
fnins-14-578666 October 6, 2020 Time: 20:56 # 1

REVIEW
published: 08 October 2020

doi: 10.3389/fnins.2020.578666

Edited by:
Joana M. Gaspar,

Federal University of Santa Catarina,
Brazil

Reviewed by:
Fatima O. Martins,

New University of Lisbon, Portugal
Kiran Veer Sandhu,

University College Cork, Ireland

*Correspondence:
Arjan Narbad

arjan.narbad@quadram.ac.uk

Specialty section:
This article was submitted to

Neuropharmacology,
a section of the journal

Frontiers in Neuroscience

Received: 30 June 2020
Accepted: 16 September 2020

Published: 08 October 2020

Citation:
Garcia-Gutierrez E, Narbad A and

Rodríguez JM (2020) Autism
Spectrum Disorder Associated With

Gut Microbiota at Immune,
Metabolomic, and Neuroactive Level.

Front. Neurosci. 14:578666.
doi: 10.3389/fnins.2020.578666

Autism Spectrum Disorder
Associated With Gut Microbiota at
Immune, Metabolomic, and
Neuroactive Level
Enriqueta Garcia-Gutierrez1, Arjan Narbad1* and Juan Miguel Rodríguez2

1 Gut Microbes and Health Institute Strategic Program, Quadram Institute Bioscience, Norwich, United Kingdom,
2 Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain

There is increasing evidence suggesting a link between the autism spectrum disorder
(ASD) and the gastrointestinal (GI) microbiome. Experimental and clinical studies have
shown that patients diagnosed with ASD display alterations of the gut microbiota.
These alterations do not only extend to the gut microbiota composition but also to the
metabolites they produce, as a result of its connections with diet and the bidirectional
interaction with the host. Thus, production of metabolites and neurotransmitters
stimulate the immune system and influence the central nervous system (CNS) by
stimulation of the vagal nerve, as an example of the gut-brain axis pathway. In this review
we compose an overview of the interconnectivity of the different GI-related elements that
have been associated with the development and severity of the ASD in patients and
animal models. We review potential biomarkers to be used in future studies to unlock
further connections and interventions in the treatment of ASD.

Keywords: autism spectrum disorder, gut microbiome, gut-brain axis, biomarker, neurotransmitter, GABA,
serotonin

INTRODUCTION

Autism spectrum disorder (ASD) is a group of brain developmental disorders characterized
by stereotyped behavior and deficits in communication and social interaction. Initially, it was
believed that ASD had an environmental origin. However, at the moment it is accepted that
ASD development is the result of multiple factors, including environmental, genetics, and
neurodevelopmental (Rylaarsdam and Guemez-Gamboa, 2019). The prevalence of ASD in the
development of children and on society constitutes an economic burden for families, where
the main costs are associated to special education and the loss of productivity of the parents
(Buescher et al., 2014; Christensen et al., 2018). Additionally, it has been reported that over the
last decades, there is an increasing prevalence of ASD, reaching 1 in 132 globally (Matson and
Kozlowski, 2011; Baxter et al., 2015; Hansen et al., 2015). Therefore, there is a need to develop
and implement effective interventions. However, there is no defined etiology and pathology for
ASD, and this limits the development of specific therapies (Rossignol and Frye, 2012). Previous
studies have shown that there are several factors that might have an influence on development
and prognosis of ASD, such as genetics, immunological, inflammatory, environmental, and more
recently, the gut microbiota (Fakhoury, 2015). Genetic factors thought to be involved in processes
such as synapse formation, transcriptional regulation or pathways for chromatin-remodeling are
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listed in Figure 1 (Rylaarsdam and Guemez-Gamboa, 2019).
However, genetic factors in ASD development are not the focus
of this review and this subject is reviewed elsewhere (Chaste and
Leboyer, 2012; Huguet and Bourgeron, 2016; Rylaarsdam and
Guemez-Gamboa, 2019).

The gut harbors millions of microorganisms linked by
complex ecological relationships between them and the host,
often mediated by the production of metabolites. The gut
microbiota has been proposed as a key element involved in
many conditions, such as obesity, colorectal cancer, irritable
bowel syndrome (IBS), diabetes type 2, rheumatoid arthritis,
Parkinson’s disease, and Alzheimer’s disease and also with
cognitive conditions such as anxiety, depression, and autism
(Ceppa et al., 2019). The gut-brain axis theory, now well-
established and accepted, states that the gut and the brain
communicate and influence each other (Bienenstock et al., 2015;
Mayer et al., 2015; Cryan et al., 2019). The gut-brain axis
theory has its origin on the observation of the improvement of
patients diagnosed with hepatic encephalopathy, after antibiotic
treatment (Carabotti et al., 2015). Moreover, IBS and its gut
microbiota alterations have been linked to anxiety and depression
(Simpson et al., 2020). There is even recent evidence suggesting
that human personality traits might be associated with the gut
microbiome (Johnson, 2020).

