

iRFP713, pMD2.G, and pCMV dR8.91 plasmids. LX293T cells were plated out in 2 mL 

of culture medium onto 6-well plates the day prior. Transfection and virus production 

were performed according to protocols provided by the Broad Institute TRC/GPP (https://

portals.broadinstitute.org/gpp/public/) (Root et al., 2006). LX293T cells were between 70 

and 80% confluency the day of transfection. pLEX307 OVA IRES iRFP713 (0.5 μg/well), 

pMD2.G (0.05 μg/well), and pCMV dR8.91 (0.5 μg/well) were diluted into Opti-MEM 

medium and combined with Mirus LT-1 transfection reagent (#MIR2306). The plasmids 

and LT-1 reagent were incubated for 30 min at room temperature and then added directly 

to LX293T cells drop-wise. The following day culture medium was replaced with 2 mL 

of DMEM supplemented with 20% FBS and glutamine. The next day the culture medium 

containing the virus was collected and centrifuged to pellet any dislodged LX293T cells. 

The viral supernatant was then filtered (0.45 μm) to remove residual cells. Viral supernatants 

were collected the same day as MC38 transduction was performed. MC38 cells were plated 

out in 2 mL of culture medium in 6-well plates (200,000 cells/well). The following day 

1 mL of viral supernatant was added per well. The medium was replaced after 1–2 days. 

Following 3–4 days in culture, fluorescence activated cell sorting (FACS) was used to seed 

cells into 96-well plates (1 cell per well) using an Invitrogen Bigfoot Spectral Cell Sorter 

(ThermoFisher). Several clones were obtained and directly compared by the T cell-mediated 

cytotoxicity assay (Fig. S2). Individual clones were isolated and analyzed for iRFP713 

expression by flow cytometry (Fig. S3). A single clone, 2E7, was used for all further 

experiments described. The MC38-OVA (2E7) cell line will be made available upon request.

2.5. T cell activation by agonistic antibodies

Agonistic antibodies were diluted with sterile PBS and each well of a non-TC treated 

96-well plate was coated with a volume of 50 μL for approximately 16 h at 4 °C. Wells 

were rinsed twice with PBS prior to addition of T cells in complete MEM medium (phenol 

red-free MEM supplemented with 10% FBS, 2 mM glutamine, non-essential amino acids, 

penicillin and streptomycin, 1 mM sodium pyruvate, 50 μM 2-mercaptoethanol, and 10 mM 

HEPES). Complete MEM was used to reduce background fluorescence caused by riboflavin, 

which is present in RPMI and DMEM at a greater concentration. CD8+ T cells were purified 

by negative selection as previously described (Au-Yeung et al., 2017). Briefly, spleen and 

lymph nodes were isolated from a Nur77-GFP mouse and ruptured in complete medium. 

T cells were washed and resuspended in FACS buffer (PBS supplemented with 2% FBS 

and 1 mM EDTA) at 108 cells per mL. Rat serum (75 μL per mL) obtained from Jackson 

ImmunoResearch (#012-000-120) was added, followed by a biotinylated antibody cocktail 

(30 μL per mL). Cells were incubated for 10 min at room temperature and then FACS buffer 

added to a volume of 10 mL. Cells were pelleted and supernatant removed by aspiration. 

Cells were resuspended in FACS buffer at 108 cells per mL before addition of 90 μL per 

mL of streptavidin nanospheres (Biolegend #480016). The sample was gently mixed and 

incubated for 5 min and additional FACS buffer added if necessary to ensure a minimum 
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volume of 5 mL. The sample was placed in a magnet for 5 min and negatively selected cells 

isolated by decanting into a fresh tube. Cells isolated by this approach and analyzed by flow 

cytometry are typically ~90–94% CD8+ TCRβ+ (Fig. S4). Purified T cells were pelleted and 

resuspended in complete MEM at 4 × 105 cells per mL. To each well of the 96-well plate, 

50 uL of the T cell suspension was added (20,000 cells) and cultured overnight for 16 h. 

