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The high-temperature superconducting cuprates are governed
by intertwined spin, charge, and superconducting orders. While
various state-of-the-art numerical methods have demonstrated
that these phases also manifest themselves in doped Hubbard
models, they differ on which is the actual ground state. Finite-
cluster methods typically indicate that stripe order dominates,
while embedded quantum-cluster methods, which access the
thermodynamic limit by treating long-range correlations with
a dynamical mean field, conclude that superconductivity does.
Here, we report the observation of fluctuating spin and charge
stripes in the doped single-band Hubbard model using a quantum
Monte Carlo dynamical cluster approximation (DCA) method. By
resolving both the fluctuating spin and charge orders using DCA,
we demonstrate that they survive in the doped Hubbard model
in the thermodynamic limit. This discovery also provides an op-
portunity to study the influence of fluctuating stripe correlations
on the model’s pairing correlations within a unified numerical
framework. Using this approach, we also find evidence for pair-
density-wave correlations whose strength is correlated with that
of the stripes.

Hubbard model | stripe | dynamical cluster approximation

Acommon element of strongly correlated materials is the
existence of several nearly degenerate states, which compete

or cooperate to produce novel phases of matter (1). For example,
in the high-temperature (high-Tc) superconducting cuprates,
multiple theoretical studies and experiments point to intertwined
orders of spin and charge stripes, charge-density waves, pair-
density waves (PDWs), and unconventional superconductivity
(1–7). Understanding the relationships among these orders and
how they shape the cuprate phase diagram is a central problem
in condensed-matter physics.

Addressing this question using nonpertubative methods re-
mains challenging, as even the simplest correlated electron mod-
els also contain near-degenerate orders, which can be difficult to
discern from one another. For example, state-of-the-art numeri-
cal studies have identified a plethora of low-energy states in the
single-band Hubbard and t-J models that contend for the ground
state (5, 6, 8–25). Methods like Hartree–Fock mean-field theory
(10–12), density matrix renormalization group (5, 13–16), density
matrix embedding theory (13, 17), variational Monte Carlo (18),
auxiliary field quantum Monte Carlo (QMC) (5, 6, 13, 19), and
infinite projected entangled-pair states (13, 20) tend to find static
stripe order, i.e., unidirectional spin- and charge-density waves,
as the ground state, and recent determinant QMC (DQMC)
calculations (8, 9) and minimally entangled typical thermal states
(25) have found evidence for spin-stripe correlations at finite
temperatures. In contrast, quantum-cluster methods like cellular
dynamical mean-field theory (24, 26, 27) and the dynamical clus-
ter approximation (DCA) (28, 29), which, unlike finite size clus-
ter techniques, directly access the thermodynamic limit, typically
find superconducting solutions with a d-wave symmetry (21–24).
While approximate calculations of this sort with large unit cells,

but correlations restricted to single sites or small clusters, have
found evidence of stripes (30–33), more reliable calculations with
clusters large enough to accommodate the stripe periodicity have
yet to find any indication of stripe-like solutions. It is crucial that
we understand and resolve these differences to properly identify
the properties of the Hubbard model in the thermodynamic limit.
Moreover, this dichotomy has made it difficult to understand
the relationships between the relevant orders since each method
has its approximations, which introduce systematic errors that
can bias toward particular solutions. To overcome this issue, it
is desirable to identify a single framework capable of identifying
the relevant states to avoid compounding systematic biases.

Here, we demonstrate that QMC DCA (28) methods can
detect short-range stripe correlations in the two-dimensional,
single-band Hubbard model. The QMC-based impurity solver
captures the intracluster correlations exactly, while longer-range
correlations are treated in a mean field that approximates the
infinite system. The observation of fluctuating stripes with this
method therefore provides crucial confirmation that such corre-
lations persist in the thermodynamic limit. It also fixes the dis-
crepancy between finite-cluster and quantum-cluster methods.
Our results allow us to examine the influence of fluctuating stripe
correlations on d-wave pairing in the single-band Hubbard model
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using a unified framework, provided the clusters are large enough
to accommodate the relevant periodicity, such that the spatial
modulations are not averaged out by the DCA mean field. Using
this unified framework, we find evidence for short-range PDW
correlations, whose strength is correlated with the strength of the
spin- and charge-stripe correlations.

Model
We consider the two-dimensional, single-band Hubbard Hamil-
tonian defined on a rectangular N = Nx × Ny lattice

H =−
∑
i,j,σ

tij

(
c†iσcjσ + h.c.

