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We investigated sex as a potential modifier of influenza vac-
cine effectiveness (VE) between 2010–2011 and 2016–2017 
in Canada. Overall VE was 49% (95% confidence interval 
[CI], 43% to 55%) for females and 38% (95% CI, 28% to 46%) 
for males (absolute difference [AD], 11%; P = .03). Sex differ-
ences were greatest for influenza A(H3N2) (AD, 17%; P = .07) 
and B(Victoria) (AD, 20%; P =  .08) compared with A(H1N1)
pdm09 (AD, 10%; P = .19) or B(Yamagata) (AD, –3%; P = .68). 
They were also more pronounced in older adults ≥50  years 
(AD, 19%; P =  .03) compared with those <20 years (AD, 4%; 
P = .74) or 20–49 years (AD, –1%; P = .90) but with variation 
by subtype/lineage. More definitive investigations of VE by sex 
and age are warranted to elucidate these potential interactions.

Keywords. effect modification; gender; influenza vaccine; 
influenza virus; sex; vaccine effectiveness.
 

Sex is a potential confounder in the evaluation of influenza vac-
cine effectiveness (VE) due to its plausible association both with 
the likelihood of receiving influenza vaccine and with having an 

influenza exposure [1]. Females tend to have higher influenza 
vaccination coverage rates than males (at least among young 
adults in Canada and the United States [2, 3]), likely related to 
their greater propensity for seeking health care. Women also 
tend to have greater opportunities for exposure to influenza 
associated with their traditional gender roles as primary car-
egivers for children and the elderly or their greater propensity to 
work in health care or other occupations that may increase the 
likelihood of exposure [1]. Conversely, morbidity and mortality 
due to influenza are generally thought to be higher among males 
(the so-called “man flu” phenomenon [4]). This association may 
have a biological basis, with greater sex differences in influenza 
risk reported in the youngest and oldest age groups [5–9].

Multivariable VE analyses are typically adjusted for sex to 
account for this potential source of bias. Although there may 
be true biological differences in response to influenza vaccine 
between males and females, sex is rarely considered a potential 
effect modifier of influenza VE. Here we investigate the interac-
tion between sex and influenza vaccination for VE against med-
ically attended, laboratory-confirmed influenza illness across 
7 seasons (2010–2011 to 2016–2017) in Canada. We further 
explore whether sex differences in VE vary by influenza sub-
type/lineage, age, or season.

METHODS

The current analysis utilized historical databases of the Canadian 
Sentinel Practitioner Surveillance Network (SPSN) from 2010–
2011 to 2016–2017 according to methods previously described 
[10–16]. Briefly, respiratory specimens were collected from out-
patients 1 or more years old presenting to sentinel practitioners 
within 7 days of onset of influenza-like illness using a standard-
ized case definition. Specimens were tested for influenza viruses 
by real-time reverse transcription polymerase chain reaction at 
public health reference laboratories in each participating prov-
ince (Alberta, British Columbia, Ontario, and Quebec). Patients 
testing positive for influenza were considered cases; those testing 
negative for influenza were considered controls.

Patient data, including sex and vaccination status, were 
recorded on the laboratory requisition form by the ordering 
physician at the time of specimen collection before influenza 
diagnosis. Vaccination status was based on patient self-report 
but may have also been documented in the physician’s records. 
Patients were considered vaccinated if they received seasonal 
influenza vaccine ≥2 weeks before symptom onset; patients 
who received influenza vaccine <2 weeks before symptom onset 
were excluded. All patients or their parent/guardian provided 
verbal consent. Institutional review boards in each province 
provided approval for this study.
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Differences between male and female patients were compared 
by chi-square test for categorical variables or the nonparametric 
Wilcoxon rank-sum test for continuous variables. Odds ratios 
(ORs) for influenza test positivity (by influenza A  subtype or 
influenza B lineage) comparing vaccinated with unvaccinated 
patients were derived using logistic regression according to a 
test-negative study design for all seasons combined. Seasons for 
which there was minimal circulation of a given subtype/line-
age were excluded from the pooled analysis for that outcome. 
Covariates included in the interaction models were vaccination 
status, sex, age group, comorbidity, province, specimen collec-
tion interval (days from symptom onset to specimen collec-
tion), calendar time (based on week of specimen collection, 
modeled as a cubic B-spline function with 3 equal knots), sea-
son, and an interaction term for vaccine*sex. VE was derived as 
(1−OR)×100%, where OR = exp[βvac] for females (sex = 0) and 
OR = exp[βvac + βvac*sex] for males (sex = 1). To verify the 
results and ensure that our interaction models were adequately 
specified, we also conducted separate analyses in male and 
female strata; sex-stratified VE estimates generally differed by 
≤5% from the interaction models (data not shown). All analyses 
were performed in SAS, version 9.4 (SAS Inc., Cary, NC).