The following day nuclei were labeled by adding 100 uL of PBS containing Hoechst dye 

(20 μM) to each well. Plates were incubated for 30 min and then imaged using a Nexcelom 

Celigo imaging cytometer.

2.6. CD8+ effector T cells

Splenocytes were isolated from an OT-I Nur77-GFP mouse by rupturing the spleen in 

complete RPMI medium (RPMI supplemented with 10% FBS, 2 mM glutamine, non-

essential amino acids, penicillin and streptomycin, 1 mM sodium pyruvate, 50 uM 2-

mercaptoethanol, and 10 mM HEPES). The isolated cells were washed and 3 × 106 cells 

were plated out in 3 mL of complete RPMI supplemented with 10 ng/mL of recombinant 

mouse IL-2 (Peprotech #212–12). A peptide recognized by the OT-I TCR was added. 

For these studies, 20 nM of the SIIQFERL (Q4R7) variant of Ovalbumin (257–264) was 

used. The Q4R7 peptide was custom synthesized by Genescript. Similar results have been 

obtained using 20 nM of the WT SIINFEKL peptide (Genescript #RP10611). After 2 days 

of culture, small clumps of proliferating T cells should be observed. An additional 2 mL of 

medium containing IL-2 was added to each well. On day 3, substantial proliferation with 

large clumps of cells should be observed. Cells were counted and passaged to maintain a 

density of less than 2 × 106 cells per mL. After 4 days of expansion, the culture should 

contain only CD8+ Vα2+ OT-I T cells. After 4–5 days of culture, the expanded cytotoxic 

OT-I T cells were co-cultured with MC38-OVA cells.

2.7. T cell-cancer co-culture

MC38 and MC38-OVA cells (5,000 cells per well) were added in 50 μL of complete 

MEM medium (phenol red-free MEM supplemented with 10% FBS, 2 mM glutamine, 

non-essential amino acids, penicillin and streptomycin, 1 mM sodium pyruvate, 50 μM 

2-mercaptoethanol, and 10 mM HEPES) to a 96-well plate. Plates were incubated overnight 

to allow cells to attach (approximately 24 h). The cancer cell number was estimated to 

double by the next day to 10,000 cells per well, which was used to calculated E:T ratios. 

The following day expanded cytotoxic CD8+ OT-I T cells (CTLs) were resuspended in 

complete MEM medium supplemented with IL-2 and added to the plate containing the 

cultured cancer cells without mixing the contents of the well (5 ng/mL IL-2). To achieve the 

desired effector-to-target (E:T) ratios, the number of OT-I CTLs added ranged from 50,000 

(5:1) to 780 (0.078). For experiments containing decoy cells, the E:T ratio was kept constant 

at 0.25:1 by addition of 25 μL of OT-I T cells (2,500 cells per well) and 25 μL of splenocytes 

to each well. For the inhibitor-treated samples, the E:T ratio was 1:1 by addition of 50 μL 

of OT-I T cells (10,000 cells per well). Cells were co-cultured overnight for 16 h at 37 °C. 

Samples were stained by addition of 100 μL of PI (75 μM) and Hoechst (20 μM) diluted in 

PBS. After 30 min, the plates were centrifuged briefly to ensure cells were at the bottom 

of each well, and imaged on the Celigo imaging cytometer (Nexcelom). For experiments 
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containing decoy cells, splenocytes were combined with OT-I CTLs at varying decoy:OT-I 

ratios (12:1, 6:1, 3:1, 1.5:1) prior to their addition to the overnight co-culture.

2.8. T cell activation and cell-mediated toxicity measurement by imaging cytometry

The Celigo software application (V5.3) for expression analysis was used to collect 

brightfield and fluorescence images. A well mask was used to exclude well edges from 

analysis (outer 10% of each well). For T cell activation alone, the Green and Blue 

fluorescence channels were used to image Nur77-GFP and Hoechst respectively. For T 

cell-mediated cytotoxicity experiments, the Red channel was also included to image and 

identify PI positive cells. A mask based on Hoechst labeling was used to identify individual 

cells. Thresholds for identification of GFP+ and PI+ cells were set using negative controls 

(samples lacking antigen or agonistic antibody). Automated analysis of cell counts was 

performed using Celigo analysis software (V5.3) and images directly exported. Expected 

and total cell counts can be compared across controls and samples, as illustrated in Fig. S5. 