)
− μ

∑
i,σ

niσ + U
∑

i

ni↑ni↓. [1]

Here, c†iσ (ciσ) creates (annihilates) a spin-σ (=↑, ↓) electron on
site i; niσ = c†i,σciσ is the number operator; tij is the hopping
integral between sites i and j; μ is the chemical potential; and
U is the on-site Hubbard repulsion. Throughout, we restrict tij

to nearest-neighbor (t) and next-nearest-neighbor (t ′) hopping
only and set U = 6t to facilitate comparisons to ref. 8. We then
solved Eq. 1 using DCA (28) and with a continuous-time QMC
impurity solver (23), as implemented in the DCA++ code (34),
and complementary DQMC calculations (35, 36).

Previous DQMC calculations (8, 9) have demonstrated that
the high-temperature spin-stripe correlations in the single-band
and multiband Hubbard model are fluctuating in nature, where
short-range spatial correlations appear over several unit cells
and are fluctuating in time. In general, static (ω = 0) correlation
functions, which integrate over the imaginary time dynamics, are
expected to be more sensitive to fluctuating short-range order
(37) compared to the corresponding equal-time (τ = 0) corre-
lation functions (8). We have found that this is indeed the case
for the spin, charge, and PDW-like correlations reported here
(SI Appendix), supporting the interpretation that the observed
stripe correlations are fluctuating in nature.

To study the fluctuating spin stripes, we measured the
static staggered spin–spin correlation function S stag(r,ω =

0) = (−1)rx+ry 1
N

∫ β

0

∑
i〈Ŝ

z
i+r(τ) Ŝ

z
i (0)〉dτ , where r = a(rx , ry)

is the position of each atom on the square lattice with
lattice constant a, and Ŝ z

i = 1
2

(
c†i,↑ci,↑ − c†i,↓ci,↓

)
is the

z-component of the local spin operator at site i. The fluc-
tuating charge-stripe correlations are assessed by measuring
the static density–density correlation function N (r,ω = 0) =
1
N

∫ β

0

∑
i (〈ni+r(τ) ni(0)〉 − 〈ni+r(τ)〉〈ni(0)〉) dτ , where ni =∑

σ ni,σ is the local density operator. The pairing tendencies are
accessed by measuring the static pairing correlation function in
the d-wave channel Pd(r,ω = 0) = 1

N

∫ β

0

∑
i〈Δi+r(τ) Δ

†
i (0)〉dτ ,

whereΔi = ci,↑(ci+x̂ ,↓ + ci−x̂ ,↓ − ci+ŷ,↓ − ci−ŷ,↓)− ci,↓(ci+x̂ ,↑ +
ci−x̂ ,↑ − ci+ŷ,↑ − ci−ŷ,↑) destroys a singlet pair of electrons
with d-wave symmetry. We also determined the structure of
the pairing interaction by explicitly solving the Bethe–Salpeter
equation in the particle–particle singlet channel to obtain its
leading eigenvalues and eigenvectors (22, 38). Due to the large
cluster sizes and the self-consistency loop, our DCA calculations
are significantly more expensive than the corresponding DQMC
calculations. For this reason, we focus on an average density,
〈n〉= 0.8, where we have observed strong stripe correlations.

Results and Discussion

Fig. 1 plots S stag(r) for several values of the next-nearest-
neighbor hopping t ′, where we see clear evidence for spin-stripe
correlations in our DCA calculations (Fig. 1 A, B, and D–F).
Here, we employ large 16× 4 clusters embedded in the DCA
self-consistent mean field, where we access temperatures as
low as T = 0.167t (inverse temperature β = 6/t). Since the
staggered spin–spin correlation function imposes a sign flip
on every other site, the positive blue regions in the middle
of each panel represent short-range antiferromagnetic (AFM)
correlations. In contrast, the negative red regions represent AFM
regions, but with a π phase shift. As t ′/t decreases from positive
to negative, red negative regions form more prominently on both
sides of the central blue region, signaling the formation and
growth of AFM stripe fluctuations, similar to those observed in
finite-size DQMC calculations (8, 9). In general, we find that the
boundary between the red and blue regions mixes, suggesting