Increasing evidence shows that gastrointestinal (GI)
symptoms, such as gastrointestinal disruption, abdominal pain,
diarrhea, constipation, and flatulence, has been characterized
as a common comorbidity in patients with ASD, ranging
between 9 and 84% depending on the studies being retrospective
or prospective (Wasilewska and Klukowski, 2015), and are
linked to the severity of ASD symptoms (Adams et al., 2011;
Gorrindo et al., 2012; Chaidez et al., 2014). However, cause-effect
relationship between GI symptoms and ASD has not been
proven yet. In fact, it has been suggested that GI symptoms
should be considered as part of the ASD phenotype, like the
behavioral symptoms (Niesler and Rappold, 2020). On the
other hand, there are studies that have demonstrated that the
administration of a single strain, such as human commensal
Bacteroides fragilis, is able to ameliorate social deficit in a mice
model (Hsiao et al., 2013). Moreover, B. fragilis corrected gut
permeability and altered microbial composition. Additionally,
treatments such as Microbiota Transfer Therapy (MTT), focused
on gut microbiota regulation, have shown promising results
by improving ASD-related symptoms in patients that were
sustained after finishing the treatment (Kang et al., 2019).
These improvements were reported hand-in-hand with an
increment in bacterial diversity and relative abundances of
Bifidobacterium and Prevotella. Overall, these evidences suggest
a potential correlation between these factors and communicative
defects and stereotypic behavior associated to ASD that needs
to be further explored. The validation of biomarkers related
to the gut-brain axis would be of great value in the diagnosis,
the development, and the follow-up of potential therapies
for patients with ASD. This review will focus on the role of
the gut microbiota in the pathology of ASD via the gut-brain
axis and the related biomarkers that have been described
in the literature.

THE MICROBIOTA IN THE GUT

It has been reported that the human gut carries more bacterial
cells than human cells are in the entire body, and that the
metagenome of the gut microbiota encodes approximately eight
million genes, in contrast to the approximately 23,000 genes
encoded in the human genome (Ceppa et al., 2019). The
gut ecosystem comprises the bacteria, archaea, viruses, fungi,
yeast, and eukarya (Ceppa et al., 2019). Gut microbiota is
not uniformly distributed across the GI tract. The distribution
depends on the combination of factors such as pH, water activity
or gas composition that fluctuate through the gut and have
been reviewed previously (Lozupone et al., 2012; Donaldson
et al., 2016; Garcia-Gutierrez et al., 2018). The gut microbiota
composition also varies over life span. At the moment, there is
some controversy on how sterile the placenta is and whether the
meconium of healthy new-borns contain traces of microbiota
(DiGiulio et al., 2008; Jiménez et al., 2008; Moles et al., 2013;
Aagaard et al., 2014; Rodríguez et al., 2015; de Goffau et al., 2019).
However, the process of a succession of bacterial colonization
events in the gut begins at birth, via the microbiome of the
maternal vagina during the delivery (or the skin in the case of
a C-section), and introduction of new species in the human gut
through feeding (human milk first and solid food after weaning),
after the delivery (Dominguez-Bello et al., 2010; Fernandez
et al., 2013; Bokulich et al., 2016; Yassour et al., 2016). This
changing composition stabilizes after the third year of life and
it is maintained during the adult life. There is evidence of
gut microbiota changes during senescence and these changes
might be related to the conditions developed over this period,
such as cognitive impairment or elderly malnutrition (Nagpal
et al., 2018; Xu C. et al., 2019). As a general feature, gut
microbiota is usually resilient and recovers after acute changes,
like consumption of antibiotics. However, structural composition
of the gut microbiota is determined by sustained factors like
lifestyle or diet (Conlon and Bird, 2015; Singh et al., 2017;
Ceppa et al., 2019).

There are five major bacterial phyla in the gut, Bacteroidetes,
Firmicutes, Actinobacteria, Proteobacteria, and Verrucomicrobia
(Donaldson et al., 2016). The different conditions, such as
presence of bile acids, oxygen, or nutrient availability, across
the GI tract result in different distribution of these groups.
Thus, the small intestine is colonized by representatives of
groups of facultative anaerobes of Firmicutes (lactobacilli) and
Proteobacteria (enterobacteria), while the colon is colonized
mainly by fermentative organisms from Bacteroidaceae,
Prevotellaceae, and Rikenellaceae families (Bacteroidetes) and
Lachnospiraceae and Ruminococcaceae families (Firmicutes)
(Donaldson et al., 2016). The characterization of the gut
microbiota has been mainly conducted by analyzing fecal
samples, however, this might provide a false image of the
proportion and diversity of the gut microbiota composition
(Rodríguez et al., 2015). Regardless of the potential artifact of
the compositional information, functionality is the key factor for
a balanced microbiota. Despite that it is not possible to define
a healthy gut microbiota in terms of taxonomical composition,
it has been suggested that metabolic functionality of pathways
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FIGURE 1 | Microbiological, metabolomic, immunological, genetic factors, and neurotransmitters reported in literature as altered in ASD patients.

remains redundant in the gut microbiome, and it is the source
of a balanced equilibrium and resilience after acute perturbances
(Lozupone et al., 2012). The identification of biomarkers as
gene functions associated to a balanced gut health and specific
pathologies will favor and improve the development of efficient
microbiota-associated treatments in the future.

THE MICROBIOTA-GUT-BRAIN AXIS

The gut–brain axis is considered a bidirectional pathway for the
communication between the gut and the brain. However, this
concept can be expanded to include also the microbiota as a key
element in this triangle (Cryan et al., 2019). The importance of the
microbiota in this relationship has been established via different