Deviations from expected cell counts occurred at higher E:T ratios, which we attributed 

to increased clumping of T cells around MC38-OVA cells. To account for cell death 

independent of T cell-mediated cytotoxicity, single cell type (monoculture) controls of 

MC38-OVA and CTLs were included. PI+ cells from monocultures were subtracted from 

PI+ counts obtained from co-cultured cells (PI+ count = PI+ co-culture − [PI+ MC38only + 

PI+ CTLonly]). 3–4 replicates were analyzed per sample. FCS files corresponding to each 

well of the plate were exported and analyzed using FlowJo software (V10.7.1) to generate 

depicted contour plots.

2.9. Statistical analysis

All statistical analysis was performed using GraphPad Prism software (V9.2.0).

3. Results

A readout of live activated T cells compatible with co-culture systems should provide a 

powerful means to evaluate experimental treatment conditions, such as immuno-oncology 

drug candidates. We therefore sought to determine whether the Nur77-GFP reporter could 

be used to quantify activated T cells by imaging cytometry. To establish feasibility, we 

isolated CD8+ T cells from transgenic Nur77-GFP mice by negative selection. To stimulate 

the TCR and induce expression of the Nur77-GFP reporter, we used an agonistic antibody 

that binds to CD3ε (2C11), a component of the TCR complex. The anti-CD3ε agonist was 

diluted to yield a range of concentrations from 0 to 12.5 μg/mL that were adsorbed onto 

the surface of a 96-well microtiter plate. To evaluate the effects of co-stimulation on Nur77-

GFP expression, we included an anti-CD3ε dilution series that also contained a single 

fixed concentration (2.5 μg/mL) of an anti-CD28 co-stimulatory agonistic antibody (37.51). 

CD8+ T cells were added to the antibody-treated plates and cultured for 16 h. Robust GFP 

fluorescence was observed, indicative of T cell activation (Au-Yeung et al., 2014; Courtney 

et al., 2019; Moran et al., 2011), in T cells treated with the anti-CD3ε agonist (Fig. 1A). 

The fluorescence intensity of each cell was quantified to determine the proportion of GFP+ 

T cells present under each treatment condition (Fig. 1B). The expected trend was observed 

where the proportion of activated (GFP+) T cells declined as the concentration of agonist 
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decreased (Fig. 1CD). Little or no GFP+ cells could be detected in negative controls lacking 

anti-CD3ε agonist. The dose-response was determined by plotting GFP+ T cells versus 

anti-CD3ε agonist concentration. By incorporating an anti-CD28 agonist, we observed an 

apparent shift in the proportion of activated T cells caused by the anti-CD3ε agonist. The 

EC50 for activation was 2.5 μg/mL (95% confidence interval (CI) of 2.042 to 3.085) for 

CD3ε agonist alone, in comparison to an EC50 of 1.27 μg/mL (95% CI of 0.9802 to 1.739) 

for the combined anti-CD28 and anti-CD3ε agonistic antibodies.

Having established that activated T cells can be quantified by imaging cytometry using 

the Nur77-GFP reporter system, we sought to evaluate whether this system could be used 

in co-cultures. We therefore interrogated the relationship between the recognition of a 

tumor antigen (TA) by T cells and their capacity to execute cell-mediated cytotoxicity. Our 

goal was to establish a platform for the combined quantification of activated T cells and 

cancer cell death. We incorporated a non-secreted Ovalbumin variant (OVA) into MC38 

adenocarcinoma cells by viral transduction to generate a clonal cell line (denoted MC38-

OVA) (Supporting Information) (Diebold et al., 2001). The MC38 cell line is adherent and 

not readily amenable to flow cytometric analysis, making imaging cytometry an attractive 

alternative to evaluate the capacity of T cells to recognize and kill this widely utilized cell 

line. OT-I TCR transgenic mice were crossed with Nur77-GFP transgenic mice to combine 

the OVA-specific OT-I TCR with the Nur77-GFP reporter. Splenocytes were isolated from 

