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The challenges of big data
biology
Abstract The availability of big data has the potential to transform many areas of the life sciences and

usher in new ways of doing research. Here, I argue that big data biology also raises fundamental

questions in the philosophy of science: for example, what is a good dataset, and how can reliable

knowledge be extracted from big data? Collaborations between biologists, data scientists and

philosophers of science will help us to answer these and other questions.

SABINA LEONELLI

T
he life sciences have a long history of

dealing with large quantities of data, and

recent advances in experimental capabili-

ties have vastly increased the amount of data

that needs to be stored and analysed. The

computational power available to researchers

has also improved over time, but the volume

and heterogeneity of the data regularly outstrip

the strategies and tools available for their collec-

tion and analysis. Moreover, the volume of the

data now available, especially in ’omics’ fields,

raises fundamental questions about the research

process, such as the role of theory, the impor-

tance of context, and the purpose of know-how

in data interpretation.

For example, there is widespread debate

around the extent to which a scientist needs to

be familiar with the protocols and instruments

used to generate the data, and the relevant biol-

ogy of the organisms at hand, in order to be

able to interpret data. The extent to which

algorithms can reliably identify causal links in

data also remains a matter of contention: discov-

ering that a specific gene pathway is frequently

associated with a particular phenotypic trait is

not the same as understanding why that is the

case and whether the pathway is causing the

trait.

There are many other questions that are of

interest to philosophers of science. Does a reli-

ance on big data change the very idea of biolog-

ical discovery and what counts as biological

knowledge? What role do theories play in data-

intensive research and how does big data biol-

ogy relate to hypothesis-driven, observational

and exploratory research? How does the auto-

mation of data analysis affect the reliability of

results? What is the difference between data

and noise, and what are data in the first place?

Biologists might think that these questions,

while interesting and important, are somewhat

removed from – and possibly irrelevant to – their

everyday work. In this article, I aim to counter

this perception by highlighting philosophical

insights that can help to confront some of the

key challenges related to the use of big data in

biology.

Big data biology meets biological
pluralism
Biology is notoriously fragmented in its meth-

ods, goals, instruments and conceptual frame-

works. Often, different groups – even within the
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Biological concepts – no matter how
loosely defined – are always
embedded in broader theoretical
perspectives on how nature works.
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same subfield – disagree over preferred termi-

nology, research organisms, and experimental

methods and protocols (Leonelli, 2012). As a

consequence, one term may be used to refer to

different processes, or different definitions may

apply to the same term. This profound fragmen-

tation, which philosophers call pluralism

(Kellert et al., 2006), is reflected within the

many technologies and domain-specific stand-

ards that are used to generate, store, share and

analyse data (O’Malley and Soyer, 2012). Find-

ing ways to tackle pluralism is a key challenge

for big data biology.

It is easy to dismiss these difficulties as purely

technical matters that can be overcome by, for

example, using interoperable databases and file

formats to integrate data from difference sour-

ces so that they can be used and re-used across

a variety of research contexts. However, there

are deeper conceptual and philosophical difficul-

ties. Databases need to be accessed through a

common ‘query’ system, and this raises the

question of which terminologies should be used

to classify the data and integrate them with

other data, and what are the implications of

such choices? The considerable labour involved

in devising credible retrieval systems for biologi-

cal databases speak to the difficulty of this task:

this difficulty is illustrated by the lively debates

over the definitions of terms such as ’pathogen’

and ’metabolism’ on the Gene Ontology data-

base (The Gene Ontology Consortium, 2019).

The implications for big data biology are sub-

stantive. Far from being ‘the end of theory’, the

computational mining of big data involves signif-

icant theoretical commitments. The choice and

definition of keywords used to classify and

retrieve data matters enormously to their subse-

quent interpretation. Linking diverse datasets

means making decisions about the concepts

through which nature is best represented and

investigated. In other words, the networks of

concepts associated with data in big data infra-

structures should be viewed as theories: ways of

seeing the biological world that guide scientific

reasoning and the direction of research, which

are often revised to take into account new dis-

coveries (Leonelli et al., 2011). The quest for

large-scale data integration makes it necessary

for all biological disciplines to identify such theo-

ries and debate their implications for the model-

ling and analysis of big data (Leonelli, 2016).

Philosophers have long discussed the theo-

retical significance of classification and naming

practices in biology (Dupré, 2001), often in col-

laboration with taxonomists, and occasionally

with molecular and developmental biologists.

For example, researchers have attributed multi-

ple meanings to the gene concept, which philos-

ophers have documented and articulated as part

of a broader investigation of the intellectual

foundations and implications of the ’molecular

bandwagon’ that has dominated the last 50

years of biological research (Griffiths and Stotz,

2013; Rheinberger and Müller-Wille, 2017).

These studies demonstrated that biological con-

cepts – no matter how loosely defined – are

always embedded in broader theoretical per-

spectives on how nature works

(Callebaut, 2012).

This is not to say that big data biology is fully

determined by pre-existing hypotheses. Rather,

it draws on current theories and hypotheses but

does not let them predetermine research out-

comes (Waters, 2007). It is also important to

note that, no matter which method is used to

generate them, observations and measurements

are always situated in a specific framework

(Bogen, 2013). Irrespective of how standardised

they are, the instruments used to generate those

data are built to satisfy specific research agen-

das (Rheinberger, 2011). This means that we

need to acknowledge that no data are ’raw’ in

the sense of being independent from human

interpretation. Moreover, data can be processed

differently. It is thus important to understand the

conceptual choices that shaped the production

and classification of data. Researchers using big

data need to recognise that the theoretical

structures that informed the production and

processing of the data will influence their future

use.

We need to acknowledge that no
data are ’raw’ in the sense of being
independent from human
interpretation.