routes. Studies conducted in germ-free animals have provided
evidence that the brain was affected when the gut microbiota
was not present (Diaz Heijtz et al., 2011; Cryan et al., 2019).
Other studies have shown that alterations in behavior in animals
were induced by providing specific strains of bacteria, and those
observations were sustained in human studies afterwards, e.g.,
Bifidobacterium longum strains 1714 and NCC3001 (Allen et al.,
2016; Pinto-Sanchez et al., 2017). Exposition to infections showed
alteration in gut-brain symptoms, and immune activation, and
the use of antibiotics affected the central nervous system
(CNS) and the enteric nervous system (ENS). In the reverse
situation, hepatic encephalopathy has been successfully treated
with microbiota-targeting antibiotics (Collins, 2016). Extensive
work with mice models has shown that there are several processes
in the nervous system that are linked to the regulatory effect
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of the gut microbiota, including neurogenesis in hippocampus,
the amygdala, myelination, the length, and spine density, the
synaptic connections, the microglia and the permeability of
the blood-brain-barrier (BBB) (Cryan et al., 2019). Another
process where microbiota is involved is in the synaptic and
neuronal plasticity. Studies with germ-free mice indicated low
levels of expression of brain-derived neurotrophic factor (BDNF)
in the cortex and hippocampus. BDNF is associated with brain
plasticity and has a regulatory function on neural growth
(Leung and Thuret, 2015). BDNF is involved in many learning
and behavioral processes, especially the ones associated with
hippocampal learning and working memory (Gareau et al., 2011).
The receptors for N-methyl-D-aspartate (NMDAR) are also
closely involved in the synaptic plasticity and cognitive function
and the production of NMDAR is connected to the levels of
BDNF (Maqsood and Stone, 2016). Low levels of BDNF in germ-
free mice successively lowers the NMDAR production, which
also affects γ-aminobutyric acid (GABA) inhibitory interneurons
and ultimately this translates into cognitive deficits (Maqsood
and Stone, 2016). Gut microbiota exerts its action over BDNF
by alterations in neurotransmitter and modulatory pathways,
such as the kynurenine, involved in tryptophan metabolism and
by the action of the short chain fatty acids (SCFAs) (Cryan
et al., 2019). Studies in mice have shown that depleted BDNF
levels could be recovered by the direct administration of a
strain of B. longum subsp. infantis (Bercik et al., 2012) and
other probiotics, prebiotics, and antimicrobials that increase
the proportion of lactobacilli, Firmicutes, and Actinobacteria
and decrease the Proteobacteria and Bacteroidetes levels in the
gut, suggesting potential interventions to target key regulatory
elements in the CNS (Maqsood and Stone, 2016).

The microbiota in the gut and the brain can communicate
through a variety of routes that involve neuroendocrine,
neuroimmune, and autonomic nervous systems pathways
(Grenham et al., 2011; Mayer, 2011). The immune system is
particularly important (Carlessi et al., 2019) where cytokines
components of the immune system communicate directly with
the brain via the vagal nerve inducing changes in the BBB (Quan,
2008). It also affects the hypothalamic pituitary adrenal (HPA)
axis, that centralizes the stress response system, stimulated by
physical or psychological situations (Scriven et al., 2018). HPA
axis alterations have been reported in post-traumatic stress or
depression. A number of bacterial strains (e.g., Lactobacillus
farmicinis) can modify such changes via impacting the gut
permeability or balancing levels of adrenocorticotropic hormone
(ACTH), corticosterone and BDNF (Bifidobacterium infantis)
(Desbonnet et al., 2008; Ait-Belgnaoui et al., 2012). The vagus
nerve is responsible for many anti-inflammatory effects through
the contact with the HPA axis and other pathways, such as
the cholinergic anti-inflammatory and the splenic sympathetic
anti-inflammatory (Forsythe et al., 2014). The vagus nerve
interacts with bacteria via SCFAs that cross the gut wall, and it
can even differentiate between pathogenic and non-pathogenic
bacteria (Bonaz et al., 2018). The function of many probiotics
is also determined by their interactions with the vagus nerve.
Bacteria can also produce and secrete neurotransmitters. Some
representatives of the genera Lactobacillus and Bifidobacterium

can produce GABA, while representatives of Escherichia, Bacillus,
and Saccharomyces can produce noradrenaline (Barrett et al.,
2012). Serotonin (5-hydroxytryptamine, 5-HT) is a product
of some species of Candida, Streptococcus, Escherichia, and
Enterococcus and it is mediated by tryptophan (Scriven et al.,
2018). Other neurotransmitters produced by bacteria are
dopamine (Bacillus) and acetylcholine (Lactobacillus) (Dinan
et al., 2015). Gut microbiota is the key element that controls
tryptophan catabolism via the kynurenine pathway, the primary
pathway for tryptophan catabolism (Ceppa et al., 2019). Changes
in the serotonergic system have been associated with depression
and IBS (Owens and Nemeroff, 1994). Gut microbiota also
produce metabolites as a result of the fermentative process
during the food digestion in the gut. Metabolites are the result
of the breakdown of carbohydrates, polyphenols, lipids, and
proteins, together with gasses (carbon dioxide, hydrogen, and
methane) and the production of energy. The diet composition
will result in different types of SCFA that communicate with
the brain through the vagus nerve, producing different effects
on the nervous system (Silva et al., 2020). Butyric acid has
been associated with satiety, and high levels of propionic
acid (PAA) have been linked with ASD (Shultz and MacFabe,
2014; Abdelli et al., 2019). The role of PAA is particularly
interesting after the observations that ASD behavioral effects
in children worsen after the consumption of high levels of
PPA (Meeking et al., 2020). Moreover, supplementation with
PPA in animal models led to behavioral effects similar to
ASD while metabolic impairment of glutathione, carnitine, and
fatty acids (FA) has been observed in the serum of ASD
patients receiving PPA (Frye et al., 2013). PPA can accumulate
in the cells and alter neuronal communication by its impact
on neurotransmitter release, gap junctions and intracellular
calcium release, among other effects that will be discussed
later. Overall, these studies also suggest that dietary components
can play a major role in the selection of bacteria and the
production of metabolites, that ultimately will affect the gut-
brain axis.

Despite that many studies have established these pivotal
connections between the gut and the brain, translational human
studies are particularly needed to understand the mechanisms
underlying the microbiota-gut-brain axis. This will be key to
design microbial-based interventions and therapeutic strategies
to target neuropsychiatric disorders.