A

B

C

D

E

F

Fig. 1. The real-space static staggered spin–spin correlation function of the single-band Hubbard model with 〈n〉 = 0.8, obtained from DCA and DQMC
simulations. Results are shown for t′ = −0.3t, DCA (A); t′ = −0.25t, DCA (B); t′ = −0.25t, DQMC (C); t′ = −0.2t, DCA (D); t′ = 0, DCA (E); and t′ = 0.2t,
DCA (F). The DCA results were obtained by using a 16 × 4 cluster embedded in a dynamical mean field and at an inverse temperature β = 6/t (A, B, and
D–F). The DQMC results shown in C were obtained on a 16 × 4 cluster with periodic boundary conditions and β = 4.5/t and t′ = −0.25t. Note that here
and throughout, we have adopted the same custom color bars used in refs. 8 and 9. This scale provides a finer gradation of small values of the correlation
function and improves the overall contrast (SI Appendix).
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that the stripes are incommensurate. We have observed similar
patterns for different cluster sizes and geometries, including
8× 8, 8× 6 and 8× 4 clusters, and in the spin xx correlations
(SI Appendix).

For comparison, Fig. 1C shows S stag(r,ω = 0) obtained from
a DQMC calculation at T = 0.22t (β = 4.5/t), t ′ =−0.25t . The
DQMC results are consistent with the corresponding DCA re-
sults (Fig. 1B). [A systematic comparison between DCA and
an earlier DQMC study (8) focusing on the real-space equal-
time spin–spin correlation function at the density n = 0.875 is
given in SI Appendix.] Since DQMC treats the system exactly on
an extended, but finite, cluster, one must perform a finite-size
scaling analysis to access the thermodynamic limit. On the other
hand, DCA accesses the thermodynamic limit by embedding its
clusters in a dynamical mean field that approximates the rest of
the system. Comparing Fig. 1 B and C, we find that DCA predicts
weaker stripe correlations compared to DQMC for the same
t ′, despite the lower temperature. This observation may help
explain why stripes have previously gone unobserved in quantum-
cluster approaches employing extended clusters. The origin of
the reduced correlations is unclear at this time. One possibility
is that the correlations observed by DQMC would weaken as the
cluster size increases. Another is that the mean field reduces the
effective correlations in the DCA treatment of the problem or
tends to favor uniform states and restoreC4 symmetry in the clus-
ter. Nevertheless, the observation of stripes with DCA provides
crucial evidence that they persist in the thermodynamic limit.

Although we observe similar fluctuating spin stripes in both
zero-frequency (Fig. 1) and equal-time (SI Appendix) spin–spin
correlation functions, the zero-frequency (Fig. 2) and equal-
time (SI Appendix) density–density correlation functions show
qualitatively different behaviors. The density–density correla-
tions have much stronger imaginary time dependence. A detailed
imaginary time analysis can be found in SI Appendix. As a result,
the fluctuating charge-stripe pattern is only observed in the static
(ω = 0) correlation functions. Fig. 2 plots N (r,ω = 0) for the
same 16× 4 DCA and DQMC simulations shown in Fig. 1. We
observe the central blue region surrounded by two red regions
on both sides, signaling short-range charge-stripe fluctuations,
but with a shorter period. As t ′/t increases from negative to
positive, unlike the spin case, where the blue region extends to

weaken the stripe, the charge blue region does not extend. In
the electron-doped case (t ′ = 0.2t), however, the central region
is dominated by a staggered (π,π) CDW-like correlation, with
the subdominant stripe-like pattern laying on both sides. As a
comparison, the DQMC result in Fig. 2C shows a stronger stripe
pattern with a shorter period than the corresponding DCA result
in Fig. 2B.

The presence of the spin and charge stripes is more readily
observed by examining the dynamical spin S(Q,ω) and charge
N (Q,ω) susceptibilities (37), which measure the collective fluc-
tuations. Here, we consider the static limit (ω = 0), which can be
obtained by Fourier transforming the corresponding static real-
space correlation functions. Fig. 3 summarizes S(Q,ω = 0) along
Q = (Qx ,π) (Fig. 3 A–E) and N (Q,ω = 0) along Q = (Qx , 0)
(Fig. 3 F–J) for different values of the next-nearest-neighbor
hopping t ′. When the spin-stripe correlations are strong, they
should manifest as incommensurate peaks in S(Q, 0) centered at
(2π/a)(0.5± δs , 0.5), while the charge stripes should manifest as
incommensurate peaks in N (Q, 0) centered at (2π/a)(±δc , 0),
where δc = 2δs . To check this, we fit the spectra with pairs of
Lorentzian functions (plus a constant background) and extracted
the corresponding values of δs,c . In all cases, the susceptibilities
are well represented by the fits, and the resulting ratio r = δs/δc
is given in Fig. 3 A–E, where we find 0.66> r > 0.3. Especially
in the cases with t ′ < 0, these values are close to the expected
r = 0.5 result, for which the periodicity of the charge fluctuations
is twice that of the spin fluctuations.