RESULTS

Females were over-represented among SPSN participants (60% 
vs 40%), both among influenza cases (58% vs 42%) and test-
negative controls (61% vs 39%; P  <  .01). The age distribution 
varied by sex, with greater over-representation of females among 

adults age 20–49 years (62% vs 38%) and older adults age ≥50 years 
(63% vs 37%) than children and adolescents younger than age 
20 years (51% vs 49%; P < .01). Overall, females were slightly less 
likely to test positive for influenza compared with males (40% 
vs 43%; P < .01), mostly driven by detection of A(H3N2) (17% 
vs 19%; P < .01), and less so by A(H1N1)pdm09 (10% vs 10%; 
P = .71), B(Yamagata) (6% vs 7%; P = .18), or B(Victoria) (4% vs 
5%; P = .04). Females also had higher vaccination coverage than 
males overall (29% vs 23%; P < .01) and among negative controls 
(34% vs 27%; P <  .01) but not among influenza cases (21% vs 
19%; P = .10) (Supplementary Tables 1 and 2).

In general, adjusted VE was higher among females than 
males, although this varied by influenza subtype/lineage, age 
group, and season. Overall for any influenza, adjusted VE was 
49% (95% confidence interval [CI],  43% to 55%) for females 
vs 38% (95% CI, 28% to 46%) for males (absolute difference 
[AD], 11%; P value for interaction term = .03) (Figure 1). The 
greatest absolute differences between females and males were 
for A(H3N2) and B(Victoria). For A(H3N2), adjusted VE in all 
seasons combined was 34% (95% CI, 22% to 44%) for females 
vs 17% (95% CI,  –1% to 32%) for males (AD,  17%; P  =  .07). 
Excluding the 2014–2015 season, for which overall VE against 
A(H3N2) was negligible [14], adjusted VE was 49% (95% 
CI, 37% to 58%) and 29% (95% CI, 9% to 44%) for females and 
males, respectively (AD, 20%; P = .03). For B(Victoria), adjusted 
VE was 65% (95% CI, 50% to 76%) and 45% (95% CI, 18% to 
63%) for females and males, respectively (AD, 20%; P =  .08). 
The same pattern was observed for A(H1N1)pdm09 but with 
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Figure 1. Vaccine effectiveness estimates by sex for influenza A subtype and influenza B lineage. P values indicate significance of vaccine*sex interaction. aCovariates 
included in the interaction model were vaccination status (no, yes), sex (female, male), age group (1–8, 9–19, 20–49, 50–64, ≥65 years), comorbidity (no, yes), province (AB, BC, 
ON, QC), collection interval (≤4, 5–7 days), calendar time (week of specimen collection based on cubic B-spline with 3 equal knots), season, and vaccine*sex. bA(H1N1)pdm09 
analysis excludes 2014–2015 and 2016–2017 due to low A(H1N1)pdm09 circulation those seasons. cA(H3N2) analysis excludes 2013–2014 due to low A(H3N2) circulation 
that season. Excluding both the 2013–2014 and 2014–2015 seasons, VE for A(H3N2) was 49% (95% CI, 37% to 58%) among females and 29% (95% CI, 9% to 44%) among 
males (AD, 20%; P = .03). dB(Yamagata) analysis excludes 2010–2011 due to low B(Yamagata) circulation that season. eB(Victoria) analysis excludes 2013–2014, 2014–2015, 
and 2016–2017 due to low B(Victoria) circulation those seasons. Abbreviations: AD, absolute difference (Δ female – male); CI, confidence interval; VE, vaccine effectiveness. 
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a smaller absolute difference in VE among females (63%; 95% 
CI, 53% to 70%) vs males (53%; 95% CI, 36% to 65%; AD, 10%; 
P  =  .19). No sex differences were seen for B(Yamagata), with 
a VE of 55% (95% CI, 41% to 65%) for females vs 58% (95% 
CI, 42% to 70%) for males (AD, –3%; P = .68). When restricted 
to vaccinated participants, the adjusted odds of influenza diag-
nosis was significantly higher among males than females overall 
(OR, 1.31; 95% CI, 1.12 to 1.54) and for A(H3N2) (OR, 1.45; 
95% CI, 1.17 to 1.81) and B(Victoria) (OR, 1.83; 95% CI, 1.13 to 
2.94; not adjusted for calendar time due to sample size limita-
tions), but not A(H1N1)pdm09 (OR, 1.29; 95% CI, 0.92 to 1.80) 
or B(Yamagata) (OR, 1.03; 95% CI, 0.71 to 1.50). Conversely, 
this same effect was not observed among unvaccinated partic-
ipants overall (OR, 1.06; 95% CI, 0.97 to 1.16) or for any sub-
type/lineage (data not shown).