Nur77-GFP OT-I mice and OT-I T cells expanded by addition of an antigenic peptide 

and recombinant mouse IL-2 to generate CTLs (Fig. 2A). The expanded OT-I CTLs can 

recognize a peptide-MHC (pMHC) derived from the OVA protein incorporated into the 

MC38-OVA line, which acts as a model TA. The parental MC38 cell line should not 

be recognized by the OT-I TCR because it lacks the OVA antigen, and thus serves as a 

negative control to ensure cell death is antigen-specific. Our goal was to determine whether 

Nur77-GFP could be used to determine the relationship between the number of activated 

CTLs and killed cancer cells. We combined OT-I CTLs with MC38-OVA cells at different 

effector-to-target ratios (E:T). Co-cultures were incubated for 16 h and then stained with 

Hoechst dye to identify nucleated cells and propidium iodide (PI) to identify dead cells. The 

co-cultures were then analyzed by imaging cytometry. We observed robust induction of GFP 

when CTLs were co-cultured with MC38-OVA, but not the parental MC38 cell line, which 

lacks the OVA antigen. Distinct GFP+ and PI+ populations could be readily distinguished 

(Fig. 2BC). Consistent with the requirement for TA recognition prior to T cell-mediated 

killing of MC38-OVA, we observed a marked increase in PI+ MC38-OVA cells, but not the 

parental MC38. Moreover, the extent of cell death was proportional to the extent of activated 

(GFP+) CTLs. We evaluated over E:T that ranged from conditions where fewer than 1 in 

10 cells were CTLs to where CTLs exceeded cancer cells by 5:1 (Fig. 2D). To determine 

the relationship between the number of MC38 killed and T cell activation, we determined 

the ratio of PI+ cells to activated (GFP+) CTLs (Fig. 2E). These observations revealed that 

potent CTL-mediated killing of MC38-OVA could be quantified at low E:T ratios (less than 

1).

Having determined that the Nur77-GFP reporter provides a robust readout of activated CTLs 

co-cultured with cancer cells, we predicted it could also be used to identify the proportion 

of T cells that respond to a TA. We therefore evaluated T cell-cancer co-cultures that 
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contained heterogeneous lymphocyte populations: a mixture of T cells that recognize a 

TA and those that do not. We combined a fixed number of Nur77-GFP OT-I CTLs with 

splenocytes that would act as non-responsive “decoys”. A series of effector-to-decoy ratios 

was generated by combining increasing numbers of splenocytes with a fixed number of 

Nur77-GFP OT-I CTLs (Fig. 3A). These lymphocyte mixtures were then added to MC38 

cells and cultured for 16 h. Co-cultures were stained with Hoechst and PI as described 

previously and quantification of PI+ and GFP+ cells performed by imaging cytometry. In 

co-cultures lacking a tumor antigen (MC38), we observed no cancer cell death and few 

GFP+ cells. However, presentation of a tumor antigen (MC38-OVA), allowed us to quantify 

comparable levels of GFP+ CTLs despite increasing numbers of unresponsive decoys (Fig. 

3B). Similarly, the proportion of quantified PI+ MC38-OVA cells was also consistent across 

samples with increasing numbers of decoy cells (Fig. 3C).

Combined quantification of Nur77-GFP and cell-mediated cytotoxicity could be used to 

assess the effects of an inhibitor on T cell activation and a functional response. To test 

the feasibility of this approach, we evaluated the effects of a small molecule SRC family 

kinase inhibitor, PP2, because it inhibits the activity of LCK and FYN kinases (Hanke et 

al., 1996). These kinases are required for T cell activation because they phosphorylate the 

TCR complex and the ZAP-70 kinase. We treated our OT-I CTL co-cultures with a range 

of PP2 concentrations. An initial experiment revealed that PP2 caused a rapid decline in 

cell-mediated cytotoxicity (PI+) (Fig. 4A). We then evaluated a narrower range of PP2 

dilutions and observed a decrease in activated (GFP+) CTLs with an IC50 of 2.724 (95% 

CI of 2.321 to 3.180). As anticipated, we observed a corresponding similar decrease in 

MC38-OVA cells that were killed (PI+) IC50 of 3.820 (95% CI of 2.99 to 7.90) (Fig. 4B).