Leonelli. eLife 2019;8:e47381. DOI: https://doi.org/10.7554/eLife.47381 2 of 5

Feature article Philosophy of Biology The challenges of big data biology

http://geneontology.org/
http://geneontology.org/
https://doi.org/10.7554/eLife.47381


One might ask if pluralism is an obstacle to

the integration of data from different sources

and to the extraction of reliable and accurate

knowledge from these data. Philosophers of sci-

ence have argued that pluralism may actually be

beneficial when attempting to extract knowl-

edge about the highly complex and variable pro-

cesses encountered in the life sciences

(Dupre, 1993; Mitchell, 2003). Fragmented

research traditions arise from centuries of fine-

tuning research tools in order to study a given

process or species in as much detail as possible.

While this makes it more challenging to general-

ise these tools and the resulting knowledge

(Levins, 1984; Wimsatt, 2007), it also ensures

that the data collected are robust and inferences

are accurate (Longino, 2013; Wylie, 2017). It is

crucial for big data biology to build on this leg-

acy by creating ways to work with data from

diverse sources without misinterpreting their

provenance or losing the insights they provide

into the complexity of life.

Assessing the quality of data
Biologists often have feelings of unease about

the quality of data and metadata found in online

databases, particularly when the relevant data-

bases are not curated by experts in the specific

field and/or organism. Many databases are not

peer reviewed or curated, and even when they

are, assessments of quality and reliability are

often specific to certain fields of research and

cannot easily be transferred to other research

fields or other kinds of studies in the same

research field (Floridi and Illari, 2014; Leo-

nelli, 2017). The potential for loss of data quality

grows the more databases become interopera-

ble, since extensive data linkage makes it possi-

ble for unreliable data sources to pollute the

overall reliability of online data collections.

This is another realm where pluralism seems

to be a problem for big data biology. Does a

lack of consensus on how to assess the quality of

data signal a distinctive weakness of how biol-

ogy can (and should) engage in big data

research? One way to answer is to challenge the

very understanding of the data on which this

question is grounded. Thinking of data as being

intrinsically good or bad – independent of con-

text and goals of inquiry – means thinking of

them as being static representations of nature

that are useful because they accurately and

objectively document a feature of the world at a

particular time and place. This view certainly

motivates the search for definitive, universal and

context-independent ways of assessing which

data are reliable and which are not. But it does

not take into account that data are often exten-

sively processed artefacts resulting from highly

planned interactions with the world; nor does it

do justice to the observation that biologists have

different views of what counts as reliable data,

or what counts as data in the first place (Borg-

man, 2015; Leonelli, 2016). Thus, what consti-

tutes as noise for one community and/or

research purpose can sometimes count as data

for another (McAllister, 2011; Loettgers, 2009;

Woodward, 2010).

Building on these insights, I have argued that

data are ’relational’: in other words, the objects

that best serve as data can change depending

on the standards, goals and methods used to

generate, process and interpret those objects as

evidence (Leonelli, 2016). This explains why

assessments of data quality always relate to a

specific investigation. It also accounts for the

reluctance of researchers to trust data sources

whose history is not clearly documented, and

the related drive to collect metadata about data

provenance.

Data scientists sometimes underestimate the

importance of linking databases to the physical

samples from which the data were originally col-

lected (such as specimens, tissues, and cell and

microbial cultures). It has been shown that

access to original samples enhances data repro-

ducibility and provides researchers with better

opportunities to replicate experiments and reuse

data (Dietrich et al., 2014). Access to original

samples also provides a concrete point of con-

tact between research traditions and

approaches, through which differences can be

identified and critically examined (Leonelli and

Ankeny, 2012).

Accepting a relational view of data means

moving away from generic approaches to data

curation towards context-sensitive approaches

that include fine-grained descriptors for the

data, even though this may slow down the pace

of research (Leonelli and Tempini, 2018). At the

same time, recognising the local and situated

nature of big data selection helps to identify

what conclusions can be drawn from data analy-

sis, and evaluate how to generalise particular

inferences. This is particularly useful when

assessing whether a given extrapolation can be

extended from one species to another (say, from

rats to humans).

There is no doubt that big data mining has a

powerful heuristic function: it is often the first

step in any biological inquiry, helping to define
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the direction and scope of research

(Nickles, 2018). Big data enable biologists to

spot patterns and trends more effectively, and

indeed, philosophers are starting to explore how

data mining can help to explore, develop and

verify mechanistic hypotheses (Pietsch, 2016;

Ratti, 2015; Canali, 2019). At the same time,

the relational view highlights how the interpreta-

tion and reliability of inferences from big data

depend on two crucial factors: first, regular con-

frontation with other research methods, models

and approaches (Elliott et al., 2016); and sec-

ond, thoughtful contextualisation of data with

respect to shifts in the perspective, goals and

methods of investigators (Shavit and Grie-

semer, 2009). Taking a relational view of data

means taking seriously the value- and theory-

laden history of data objects. It also promotes

efforts to document that history within data-

bases, so that future data users can assess the

quality of data for themselves and according to

their own standards. A case in point is a recent

collaboration between a taxonomist and a phi-

losopher on the value of ambiguity in the labels

used for data in biodiversity research

(Sterner and Franz, 2017).

Automated data analysis is an exciting pros-

pect for biological discovery. Far from making

human judgement unnecessary, the increasing

power of computational algorithms requires a

proportional increase in critical thinking. Collab-

oration between philosophers and biologists can

foster essential reflection on which parts of data

browsing and integration should be conducted

with the help of algorithms, and how results

should be interpreted. Collaboration between

philosophers and bioinformaticians (and other

types of data scientists) can promote the devel-

opment of data infrastructures that adequately

capture the provenance of data, and encourage

users to assess the quality and relevance

of data in relation to their research questions.
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