POTENTIAL RELATIONSHIPS BETWEEN
THE MICROBIOTA AND ASD

There are a variety of factors that seem to connect gut microbiota
with ASD symptoms. Early life events, such as delivery mode,
have a huge impact on the composition of the microbial
communities. Infants delivered by C-section showed a higher
probability of developing ASD in comparison to the children
delivered vaginally (odds ratio of 1.23) (Curran et al., 2015).
Other prenatal factors, such as gestational diabetes or maternal
obesity during pregnancy, can modify the gut microbiota
(Connolly et al., 2016). In a mice model, when mothers where fed
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a high-fat diet, it induced dysbiosis and autism-like phenotypes
(Buffington et al., 2016). Additionally, in children with diagnosed
ASD an increased use of antibiotics was reported in comparison
with controls (Atladottir et al., 2012). An explanation might be
the effect of antibiotics on the gut microbiota (Bokulich et al.,
2016). The effect of antibiotics on the gut microbiota has been
extensively studied in recent times. Antibiotics not only target
pathogens, they also affect commensal bacteria that contribute
to the gut homeostasis (Mu and Zhu, 2019; Sun et al., 2019).
Sometimes, the impairment produced by the use of antibiotics,
depending on factors such as the type of antibiotic, length of
treatment or age of the host, can be overcome and the balanced
restored in the gut microbiome communities (Langdon et al.,
2016). However, in other cases, the use of antibiotics leads to
the loss of key species in the microbiome, producing lifelong
phenotype alterations, such as obesity (Wang et al., 2017). The
effects of antibiotics on the gut microbiota of children can be
more detrimental. Thus, the composition of the microbiota of
children of less than 3 years who were treated with antibiotics was
less diverse (Yassour et al., 2016). Even the antibiotics used during
pregnancy seem to be correlated with a higher risk factor for the
development of ASD (Atladottir et al., 2010). Another important
factor is the early feeding pattern. Infants fed with formula milk
showed higher levels of Clostridium difficile in comparison with
infants who were breast fed (Azad et al., 2013). Additionally,
breastfeeding over 6 months has been associated with a lower risk
of ASD development (Schultz et al., 2006) and ASD-related GI
symptoms (Penn et al., 2016).

GI symptoms are a comorbidity reported in 9–84% of
ASD patients (Wasilewska and Klukowski, 2015). These include
constipation (20%) and diarrhea (19%), which is more frequent in
children with ASD than in their unaffected brothers or sisters (42
vs. 23%, respectively) (Wang et al., 2011). The evidence linking
directly or indirectly the gut microbiota with ASD symptoms
shows that this might happen partially by its influence on the
host metabolism and the immune system (de Angelis et al., 2015;
Mead and Ashwood, 2015).

The “leaky gut” or increased permeability of the intestinal
epithelium, is one of the conditions reported in ASD patients
(Quigley, 2016), where 36.7% of ASD patients and their relatives
(21.2%) showed higher percentage of abnormal intestinal
permeability in comparison to the control group (4.8%) (de
Magistris et al., 2010). As a result of increased permeability, toxins
and bacterial products can get into the bloodstream, ultimately
affecting brain function and impairing social behavioral scores
(Emanuele et al., 2010; Onore et al., 2012; Hsiao et al., 2013).
There are a few elements that are used to measure the integrity of
both the gut barrier and the BBB, like claudin (CLDN)-5, CLDN-
12, CLDN-3, and MMP-9, increased in the ASD-patients’ brain,
and the intestinal tight junction components (CLDN-1, OCLN,
TRIC), decreased in ASD patients (Fiorentino et al., 2016). The
lactulose: mannitol test is used to measure intestinal permeability,
and it is increased in ASD patients when compared with healthy
controls (de Magistris et al., 2010). On the other hand, bacterial
products such as acetate and propionate may enhance the
integrity of the BBB (Braniste et al., 2014). The leaky gut also
increases the antigenic load from the gastrointestinal tract. Thus,

lymphocytes and ASD-associated cytokines, like interleukin-1β

(IL-1β), IL-6, interferon-γ (IFN-γ), and tumor necrosis factor-
α (TNF-α), circulate and cross the BBB. IL-1β and TNF-α are
responsible for inducing immune responses in the brain by
binding to the brain endothelial cells (de Theije et al., 2011).

One of the common changes observed in ASD patients
and animal models relates to the composition of the gut
microbiota and their metabolic products (de Magistris et al.,
2010; Borre et al., 2014; Kushak et al., 2016). It was found
that the gut microbiota of children with ASD was less diverse
and exhibited lower levels of Bifidobacterium and Firmicutes
and higher levels of Bacteroidetes, Lactobacillus, Clostridium,
Desulfovibrio, Caloramator, and Sarcina, than that of children
without ASD (de Angelis et al., 2013). ASD children with GI
symptoms had lower abundances of Prevotella, Coprococcus,
and unclassified Veillonellaceae, than symptom-free neurotypical
children (Kang et al., 2013). A recent systematic review and
meta-analysis identified approximately 431 studies conducted
in ASD patients that involved analysis of the gut microbiota,
although many of these studies did not provide quantitative
data (Xu M. et al., 2019). The meta-analysis revealed significant
differences between gut bacterial groups. Thus, ASD patients
had a lower percentage of Akkermansia and Bacteroides when
compared to controls. Bacteroides are known for inducing anti-
inflammatory effects (Bolte, 1998). Another important group
traditionally associated with beneficial effects in the human gut
is Bifidobacterium, with significantly lower abundance in ASD
patients (Xu M. et al., 2019). On the other hand, the analysis of
five studies showed that the percentage of sequences of the genus
Faecalibacterium was significantly higher among ASD patients
(Finegold et al., 2010; de Angelis et al., 2013; Kang et al., 2013;
Inoue et al., 2016; Strati et al., 2017; Xu M. et al., 2019). Higher
relative abundance of lactobacilli (generally considered to be
beneficial bacteria) has been observed in children diagnosed with
ASD although it may reflect an effect of the diet (e.g., a high
consumption of yogurt and yogurt-like fermented milks). Several
studies highlighted the relevance of other bacterial groups, like
the Clostridium histolyticum group (Clostridium clusters II and
I), which were present in higher levels in fecal samples of
ASD children (Parracho et al., 2005). Clostridium is known for
producing neurotoxins that might have systemic effects (Parracho
et al., 2005). It was observed that reductions of this Clostridium
group brought significant improvements in children with ASD-
like symptoms (Sandler et al., 2000). Ruminococcus is another
genus associated with ASD symptoms and functional GI disorder
(Joossens et al., 2011; Xu M. et al., 2019).