4. Discussion

The development and characterization of immuno-oncology drugs and T cell-based therapies 

requires methods that can be used to evaluate them using cultured cells. Current methods to 

assess T cell activation ex vivo are typically performed separately from procedures used to 

assess functional readouts, such as T cell-mediated killing of cancer cells. Multiparameter 

flow cytometry is routinely used to analyze hallmarks of T cell activation but requires 

cellular suspensions that can restrict analysis of co-cultures that contain adherent cancer 

cells and is limited by throughput. We reasoned the Nur77-GFP reporter system could be 

combined with imaging cytometry to rapidly quantify activated T cells. We evaluated the 

utility of the Nur77-GFP reporter by imaging cytometry by determining the extent to which 

naïve T cells became activated following stimulation with a TCR agonistic antibody in the 

presence or absence of co-stimulation by a CD28 agonistic antibody. We also determined 

that Nur77-GFP became upregulated when CTLs were co-cultured with antigen-bearing 

MC38 cancer cells. The extent of CTL-mediated killing of cancer cells could be quantified 

by incorporating a readout of cell death. These combined readouts can be used to determine 

the effects of potential drug targets that influence TA recognition and T cell-mediated cancer 

cell death.

Sources of heterogeneity can affect the therapeutic potential of T cell-based therapies, such 

as CAR-T cells. Heterogeneity is known to arise from variable transduction efficiency and 
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phenotypic changes that occur during expansion procedures (Alizadeh et al., 2019; Gattinoni 

et al., 2005). Other sources of T cell heterogeneity can result when T cells are genetically 

modified, such as by CRISPR/Cas9 genome editing, which can produce mixed edited and 

unedited cells (Rupp et al., 2017). Genome editing procedures may also be used to reduce 

heterogeneity in modified T cells (Muller et al., 2021). An integrated readout of T cell 

activation combined with cancer cell death could be used to determine whether phenotypic 

differences that influence T cell activation result in altered T cell-mediated cytotoxicity. Our 

findings demonstrate that activated (GFP+) T cells in heterogeneous lymphocyte populations 

can be quantified to evaluate the relationship between responding TA-specific T cells and 

non-responsive lymphocytes, and the extent of cancer cell death. The described imaging 

cytometry platform could be combined with procedures used to incorporate alternative 

antigen recognition receptors, such as TA-specific TCRs, by genome engineering or viral 

transduction (Freen-van Heeren et al., 2020; Gomez-Eerland et al., 2014). Notable examples 

include modfied T cells specific for tumor antigens, such as MART-1 or Mesothelin 

(Morgan et al., 2006; Stromnes et al., 2015; Watanabe et al., 2018). To assess their function, 

humanized receptors can also be incorporated into mouse T cells (Yu et al., 2004; Zhong et 

al., 2010). By integrating readouts of T cell activation and cancer cell death, optimizations 

can be performed prior to in vivo testing. Alternatively, we anticipate that antigen-specific 

receptors can be combined with reporter systems, such as NFAT and IL-2 reporters, that 

have been incorporated into human cell lines, such as Jurkat T cells (Jutz et al., 2016; 

Shapiro et al., 1997).

The throughput of analysis is an important consideration for screening and testing 

procedures. Because imaging cytometry allowed us to directly analyze co-cultured cells, 

samples were labeled by direct addition of dyes followed by a brief incubation prior to 

being imaged. A single 96-well plate could be used to routinely assess 7 different effector-

to-target ratios and controls. The imaging process and analysis could be performed in about 

15 min per plate. As proof-of-principle, we evaluated a small molecule inhibitor of SRC 

family kinases, PP2. PP2 is known to inhibit TCR signaling by preventing LCK and FYN 

kinases from phosphorylating the TCR complex (Hanke et al., 1996). We could readily 

determine the concentration of PP2 required to inhibit T cell activation and T cell-mediated 

cytotoxicity. Because plates can be rapidly processed and imaged, this platform is amenable 

to analyses that sample a large swath of treatment conditions, such as those used to optimize 

T cell expansion (Kaartinen et al., 2017; Levine et al., 2017; Li and Kurlander, 2010). 