In the overall age-stratified analysis, the greatest absolute 
differences in VE between females and males were observed 
in older adults ≥50 years (Figure 2). Among adults ≥50 years, 
the adjusted VE was 48% (95% CI,  38% to 57%) vs 29%  
(95% CI,  10% to 44%) in females and males, respectively 
(AD, 19%, P = .03), whereas the VE was 49% (95% CI, 31% to 
62%) vs 45% (95% CI, 24% to 59%; AD, 4%; P = .74) in those 
age <20  years and 47% (95% CI,  37% to 56%) vs 48% (95% 
CI, 33% to 60%; AD, –1%; P = .90) in those age 20–49 years, the 
latter age group comprising the majority of SPSN participants. 
The prevalence of comorbidities increased with age but did not 
significantly differ between females and males (20% vs 19%; P 
= .23), except in those age 50–64 years (27% vs 33%; P < .01). 
When an additional interaction term for comorbidity*sex 
was included in the fully adjusted VE model, including age 
adjustment, sex differences persisted: 48% (95% CI, 42% to 54%) 

in females vs 39% (95% CI, 29% to 48%) in males (AD, 9%; P 
= .08 for vaccine*sex and P = .21 for comorbidity*sex).

By subtype/lineage, larger absolute differences were seen 
among children and adolescents age <20  years for A(H1N1)
pdm09 and B(Victoria) and older adults age ≥50  years for 
A(H3N2), A(H1N1)pdm09, and B(Victoria) (Supplementary 
Table  3). Smaller or negative absolute differences were seen 
across all subtypes/lineages for adults age 20–49 years. The add-
ition of an interaction term for age*sex did not meaningfully 
change the pattern of higher VE in females (48%; 95% CI, 41% 
to 54%) vs males (40%; 95% CI, 30% to 49%) in the overall ana-
lysis (AD, 8%; P = .16 for vaccine*sex and P < .01 for age*sex). 
By subtype/lineage, the VE estimates were also similar when 
adjusted for the age*sex interaction, although the P value for 
the age*sex interaction term was only statistically significant for 
B(Yamagata) (Supplementary Table 4).

The finding of higher VE in females was generally consistent 
across seasons, although the opposite pattern of higher VE in 
males was observed in 2011–2012 for B(Victoria), 2012–2013 
for A(H3N2) and A(H1N1)pdm09, and in 2014–2015 and 
2015–2016 for B(Yamagata) (Supplementary Table 5). Few sea-
son-specific comparisons reached statistical significance, likely 
due to the smaller sample size.

DISCUSSION

Our analysis investigated sex as an effect modifier in the asso-
ciation between influenza vaccination and medically attended 
outpatient illness across 7 influenza seasons in Canada. Sex is 
often considered a potential confounder in the analysis of influ-
enza VE [1], although it is not consistently included in adjusted 
VE estimation and the association will likely vary by study 
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Figure 2. Vaccine effectiveness estimates by sex for patient age groups. P values indicate significance of vaccine*sex interaction. aCovariates included in the interaction 
model were vaccination status (no, yes), sex (female, male), comorbidity (no, yes), province (AB, BC, ON, QC), collection interval (≤4, 5–7 days), calendar time (week of 
specimen collection based on cubic B-spline with 3 equal knots), season, and vaccine*sex. Abbreviations: AD, absolute difference (Δ female – male); CI, confidence interval; 
VE, vaccine effectiveness.
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population and setting [17]. In our own SPSN VE analyses, sex 
was included as a covariate for some seasons where a bivariate 
association was seen for both vaccination status and influenza 
test positivity [14, 15] but was otherwise omitted.

Few studies have investigated the role of sex as an effect mod-
ifier for influenza-related outcomes. In a cohort study of com-
munity-dwelling elderly adults from 1990–2000, Nichol et  al. 
found evidence of an interaction between vaccination and sex 
for all-cause mortality, with lower effectiveness found in males 
(P  =  .03) [18]. Vila-Córcoles et  al. found a lower risk for all-
cause mortality in females compared with males across all age 
groups in community-dwelling elderly adults in Spain from 
2002–2005, but with the difference in mortality risk between 
females and males narrowing as age increased [19]. However, 
both of these studies were limited to a population of elderly 
adults age ≥65 years, nonspecific outcomes, and observational 
study designs; as such, they are likely not directly comparable to 
our findings and may suffer from other systematic biases.