To examine how the spin and charge stripes form, we also
extracted the values of δc , δs , and r = δs/δc as a function of tem-
perature for t ′ =−0.3t , as shown in Fig. 3K. (The corresponding
susceptibility data are provided in SI Appendix.) We find that δs
remains relatively fixed as a function of temperature, while δc
appears to lock in to its value of δc ≈ 2δs as the temperature is
lowered. From Figs. 1–3, we can see that the incommensurability
δs (or period) of the fluctuating spin stripes depends weakly on
temperature but strongly on t ′, while the incommensurability δc
(or period) of the fluctuating charge stripes depends strongly on
temperature, but weakly on t ′. Fig. 3 L and M show the correla-
tion lengths ξs and ξc for t ′ =−0.3t for the fluctuating spin and
charge stripes, respectively. These values are determined from
the inverse of the half-width-half-maximum of the Lorentzian

A

B
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F

Fig. 2. The real-space static density-density correlation function of the single-band Hubbard model, obtained from DCA and DQMC simulations. Results are
shown for t′ = −0.3t, DCA (A); t′ = −0.25t, DCA (B); t′ = −0.25t, DQMC (C); t′ = −0.2t, DCA (D); t′ = 0, DCA (E); and t′ = 0.2t, DCA (F). The DCA results
were obtained by using a 16 × 4 cluster embedded in a dynamical mean field and at an inverse temperature β = 6/t (A, B, and D–F). The DQMC results
shown in C were obtained on a 16 × 4 cluster with periodic boundary conditions and β = 4.5/t and t′ = −0.25t.
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Fig. 3. DCA results for the static spin S(Q,ω = 0) (A–E) and charge N(Q, ω = 0) (F–J) susceptibilities, obtained on a 16 × 4 cluster embedded in a dynamical
mean field and with 〈n〉 = 0.8. A–E show the spin susceptibilities along Q = (Qx , π) for t′ = −0.3t (A), t′ = −0.25t (B), t′ = −0.2t (C), t′ = 0 (D), and t′ = 0.2t
(E). Each curve is fit with a pair of Lorentzian functions centered at (2π/a)(0.5 ± δs, 0.5) plus a constant background. F–J show the corresponding charge
susceptibilities along Q = (Qx , 0). Each curve is fit with a pair of Lorentzian functions centered at (2π/a)(±δc, 0) plus a constant background. All results
were obtained for T = 0.167t (β = 6/t). The ratio of the spin and charge incommensurabilities is given by r = δs/δc, and K shows the temperature evolution
of the spin and charge incommensurabilities and their ratio r for t′ = −0.3t. L and M show the temperature dependence of the spin and charge correlation
lengths, respectively, for the same t′.

fits, but we obtain very similar estimates from exponential fits
of the real-space correlations. We find that both the spin- and
charge-correlation lengths extracted this way are relatively short
at the temperatures we can access, but grow with decreasing
temperature. We also find that the charge correlation length
is substantially shorter than the spin correlation length. These
results suggest that in the hole-doped case, the charge stripes
emerge at lower energy scales than spin stripes do in the Hubbard
model and that the periodicity of the former locks into the value
set by the latter. This finding is counter to the idea that the charge
order forms prior to the spin order (39, 40). In the electron-doped
case, the comparison between Figs. 1F and 2F shows that the
charge stripe appears at higher energy scale instead.

Previous DCA studies have observed a finite-temperature
transition to the d-wave superconducting state (21, 38). Now
that DCA also finds evidence for fluctuating stripes, both in the
spin and charge sector, it is natural to ask how they affect the
formation of Cooper pairs. To answer this question, we examine
the static d-wave pairfield susceptibility Pd(r,ω = 0) calculated
with DCA on a 16 × 4 cluster, as shown in Fig. 4. Interestingly,
as t ′ is reduced and varied to more negative values, the static
pairfield correlations develop a modulated striped pattern with
a sign change (π phase shift) suggestive of a PDW (3). This
trend is similar to that found for the spin-stripe fluctuations in
Fig. 1, except that for t ′ =−0.25t , the modulation is less visible,
possibly due to a change in the Fermi surface topology from
electron- to hole-like (41). Fig. 5 shows the corresponding plots
of the Fourier-transformed static d-wave pairfield susceptibility
Pd(Q,ω = 0) fitted with a pair of Lorentzian functions. For
t ′ = 0.2t , we observe a single peak at Q = (0, 0). But as t ′ is
lowered and varied to more negative values, one sees that the
peak flattens out. In this case, the best fit is obtained with two
separate Lorentzians centered at (2π/a)(±δP , 0), consistent
with the periodic PDW-like modulation observed in Fig. 4.

