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Abstract
Objective
Studies of outcome after traumatic brain injury (TBI) are hampered by the lack of robust injury
severity measures that can accommodate spatial-anatomical and mechanistic heterogeneity. In
this study we introduce a Mahalanobis distance measure (M) as an intrinsic injury severity
measure that combines in a single score the many ways a given injured brain’s connectivity can
vary from that of healthy controls. Our objective is to test the hypotheses thatM is superior to
univariate measures in (1) discriminating patients and controls and (2) correlating with cog-
nitive assessment.

Methods
Sixty-five participants (34 with mild TBI, 31 controls) underwent diffusion tensor MRI and
extensive neuropsychological testing. Structural connectivity was inferred for all participants for
22 major white matter connections. Twenty-two univariate measures (1 per connection) and 1
multivariate measure (M), capturing and summarizing all connectivity change in a single score,
were computed.

Results
Our multivariate measure (M) was able to better discriminate between patients and controls
(area under the curve 0.81) than any individual univariate measure. M significantly correlated
with cognitive outcome (Spearman ρ = 0.31; p < 0.05). No univariate measure showed sig-
nificant correlation after correction for multiple comparisons.

Conclusions
Heterogeneity in the severity and distribution of injuries after TBI has traditionally complicated
the understanding of outcomes after TBI. Our approach provides a single, continuous variable
that can fully capture individual heterogeneity. M’s ability to distinguish even mildly injured
patients from controls and its correlation with cognitive assessment suggest utility as an
imaging-based marker of intrinsic injury severity.
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Traumatic brain injury (TBI) is a major public health issue in
both developed and developing countries. Attempts to
identify superior treatment strategies through the use of
between-group randomized controlled trials have largely
failed as it is difficult to identify treatment effects against the
“noise” of an extremely heterogeneous condition.1 More
recently, researchers have adopted comparative effectiveness
research (CER) methodologies both in relation to intensive
care unit (ICU) and post-ICU treatments.2 Such methods
require the definition of severity-adjusted expectations of
outcome so that differences between observed and expected
severity-adjusted outcome can be related to treatment
received.

Robust methods for the objective quantification of TBI se-
verity against which to regress observed recovery are sur-
prisingly lacking. The limitations of clinical measures such as
the initial Glasgow Coma Scale score are well-recognized.3

There have been extensive efforts to quantify secondary is-
chemic insult due to raised intracranial and reduced cerebral
perfusion pressure but again these explain a small proportion
of the variance in late outcome, in part because many pa-
thologies other than the ischemic insults reflected in these
hemodynamic measures contribute to late outcome.4 In
particular, traumatic axonal injury (TAI), a major factor in
the neuropathology of TBI and an important determinant of
late outcome, does not arise from ischemic processes and is
poorly reflected in such data. Pragmatically, various time to
attainment of functional recovery milestone measures are
used as proxies of injury severity. Examples include the
duration of posttraumatic amnesia and time to follow
commands. However, the use of early rate of recovery
measures to predict subsequent recovery is unsatisfactorily
tautological.

Objective, intrinsic measures of TBI severity would be of
considerable value in TBI CER, and imaging-based
approaches have an obvious appeal. CT-based injury sever-
ity scales have been devised5 but these are (1) non-
quantitative and (2) less useful in mild to moderate injury,
which is by far the most common subtype. MRI has been
shown to be more sensitive to structural injury and fractional
anisotropy (FA) has been used frequently to quantify injury
that impairs white matter axonal integrity such as TAI. In this
study, we develop a continuous severity score reflecting the
extent to which an individual’s FA data are an overall outlier
from control population data, and test its association with
cognitive assessment.

Methods
Neuroimaging
The imaging data are reported in a previous study.6 Thirty-
four patients were scanned using a 3T MRI scanner within
a mean of 5.5 days of mild injury (range 1–14 days, SD 2.7
days). The scanning sequence included T1-weighted and
diffusion tensor protocols described previously.6 Thirty-one
controls matched for age, sex, and education level were also
imaged. All participants gave written informed consent and
the study was approved by the local ethics committee.

FA values were derived along major white matter tract bun-
dles using the following procedure. First, native space FA
values were derived using the DTIFit tool from FSL after eddy
correction using the eddy_correct tool. Second, native space
FA maps were warped to a standard space using the T1-
weighted MRI to improve the registration. This second step
was performed using DSI studio with constrained diffeo-
morphic registration. Third, using DSI studio, we overlaid 22
manually identified white matter association tract bundles7 to
derive a mean FA for each bundle in each participant. This was
performed by generating a connectometry database com-
prising all participants’ standard space FA maps, then select-
ing the 22 tracts of interest in the tractography step in DSI
studio. For each tract bundle, the mean FA was exported.8 We
restricted ourselves to association tract bundles because of
their hypothesized relation with cognitive function (see
Cognitive functioning section and references 9 and 10) and to
ensure the number of tracts analyzed is less than the number
of control participants. Age as a covariate was regressed out
using the fitlm method in MATLAB, and the residuals (FAr)
were used to compute univariable and multivariate distances.