Despite many different studies demonstrate alterations of
the gut microbiota in ASD patients, others have not described
this association. To illustrate this, a study comprising 59 ASD
individuals and 44 normal siblings found no significant difference
between them in relative abundances of total Bacteroidetes,
Sutterella or Prevotella (Son et al., 2015). Additionally, there is
a lack of studies that evaluate the role of gut mycobiome and
gut virome in ASD. Increasing evidence suggests that mycobiome
might be a key element in maintaining a gut-brain axis balanced
dynamics due to its close interaction with the gut bacteria
(Huseyin et al., 2017a,b). An increased abundance of Candida in
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the gut mycobiome composition of ASD patients was reported
for the first time recently (Strati et al., 2017; Enaud et al., 2018). It
was hypothesized that its interaction with other microbes, such as
lactobacilli, might have an effect on the immune system via pro-
inflammatory effectors and prevent the recovery of the balanced
gut microbiota (Enaud et al., 2018). In any case, the interactions
between bacteria and other members of the gut microbiota could
bring valuable information about their role in ASD condition.

GUT MICROBIOTA-MEDIATED
METABOLITES AS BIOMARKERS

Gut microbiota products include a variety of metabolites, such
as SCFAs, phenolic compounds and free amino acids (FAA), that
affect the behavior of ASD patients. It is believed that this effect is
mediated via the vagal pathways (Macfabe, 2012).

Short chain fatty acids include acetic acid (AA), PPA, butyrate,
isobutyric acid, valeric acid, and isovaleric acid, as products of
the fermentation of non-digestible carbohydrates by gut bacteria
(Al-Lahham et al., 2010). SCFAs have beneficial effects on the
human host, like improvement in glucose metabolism, energy
homeostasis, reductions in body weight and the risk of colon
cancer (Chambers et al., 2015). PPA is produced mainly by
Bacteroidetes, Clostridium, and Desulfovibrio and can cross the
BBB. As stated before, PPA can inhibit the Na+/K+ ATPase,
increase NMDA receptor sensitivity and alter mitochondrial and
fatty acid metabolism. It also can trigger immune activation and
changes in gene expression (Meeking et al., 2020). PPA has been
linked to the development of ASD-like behaviors (MacFabe et al.,
2007, 2011; Shultz et al., 2008; Ossenkopp et al., 2012). In a mice
model, the administration of high doses of PPA induced some
autistic-like behaviors (Thomas et al., 2012). In a rat model, the
intraventricular administration of PPA induced hyperactivity and
repetitive behaviors in a similar way to the behavioral changes
in ASD patients (MacFabe et al., 2007). Additionally PPA led to
impaired social behavior in rats, probably due to the alteration
of dopamine and serotonin levels (Mitsui et al., 2005). Butyrate
has shown anti-inflammatory effects and ability to modulate the
synthesis of dopamine, norepinephrine, and epinephrine (Gualdi
et al., 2008; Cleophas et al., 2016).

Free amino acids are derived from the hydrolysis of the
proteins and peptides and their fecal levels were higher in
ASD children with symptoms in comparison with healthy
children and, more specifically, the levels of the amino acids
Asp, Ser, Glu, Gly, Ala, Val, Ile, Phe, His, Tpr, Lys, and
Pro (de Angelis et al., 2015). The levels of some of them,
particularly Glu, a neurotransmitter in the CNS, is altered in
other neuropsychiatric disorders (Sheldon and Robinson, 2007;
Shimmura et al., 2011). Tryptophan, the precursor of GABA was
increased in the urine of ASD patients and tryptophan fragments
were also found in the urine of patients with depression and
intellectual disability (Noto et al., 2014). Other compounds
found in higher levels in the urine of ASD children were 2-(4-
hydroxyphenyl) propionate and taurocholenate sulfate, while 3-
(3-hydroxyphenyl) propionate and 5-amino-valerate were found
in lower levels (Ming et al., 2012). A phenylalanine metabolite

[3-(3-hydroxyphenyl)-3-hydroxypropanoic acid], produced by
Clostridia spp., was increased in the urine of ASD patients and
was linked to ASD-like behaviors in mice models (Shaw, 2010).

BIOMARKERS FROM THE IMMUNE
SYSTEM PATHWAYS

The gut and the brain can also influence each other via
immunological pathways, and microbial diversity is key to
maintaining immune homeostasis, as it is linked to the
development of the gut-associated lymphoid tissue (GALT)
(Rodríguez et al., 2015; Ceppa et al., 2019). The GALT recognizes
pathogenic microorganisms and mediates a defense response.
GALT is known for producing IgA, modulating innate immune
responses when bacterial cells come in contact with dendrites
of the ENS (Ceppa et al., 2019). IgAs also recognizes and
binds to specific undesired microorganisms to facilitate their
removal in feces, while maintaining the commensal bacteria
(Lebeer et al., 2010). When there is impairment of the gut
microbiota balance, one of main effects is the development
of inflammatory processes. A correlation has been established
between inflammation and immune dysfunction in ASD patients
(Fattorusso et al., 2019). In fact, a comparison between
transcriptomics profiles on ileal and colonic tissues showed
similarities between ASD and inflammatory bowel disease (IBD)
patients (Fattorusso et al., 2019).