These observations suggest that striped modulations in the
pairfield correlations develop together with the spin- and
charge-stripe correlations. At the temperatures we have studied,

A

B

C

D

E

Fig. 4. The real-space static d-wave pairfield correlation function of the
single-band Hubbard model. DCA results are shown for t′ = −0.3t (A),
−0.25t (B), −0.2t (C), 0 (D), and 0.2t (E). The remaining model parameters
are identical to those used in Fig. 1.
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Fig. 5. DCA results for the static pairfield susceptibility Pd(Q,ω = 0) for 〈n〉 = 0.8 and T = 0.167t (β = 6/t) obtained on a 16 × 4 cluster embedded in a
dynamical mean field for t′ = −0.3t (A), t′ = −0.25t (B), t′ = −0.2t (C), t′ = 0 (D), and t′ = 0.2t (E). Each curve is fit with a pair of Lorentzian functions
centered at (±δP , 0). For t′ = 0.2t, the two Lorentzians collapse onto a single peak centered at (0, 0).

it is clear from Fig. 5 that their signature in the momentum
structure of the pairfield susceptibility is not as strong as that of
the spin and charge stripes. Nevertheless, the striped modulation
is clearly visible in the real space structure in Fig. 4. Whether the
PDW-like modulations become stronger at lower temperatures
and potentially lead to a superconducting instability to a PDW
state, however, remains an open question that we are unable to
address because of the Fermion sign problem.

Conclusion
Our results demonstrate that fluctuating spin- and charge-stripe
orders are a property of the doped single-band Hubbard model
in the thermodynamic limit. Moreover, by accessing these phases
using an embedded cluster technique, we are able to examine the
ways in which the stripe fluctuations couple to superconducting
correlations in the model. Concomitant with the spin stripes,
we find that the d-wave pairing correlations develop a similar
periodic stripe modulation, indicative of a pair-density wave.

Materials and Methods
DCA. To study the single-band Hubbard model, we use the DCA (21, 28,
29, 34). Complete details of the DCA algorithm can be found in ref. 29.
The DCA coarse-grains momentum space to represent the bulk lattice in
the thermodynamic limit by a finite size cluster that contains Nc sites and
is embedded in a self-consistent mean field. This mean field represents the
remaining degrees of freedom and is determined self-consistently from the
solution of the cluster problem.

With the assumption of short-ranged correlations, the self-energy
Σ(k, iωn) is well approximated by the cluster self-energy Σ(K, iωn), where
K are the cluster momenta. The coarse-grained, single-particle Green’s
function

Ḡ(K, iωn) =
Nc

N

∑

k′
G(K + k′, iωn)

=
Nc

N

∑

k′

1

iωn + μ − ε(K + k′) − Σ(K, iωn)
,

[2]

is then obtained by averaging the lattice Green’s function G(k, iωn) over the
N/Nc momenta k′ in a square patch about the cluster momentum K that has
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an area of size 1/Nc of that of the first Brillouin zone. This reduces the bulk
problem to a finite size cluster, which we solve using the continuous-time,
auxiliary-field, QMC algorithm (CT-AUX) (23).

In our DCA++ simulations, the expansion order of the CT-AUX QMC is
typically in the range of 100 to 3,000, depending on temperature and t′.
Depending on the average fermion sign for a given parameter set, we have
obtained 10 million to 2 billion samples for the correlation functions. Usually,
six to eight iterations were needed to obtain good convergence for the DCA
mean field.

DQMC. We also perform DQMC (35, 36) simulation on the single-band
Hubbard model to obtain the spin, charge, and pairing correlation functions
for finite-size clusters. We divide the imaginary time interval [0, β] into L
discrete steps with step size fixed at Δτ = 0.1 and rewrite the partition
function using the Trotter formula neglecting terms of order O(Δτ2).

We perform equal-time measurements every other full space-time sweep
and unequal-time measurements every fourth sweep. We use 5,000 indepen-
dently seeded Markov chains, and, for each chain, we use 50,000 warmup
sweeps and 400,000 measurement sweeps. This large amount of data leads
to reliable statistics, despite the severe Fermion sign problem.

Data Availability. The entire dataset has been deposited on Zenodo,
https://doi.org/10.5281/zenodo.5904352 (42).
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