In our own study using laboratory-confirmed outcomes and 
a test-negative design, we observed a pattern of higher VE in 
females, suggesting that females may respond better to influenza 
vaccine than their male counterparts. Our finding of increased 
odds of influenza among vaccinated but not unvaccinated male 
vs female participants for A(H3N2) and B(Victoria) reinforces 
our interpretation. A theoretical advantage of the test-negative 
design for influenza VE evaluation is that it minimizes biases 
associated with health care–seeking behavior as all participants 
presented to health care and met a standardized testing indica-
tion for influenza-like illness. Together, these findings suggest 
that biological sex differences in the response to vaccine, rather 
than gender differences in health care seeking or vaccination 
status reporting, likely explain the observed differences in influ-
enza VE between males and females.

Although few studies have investigated sex differences in 
vaccine protection, females have been shown to have stronger 
innate and adaptive immune responses, including more pro-
nounced antibody response to influenza vaccine, in association 
with higher rates of local and systemic adverse events follow-
ing immunization [20–24]. The biological mechanisms under-
pinning these sex differences are not well understood. Some 
have attributed these differences to sex steroids that alter the 
function of immune cells by binding to specific receptors and 
influencing cell signaling pathways [20, 21]. At certain con-
centrations, estrogens, particularly estradiol, can function in a 
pro-inflammatory role, whereas testosterone and progesterone 
are considered immunosuppressive [20, 21, 25]. Hormone-
mediating factors, such as pregnancy, can also modulate the 
immune response to influenza infection [1, 20, 21]. Although 
data on pregnancy were not available for this study, sex effects 
were not apparent among adults during their prime reproduc-
tive years, and pregnant women would have comprised only a 
small proportion of study participants. We observed the greatest 

absolute differences in VE among older adults (during or after 
the onset of menopause in females), and to a lesser extent in 
young children (before the onset of puberty) for certain sub-
types/lineages. As such, our age-related findings are consistent 
with the epidemiological studies cited above but may be con-
trary to expected patterns based on sex hormone mechanisms 
alone [20, 21]. Mutations or polymorphisms in genes on the X 
chromosome that encode immunological proteins can affect 
activation of cytokine receptors and regulatory processes [20, 
21]. Other sex- or gender-dependent factors should also be con-
sidered in the interaction between sex and influenza VE.

This study was limited by the available sample size des-
pite pooling across multiple seasons. Although results were 
generally consistent across outcomes and seasons, the overall 
effects were small and may be due to chance. In the combined 
all-season analysis, the interaction term for vaccine*sex was 
marginally significant at the α  < .10 level for A(H3N2) and 
B(Victoria) outcomes. The interaction terms for A(H1N1)
pdm09 and B(Yamagata) were not statistically significant, des-
pite higher VE in females for A(H1N1)pdm09. In our ana-
lysis, sex differences were greatest for influenza A(H3N2) and 
B(Victoria) in older age groups ≥50 years. Influenza A(H3N2) 
is associated with greater disease burden among elderly adults, 
whereas A(H1N1)pdm09 is notable for its impact in younger 
adults [26–27]. Both influenza B(Victoria) and B(Yamagata) 
disproportionately affect children, with B(Yamagata) exhibit-
ing a bimodal age distribution also affecting older adults [28]. 
Other factors, such as the higher prevalence of comorbidities 
in older adults, may also contribute to these findings, although 
VE analyses were adjusted for age and comorbidity. Ultimately, 
however, it remains possible that our observational study design 
did not adequately account for other potential biases, residual 
confounders, or interactions.

In conclusion, we observed a modest effect of sex on influ-
enza VE across most outcomes and seasons, with higher VE 
estimates generally seen among females. These sex effects were 
age dependent, with greater effects in older adults age ≥50 years 
compared with those age <20  years or 20–49  years, but with 
some variation by subtype/lineage. Overall, these effects likely 
represent a complex interplay between birth cohort (ie, immu-
nological prime-boost) effects, hormonal influences, and 
other contributing agent–host–environment factors [1, 15, 20, 
21]. The clinical implications are unclear, although some have 
argued for sex-based design of influenza vaccination strategies 
[21]. More definitive investigations of VE by sex and age are 
ultimately needed to elucidate these potential interactions.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 
online. Consisting of data provided by the authors to benefit the reader, 
the posted materials are not copyedited and are the sole responsibility of 
the authors, so questions or comments should be addressed to the corre-
sponding author.
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