Although we evaluated a known inhibitor of CTL function (PP2), we anticipate our method 

can be extended to evaluate compounds that rescue T cell function. Co-cultures could be 

modified to incorporate inhibitory factors that suppress the capacity of CTLs to become 

activated and kill cancer cells. Based on the capacity to rescue CTL loss-of-function, 

phenotypic screens could then be conducted, or drug candidates evaluated. For example, 

target cells could be modified to express ligands known to engage immune checkpoints, 

such as PD-L1 (Freeman et al., 2000). Soluble factors that are known to be suppressive, 

such as TGFβ (Thomas and Massague, 2005), could also be incorporated to identify or test 

strategies that overcome T cell suppression.
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Fig. 1. 
Quantification of T cell activation by imaging cytometry. (A) Schematic illustrating 

workflow for the quantification of activated T cells using the Nur77-GFP reporter. (B) 

Representative microscopy images of T cells treated with anti-CD3ε agonist and analysis 

of GFP+ and GFP− populations. Scale bars represent 50 μm. (C) Contour plots depicting 

GFP+ cells identified by imaging cytometry. (B–C) Data are representative of 4 independent 

replicates. (D) Quantification of GFP+ activated T cells over a range of anti-CD3ε 
concentrations in the presence or absence of an anti-CD28 co-stimulatory antibody. Four 

technical replicates were performed for each treatment condition. Error bars represent 

the standard deviation of three independent experiments (biological replicates, n = 3). 

Samples were compared by two-way ANOVA analysis (interaction, p < 0.005; sample and 

concentration, p < 0.0001).
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Fig. 2. 
Quantification of CTL activation and T cell-mediated cytotoxicity by imaging cytometry. 

(A) Schematic illustrating the workflow for analysis of OT-I CTLs and MC38-OVA co-

cultures using the Nur77-GFP reporter. (B) Representative images of OT-I CTLs co-cultured 

with antigen-bearing MC38-OVA cells, and analysis of GFP+ and PI+ populations. Scale 

bars represent 100 μm. (C) Contour plots depicting GFP+ and PI+ cells identified by 

imaging cytometry (E:T ratio of 1.25:1). (B–C) Data are representative of 4 independent 

replicates. (D) Quantification of activated T cells (GFP+) and dead cells (PI+) at several 

effector-to-target ratios (E:T). (E) The extent of MC38 cell death was plotted as a function of 

the number of CTLs in the co-culture. The E:T ratios tested were 5:1, 2.5:1, 1.25:1, 0.625:1, 

0.313:1, 0.156, 0.078:1. Four technical replicates were performed for each treatment 

condition. Error bars represent the standard deviation from three independent experiments 

(biological replicates, n = 3).
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Fig. 3. 
Quantification of activated CTLs in mixed lymphocyte-cancer co-cultures. (A) Schematic 

illustrating workflow for analysis of OT-I CTLs and MC38-OVA co-cultures using the 

Nur77-GFP reporter. Decoy splenocytes were incorporated into co-cultures to assess the 

proportion of activated CTLs. (B) Quantification of the number of activated T cells (GFP+) 

and the number of activated (GFP+) T cells to total cells. (C) Quantification of the number 

of dead cells (PI+) and the dead cells (PI+) to total cells. Three technical replicates were 

performed for each treatment condition. Error bars represent the standard deviation from 

three independent experiments (biological replicates, n = 3).
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Fig. 4. 
Analysis of TCR signaling inhibitor PP2. (A) Pilot experiment depicting PP2 dose-response. 

Error bars represent standard deviation of three technical replicates. (B) Dose-response 

of activated CTLs (GFP+) and proportion of dead cells (PI+) following treatment with 

PP2. Three technical replicates were performed for each treatment condition. Error bars 

represent the standard error of measurement from three independent experiments (biological 

replicates, n = 3).
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