Distance measure to capture
injury heterogeneity
TheMahalanobis distance is the multivariate generalization of
the well-known z score that incorporates covariance between
the variables. For further explanation, see the legend to figure
1. It is formally defined as follows:

M =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − μÞT ×C−1×ðs − μÞ

q

where s = [FAr
1, FA

r
2… FAr

22] is the vector of FA
r obser-

vations in each tract bundle in a single participant; μ is the
vector of mean FAr of each tract bundle in a healthy control
population; and C is the covariance matrix between tract
bundles across that control population.

Glossary
AUC = area under the receiver operator characteristic curve; CER = comparative effectiveness research; FA = fractional
anisotropy; ICU = intensive care unit; PCA = principal component analysis; TAI = traumatic axonal injury; TBI = traumatic
brain injury.
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Mindful of the large number of tract bundles (22) relative to
the number of controls (31) and patients (34), we used
conservative approximations of C in place of the conven-
tional Pearson correlation. Shrinkage estimators11 remove
potentially spurious correlations in small datasets. To ensure
robustness, we used a subset of 25 randomly selected con-
trols to compute the covariance and permuted this 1,000
times. We estimated the univariate and multivariate dis-
tances of each patient to each of the 1,000 control dis-
tributions and report the median values. We computed

distances of controls to the remaining controls using the
same permutation-based approach, with the exception that
the control being computed was held out from the con-
struction of C. As a univariate measure for comparison we
calculated the analogue of the |z score| using the same
permutation-based approach. These conservative estima-
tions of Z and M are in all other respects directly analogous
to those derived from standard Pearson correlation estima-
tion in larger samples. Conceptually, our approach is illus-
trated in figure 1.

Figure 1 Schematic illustration of the Mahalanobis distance concept

Readers will be familiar with the description of normally distributed continuous data (e.g., height) for an individual as a z score. The distance of that individual’s
height from the populationmean is expressed in SDunits. Note that this is a probability distance: a quantification of howunusual the individual is as amember of
the population. For normally distributed data, a z score of 2 corresponds to a 1-tailed probability of 2.2%of being at least that far from themean. Extending to the
2-dimensional case, considerapopulationheight andweightdataset.Height andweight arepositively correlatedandaheight-weight scatterplotwill resemble (A).
The probability distribution that for height alone was a Gaussian bell curve is now represented by contour lines. Individuals can now be outliers for various
combinations of height and weight, but the extent to which an individual is an outlier (the probability distance measure) can still be represented by a single
number reflecting the contour the individual is on. Different height-weight combinations can have the same probability distance. Because height and weight are
correlated, the contoursare ellipses rather than circles: separation from thepopulation centroid inadirectionperpendicular to the long axisof theellipses ismore
unusual thanseparationby the samedistancealong the long axis. For a3-dimensional dataset (height,weight, and shoe size), theprobability distribution contours
are now nested ellipsoids, but the probability distance measure is still a single number. In multidimensional space, this distance measure is known as the
Mahalanobis distance (M).21 Here we are usingM to capture the probability distance of an individual’s post traumatic brain injury (TBI) MRI fractional anisotropy
(FA) data from those of controls. Although M is unidimensional, it captures distance in multivariate space (here, the 22-dimensional FAr dataset). Despite
anatomical heterogeneity of injuries, we can identify equal levels of distance from the control dataset. (A) Schematic orange scatter points illustrate an example
covariance between FAr in 2 tracts in a simulated healthy population (each point represents a control participant). Concentric ellipses illustrate the density of the
scatter points, and are equidistance lines for theMahalanobis distance (M = 1, 2, 3). Blue and green points represent 2 individuals. In univariate analyses (plots B
and C), the green and blue participants both have FAr values within 2 SDs of the mean for both tracts. However, multivariate analysis that accounts for the
covariance between the FArs of tracts 1 and 2 (D) shows that the blue participant (M = 15.20) is much further away from the control distribution than the green
participant (M = 2.64). The blue individual’s combination of low FAr in tract 1 and high FAr in tract 2 is particularly unusual (compare an individual who is unusually
short given his weight). The increased distance is also visually apparent in (A), where the blue participant is further from the control distribution in the
2-dimensional space. Thus, one might hypothesize that the blue participant is a participant with TBI since she or he is far from the control distribution.
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Cognitive functioning
Patients and controls underwent a battery of standardized
neuropsychological tests sensitive to cognitive impairments
in attention, memory, executive functions, and semantic
knowledge within 14 days of scanning. We restricted our
analysis to the following tests: Speed of Information Pro-
cessing, Delis-Kaplan Executive Function System Color-
Word Interference Test, Category Fluency, and List
Learning.

Principal component analysis (PCA) was used to create
a combined score representing an overall degree of neuro-
cognitive function. Since PCA is unsuitable for highly skewed
data,12 a Box-Cox transformation was applied to cognitive
scores with z skewness and z kurtosis higher than 1.96.13 As
a summary cognitive score, the first principal component
(explaining 63% of the variance) was used as the dependent
variable in analyses.