There are different inflammatory markers for ASD that have
been described in literature, but with limited consensus. For
example, IgA has been found to increase in ASD patients in
some studies, but not in others (Kushak et al., 2016). Levels of
pro-inflammatory cytokines, such as IL-1β, IL-6, IL-8, and IL-
12p40, have been shown to be increased in the plasma of ASD
patients (Ashwood et al., 2011). Also, TNF-α and transforming
growth factor (TGF-β) have been linked to the severity of the
ASD symptoms. Some probiotics, including strains belonging to
the species Lactobacillus sakei, Lactobacillus reuteri, Lactobacillus
paracasei, Lactobacillus plantarum, Lactobacillus acidophilus,
Lactobacillus salivarius and Bifidobacterium breve, modulate or
inhibit the production of pro-inflammatory cytokines IL-8, TNF-
α, and IFN-γ and increase the anti-inflammatory cytokine IL-10
(Thomas and Versalovic, 2010; Ganguli et al., 2013).

The toxins produced by the pathogenic members of the
microbiota increase gut permeability, developing impaired
intestinal barrier and allowing the translocation of the gut
bacteria through the intestinal wall into the mesenteric lymphoid
tissue, inducing the activation of the immune system (Dicksved
et al., 2012). This, in turn, releases the inflammatory cytokines
and activates the vagal system, regulating CNS activity (Yarandi
et al., 2016). The peripheral cytokines are able to induce a
behavior linked to depression via the vagal nerve (Konsman
et al., 2000). Also, other metabolic compounds produced by gut
microbiota, such as lipopolysaccharide (LPS), enter the blood
through the impaired gut wall and activate Toll-like receptors
in the ENS and CNS (Abreu, 2010). The immune response in
mediated by IgE in the gut, where it raises serotonin levels and
reduces 5-hydroxyindoleacetic acid (5-HIAA) ones in the gut,
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which has been linked to reduced social communication and
increased repetitive behavior (Li et al., 2017). Additionally, an
activation of the neuroendocrine system and downregulation of
the dopamine activity in the prefrontal cortex were also observed
in a mice model (de Theije et al., 2014). ASD patients also have
higher levels of zonulin in plasma, a protein that modulates gut
permeability, and its levels seem to be associated with the severity
of the ASD symptoms (Fattorusso et al., 2019).

The immune system is, therefore, closely linked to the effect of
microbiota on the gut epithelial permeability connecting the gut
and brain through neuroendocrine and neuroimmune pathways
that ultimately modulates ASD severity.

NEUROACTIVE COMPOUNDS AS
BIOMARKERS

Sensory hyper- and hypo-responsiveness are typically
characteristic of autistic patients even though they are not
part of the core definition of ASD. However, diet and probiotic
interventions might alleviate them. A variety of neuroactive
compounds that activate or inhibit central neurons are produced
by gut microbiota, such as serotonin, GABA, dopamine (DA)
and histamine (Eisenstein, 2016; Spiller and Major, 2016).

The first identified ASD biomarker was serotonin, proposed
as a link for the gut-brain axis (Mulder et al., 2004). Serotonin
is synthesized in the intestines and the brain, and is thought to
be involved in the development of the CNS and the ENS (Gaspar
et al., 2003). Children with ASD showed higher levels of serotonin
in blood that is believed to be caused by its gastrointestinal
hypersecretion (Israelyan and Margolis, 2019). It was believed
that genetic factors might be the cause of this overproduction.
It is believed that infections, gastrointestinal disorders, such
as gut microbiome dysbiosis, and immune system impairment
might also be involved in higher levels of serotonin in ASD
patients (Fattorusso et al., 2019). A higher prevalence of clostridia
in the gut mucosa of children with ASD and GI disorders
was associated with higher levels of cytokines, serotonin, and
tryptophan in biopsies (Luna et al., 2017). In addition, higher
levels of tryptophan (the precursor of serotonin) in the GI
tract of ASD children were associated with more severe ASD
behavioral symptoms, and with a lower availability and synthesis
of serotonin in the brain (Luna et al., 2017). Therefore, gut
microbiota dysbiosis affects the availability of tryptophan for the
host and worsens cognitive impairment. Interventions to regulate
gut dysbiosis might improve the ASD symptoms. It has been
observed that, in a mice model, the offspring’s brains from mice
exposed to valproic acid (VPA) showed ASD behavior alterations
in the microbiota and lower levels of serotonin (de Theije et al.,
2014). However, other strategies, such as addition of tryptophan
to the diet and administration of serotonin reuptake inhibitor
have not improved ASD behaviors (Muller et al., 2016).

Gamma-aminobutyric acid is the main inhibitory
neurotransmitter in the brain. It has been observed that an altered
GABA pattern is a key characteristic of the neurophysiology
of ASD. A recent study was performed on the effect of GABA
in the brain regions that are critical to sensory functions and

higher-order motor, including the primary visual cortex, the left
supplementary motor area (SMA), the left sensorimotor cortex,
and the left ventral premotor cortex (vPMC) (Umesawa et al.,
2020). Sensory processing is considered abnormal in autism
at input, cognitive and behavioral reactivity levels, potentially
involving processes of high cognitive processing (Thye et al.,
2018). If the inhibitory GABAergic transmission is impaired
in ASD patients, it may result in an abnormal balance of
excitation/inhibition in the brain, alteration of neural signaling,
processing of information and responding behavior (Foss-Feig
et al., 2017). The reduced levels of GABA in the higher-order
motor areas, integrating multiple sensory modalities, might
be behind the sensory hyper-responsiveness in ASD patients
(Umesawa et al., 2020). This correlates with a previous study
reporting that GABA levels in processing touch areas were
related to tactile hypersensitivity, frequently observed in in ASD
patients (Sapey-Triomphe et al., 2019). Moreover, when mice
where administered with Lactobacillus rhamnosus JB-1, there
was a stimulation of the transcription of GABA receptors in the
vagus nerve, which induced behavioral and psychological effects
that were reverted after vagotomy (Bravo et al., 2011).

Other studies in animal models have shown that impaired
learning and increased depression-like behaviors were observed
in a mice model, after the depletion of the gut microbiota by
antibiotics. This was correlated with alterations in the levels of
5-hydroxyindoleacetic acid, 5-HT, homovanillic acid, DA, and
noradrenaline, and in the mRNA levels of the corticotrophin-
releasing hormone receptor 1 and the glucocorticoid receptor
(Hoban et al., 2016). Another type of intervention involves using
epigenetic dysregulation as a pharmacological target. Thus, it
was shown that sodium butyrate, acting as a histone deacetylase
inhibitor, improved social and repetitive behavior in BTBRT
+tf/J (BTBR) mice. The administration of sodium butyrate had
an effect on the transcriptome of several neurotransmitters and
regulatory genes (Kratsman et al., 2016). Overall, these studies
reinforce the correlation between ASD symptoms, gut microbiota
and levels of neurotransmitters, and suggest that interventions
focused on neurotransmitters could have the potential to reduce
ASD behavioral symptoms.

USE OF THE GUT MICROBIOTA
MODULATION AS A POTENTIAL
THERAPY FOR ASD PATIENTS

At the moment, there are no effective therapies for treating
ASD patients. In fact, research on autism is currently focusing
on strategies for alleviating symptoms of ASD patients rather
that looking for a cure (Willingham, 2020). Modulation of
the gut microbiota has arisen as a potential therapy through
interventions using probiotics, prebiotics, fecal microbiota
transplantation (FMT) and diet.

Probiotic Interventions
The use of probiotics have displayed promising results in
prevention and treatment of conditions such as obesity,
colorectal cancer, IBD, IBS, or depression in human studies and
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animal models (Walsh et al., 2014; Sharma and Shukla, 2016;
Valsecchi et al., 2016). One of the investigated areas is the
prevention of inflammation by regulating the barrier function,
including the expression of tight junction proteins. Some studies
have shown alleviation of GI symptoms and immunomodulation
of cytokines using B. longum subsp. infantis 35624 (O’Mahony
et al., 2005; Whorwell et al., 2006), Lactobacillus helveticus
R0052 and Bifidobacterium longum R0175 (Messaoudi et al.,
2011), Lactobacillus casei Shirota (Rao et al., 2009), L. plantarum
WCFS1 (Karczewski et al., 2010) or Lactobacillus rhamnosus GG
(Patel et al., 2012).

Bacteroides fragilis was used in a treatment that reduced ASD-
like behavior in a rodent model of ASD (Hsiao et al., 2013).
This bacterium reduced gut permeability and modulated the gut
microbiota composition, suggesting that the key factors for the
treatment of relieving ASD-like behaviors in patients should aim
to balance gut microbiota and enhance the gut barrier. Another
study used oral supplementation with a L. acidophilus strain
and reported reduced levels of D-arabinitol in the urine of ASD
children, improving the ability to follow directions (Kaluzna-
Czaplinska and Blaszczyk, 2012). In a case study that used VSL#3,
a mixture of 10 probiotic strains, it was reported to relieve and
improve GI symptoms and other characteristics of ASD (Grossi
et al., 2016). However, despite the overall positive outcome of
probiotics in the treatment of symptoms of ASD patients, large
randomized controlled studies are missing.

Prebiotic Interventions
Prebiotics are non-digestible compounds that are degraded
by the bacteria in the GI tract and enhance the growth
of endogenous beneficial bacteria, particularly lactobacilli and
bifidobacteria. Generally, bacterial fermentation of prebiotics
result in production of SCFAs that can be linked to their
beneficial effects (Davani-Davari et al., 2019). Some examples
of prebiotics are inulin, starch, pectin, galacto-oligosaccharides,
and fructo-oligosaccharides. Although the use of prebiotics is
well-established and health benefits are reported from their use,
studies conducted with prebiotics in ASD patients are very
few and the evidence provided is limited and non-conclusive
(Grimaldi et al., 2017; Fattorusso et al., 2019).

Fecal Microbiota Transplantation and
Microbiota Transfer Therapy
Fecal microbiota transplantations (FMT) and MTT are two
effective strategies for treating ASD symptoms. FMT is designed
to alter the entire microbiome by transferring fecal material
containing microbiota from a healthy donor to another person
with an impaired gut microbiota. It has proved to be very
successful in the treatment of recurrent C. difficile infections
(CDI) (Kellingray et al., 2018) and is being developed for IBD
and IBS treatments (Aroniadis and Brandt, 2013; Rossen et al.,
2015) and other microbiota associated disorders. Therefore, it
has attracted attention of researchers as potential treatment
for children with ASD and currently FMT clinical trials are
in progress. However, it requires careful development and
consideration since some side effects are reported, including
diarrhea, abdominal cramps, abdominal distress, and low fever

(Kelly et al., 2015). Also, we cannot be certain about the long-
term effect of FMT. The MTT is similar to FMT but comprises
14 days of antibiotic treatment and a process of bowel cleansing.
There is also the administration of a standardized human gut
microbiota (SHGM) for 7–8 weeks with an initial high dose. This
technique has shown improvement of both GI and ASD-related
symptoms, and normalized the microbiota of ASD patients
(Kang et al., 2017).