Data availability
Data and code to reproduce the figures is avaliable at 10.5281/
zenodo.3593087.

Results
Univariate and multivariate distances to
discriminate between patients and controls
We investigated the ability of univariate Z distance to dis-
criminate patient and control groups for each of the 22 tract
bundles individually (shown in figure 2A). The right frontal
aslant tract had the best discriminatory ability with an area
under the receiver operator characteristic curve (AUC) of
0.72 (figure 2, B–D). However, considering all tracts and
their covariance using the multivariate M distance has a su-
perior discriminating ability, with an AUC of 0.81 (figure 2,
E and F).

Multivariate distance correlates with
functional performance in patients
Since neurocognitive functioning integrates information from
multiple brain areas, we hypothesized that multivariate M
distances would be positively correlated with poorer func-
tional performance in patients. Figure 3 shows the Spearman
correlation between the first component of the PCA-derived
summary neurocognitive function measure and the univariate

Figure 2 Multivariate M is superior to univariate Z in discriminating injured patients from controls

(A)Major tracts used in this study: colors correspond to the tracts identified in panel D. (B) Receiver operator characteristic (ROC) curve for thebest performing
univariate Zmeasure: that for the right frontal aslant tract. (C) Data underlying B and D. ROC area under the curve (AUC) values using univariate Z (effectively,
bootstrapped z) scores for each individual tract. (E) ROC-AUC curve for themultivariateMdistancemeasure. (F) Data underlying E. TBI = traumatic brain injury.
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Z andmultivariateM distances. ThemultivariateM distance is
significantly positively correlated with neurocognitive func-
tion (p < 0.05, ρ = 0.31). However, of all univariate distances,
only one has a higher positive correlation that is not significant
after correction for multiple comparisons (false discovery
rate-corrected p > 0.05) (p values associated with the M dis-
tance measure are not corrected for multiple comparisons as
only a single comparison is performed, unlike for the multiple
individual univariate measures).

Discussion
In this study, we demonstrate the feasibility of deriving a sin-
gle continuous intrinsic injury severity variable capturing the
distance of an individual’s white matter integrity (FA), con-
sidered in its entirety, from controls. The greater sensitivity to
deviation from control data comes from incorporation of
knowledge of the covariance structure of the control pop-
ulation connectivity dataset. We demonstrate the multivariate
M measure’s superiority over all univariate measures in dis-
criminating patients from controls and its association with

neurocognitive function after TBI, as measured by a consoli-
dated measure of neurocognitive function.

There are a number of technical statistical advantages to the
measure, including (1) multiple comparison correction is not
required as only 1 test is performed and (2) independence
from measurement noise assuming the latter is independent,
normally distributed, and noncovarying. As a continuous,
scalar variable, M is well-suited to use as an intrinsic severity
measure in TBI outcome studies and it avoids tautologous
measures of injury severity such as PTA that use an early time-
to-recovery milestone measure to predict rates of attainment
of later stages of clinical recovery. An important principle of
this approach is that it downplays the significance of the an-
atomical location of lesions: it is thus likely to be more ap-
plicable and useful in spatially diffuse injuries such as those
following TBI.14 Similarly, the approach could be applied in
other heterogeneous conditions such as multiple sclerosis.

Limitations of our study include the relatively small sample
size (the use of shrinkage estimators to derive conservative
estimates for C mitigates this here but would not be required

Figure 3 Only multivariate M distance is significantly correlated with cognitive performance

(A) Correlation between the univariate Zmeasure for each tract for each injured individual and the summary cognitive performance score (first component of
the principal component analysis of themultiple cognitive function tests: high scores imply poorer performance). No univariate correlation is significant after
correction for multiple comparisons. (B) Scatterplot shows the significant (p = 0.037) correlation between multivariate distance measure M and functional
performance in patients. Line of best fit uses bisquare regression robust to outliers. TBI = traumatic brain injury.
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in studies with larger participant numbers), the limited
number of tracts, and the timing of the imaging. As the scans
were done very soon after injury, there is some uncertainty
regarding the exact pathophysiology an increased FA-basedM
distance reflects. This may be a particular issue forM distances
derived from early diffusion-weighted imaging measures such
as FA, which may require consistent timing postinjury. FA
changes can be detected within hours after TBI and evolve
over months.15 Animal models suggest hyperacute FA
changes may reflect acute edema.16,17 Postacute diffusion
tensor imaging changes appear more stable and reflect
gliosis.18,19 However, the general M distance approach could
be applied to magnetic resonance modalities reflecting other
pathophysiology that may be more stable over time (such as
susceptibility-weighted imaging).18,20 To achieve use in
a clinical setting as a diagnostic tool, control cohorts would
likely be required to build C, similarly matched in de-
mographics to the patient, and ideally acquired on the same
scanner.

An obvious extension of this work would be to examine
longitudinal change in M, and movement through the high-
dimensional FA space, during recovery. We envisage this may
also permit the development of personalized of rehabilitation
strategies aimed at optimizing individual trajectories through
this high dimensional FA “recovery space.”
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