Dietary Interventions
One of the characteristics of children with ASD is the narrow
diet, with a refusal of foods, based on its presentation or utensil
use, and a limited food repertoire (Schreck and Williams, 2006;
Bandini et al., 2010). The intake of fruits, vegetables, and proteins
is less than in children with typical development and ASD
children also ingest lower daily levels of potassium, copper, folate,
and calcium when compared with controls (Sharp et al., 2013;
Malhi et al., 2017). Diet is one of the most effective regulators
of the gut microbiota and metabolite levels (Wu et al., 2011),
and therefore, these behaviors are associated with lower levels
of Roseburia spp. and Eubacterium rectale, linked to a lower
intake of carbohydrates (Duncan et al., 2007; Wu et al., 2011;
Tremaroli and Backhed, 2012). ASD patients who were treated
with omega-3 FA for 12 weeks improved significantly their
social behavior (Ooi et al., 2015). Another double-blind, placebo-
controlled study showed that a treatment of levocarnitine for
3 months also improved ASD symptoms (Geier et al., 2011).

ANIMAL MODELS FOR THE STUDY OF
THE RELATIONSHIP BETWEEN GUT
MICROBIOTA AND ASD

Animal models can potentially play an important role in ASD
research (Patel et al., 2018). There are many genetic models
for the study of autistic disorders (Patel et al., 2018). However,
there are no animal models that exhibit all the symptoms of
human neurodevelopmental impairment. Experiments for the
study of ASD have been conducted in zebrafish, monkeys, and
songbirds, but mainly in rodents bred in laboratories, such as rats
or mice (Hrabovska and Salyha, 2016). Rodents are suitable for
the study of ASD because their behavior is well studied and there
are a number of well-established techniques to manipulate their
nervous system. Moreover, rats and mice are social animals and
their relationships for parental, sexual or territorial behaviors,
among others, are well-established. Initial ASD studies were
conducted in rats, as their social behavior is clearly displayed.
However, as mice are cheaper, their use for ASD study has been
increasing. As a general rule, social behavior is measured by a
series of tests such as the Morris water task, the three-chambered
social interaction, swimming tests or simply by evaluating the
explorative behaviors (Roullet and Crawley, 2011).

Despite the many ASD genetic models, the animal models
used for the study of the gut microbiota-ASD relationship
are more limited and are mostly inbred (e.g., BTBR) or
environmental models (e.g., VPA, MIA) (Patel et al., 2018).
Among the inbred mice model, BTBR mouse strain shows
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phenotypic traits of ASD symptoms and has been used
extensively (Kratsman et al., 2016). It shows a consistent
replication of ASD phenotype in different laboratories, and
has been used in numerous studies assessing the effects of
gut microbiota products and drugs on ASD-related outcomes
(Kratsman et al., 2016). Another mice strain used for ASD
studies is C57Bl/6J. However, this strain has been described
as less impulsive and more motivated in comparison to BTBR
(McTighe et al., 2013). Despite this, C57Bl/6J has been used
in studies that have highlighted the alleviating effect of a
probiotic strain on ASD behavior (Hsiao et al., 2013). During
administration of B. fragilis, pregnant females of C57Bl/6J were
also included as a maternal immune activation (MIA) mouse
model. MIA during gestation has been shown to increase
the risk of development of neurodevelopmental psychiatric
disorders (Conway and Brown, 2019; Kreitz et al., 2020). This
is of particular interest in ASD, as GI barrier impairment
can lead to inflammatory processes that ultimately might
affect the neurodevelopment of the offspring. Both BTBR
and C57Bl/6J have been used simultaneously in different
studies. One such study found that ketogenic diet modified
the gut microbiota of BTBR mice, rebalancing the ratio of
Firmicutes to Bacteroidetes and reduced Akkermansia levels
(Newell et al., 2016). They were also used in a recent study
that showed that such mice were able to develop autistic
behavior after FMT using fecal material from human ASD
(Sharon et al., 2019). BTBR mice were tested using four
behavioral tests: open field testing, marble burying, three
chamber sociability test, and ultrasonic vocalization, based on
interactions in male-female context. The study showed that
Lachnospiraceae, Bacteroides, and Parabacteroides were different
between the ASD group and the typical development group.
Moreover, the metabolite profiles were different between the two
groups, especially in the case of 5-aminovaleric acid (5AV), a
GABA receptor agonist produced by gut microbiota, that was
significantly depleted. Administration of 5AV and taurine to
BTBR mice restored excitability levels of pyramidal neurons,
highlighting that these models can be used to monitor electrical
alterations in the nervous system derived from the effect of
the gut microbiota.

Long-Evans rats as ASD model were utilized for studies on
PPA (Meeking et al., 2020). A study using Sprague Dawley rats,
where VPA was delivered to pregnant rats to assess its effect
on the gut microbial richness and diversity of the offspring,
concluded that VPA induced microbiome traits for ASD and also
the behavioral changes (Liu et al., 2018). Overall, the development

of accurate models will be critical for the study of the gut
microbiota traits in ASD.

CONCLUDING REMARKS

The prevalence of ASD indicates that there is an urgent need
to find new more effective treatments. Most of the research
conducted so far has focused on alleviating ASD symptoms. The
evidence suggesting a link between ASD and the gut microbiota,
via the gut-brain axis, is now well-established. There are a
number of pathways that are used in the microbiota-gut-brain
axis connection. Understanding this connection opens the door
to treatments and interventions that will improve the quality
of life of patients and their families. It is likely that these
interventions might not improve ASD-like symptoms when there
are underlying genetic and environmental reasons, but they
might help if the symptoms are gut microbiota-associated. At the
moment, many clinical studies have shown that treatments for
regulation of the gut microbiota provide improvements in ASD
symptoms. However, biomarkers related to the gut microbiota
activity have not been identified until recently. There is a need
of more clinical and well-designed studies that include more
patients, to provide more robust evidence that supports the use
of probiotics, dietary and supplement treatments. In order to
improve our understanding and design better studies, it is pivotal
to identify robust gut microbiota-associated biomarkers.
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