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Dynamical systems, which are described by differential equations, can have an enhanced response because of 
their nonlinearity. As one example, the Duffing oscillator can exhibit multiple stable vibratory states for some 
external forcing frequencies. Although discrete systems that are described by ordinary differential equations 
have helped to build fundamental groundwork, further efforts are needed in order to tailor nonlinearity into 
distributed parameter, continuous systems, which are described by partial differential equations. To modify 
the nonlinear response of continuous systems, topology optimization can be used to change the shape of 
the mechanical system. While topology optimization is well-developed for linear systems, less work has been 
pursued to optimize the nonlinear vibratory response of continuous systems. In this paper, a genetic algorithm 
implementation of shape optimization for continuous systems is described. The method is very general, with 
flexible objective functions and very few assumptions; it is applicable to any continuous system. As a case 
study, a clamped-clamped beam is optimized to have a more nonlinear or less nonlinear vibratory response. This 
genetic algorithm implementation of shape optimization could provide a tool to improve the performance of 
many continuous structures, including MEMS sensors, actuators, and macroscale civil structures.
1. Introduction

Nonlinearity can enhance the response of dynamical systems, such 
as energy harvesting [1, 2] and synchronization [3]. Distributed pa-

rameter systems possess a rich set of dynamics, with nonlinearities 
that could be harnessed with topology optimization techniques. For 
instance, a network of coupled mechanical oscillators can work as an 
inherent distributed sensing and computing system [4]. At low energy 
levels, a clamped-clamped beam can have a linear behavior; at interme-

diate energy levels, the response has the same qualitative shape as the 
Duffing equation [5]; at high energy levels, apart from Duffing oscillator 
behavior, modal coupling can result in a more complicated frequency 
responses [6, 7]. Although a relatively simple system, a hinged-clamped 
beam can have four stable dynamic solutions and three unstable dy-

namic solutions at some frequencies [8]. Such rich dynamics could 
enable new noise-enhanced responses that could be utilized for sensors, 
actuators, and civil structures. However, distributed parameter systems 
are described by partial differential equations (PDEs), which makes it 

* Corresponding author.

E-mail address: edmonperkins@ncsu.edu (E. Perkins).

more complicated to control their dynamic response. In essence, simple, 
prototype systems are easy to tune, since the ordinary differential equa-

tions (ODEs) have a finite number of parameters to adjust. Although 
they possess a rich set of dynamics, distributed parameter systems are 
difficult to tune; a PDE-governed system has an infinite number of pa-

rameters to adjust.

Topology & shape optimization are important tools to unlock the 
potential of 3D printing [9]. Topology optimization is a mathematical 
process, in which an iterative method is used to find the optimal ge-

ometry of a structure [10]. Shape optimization is a subset of topology 
optimization, in which only the boundary of the object is modified; 
it is often used for static problems or linear vibration problems. They 
have classically been used to minimize the material of a given part, 
while maintaining the necessary strength. This is especially important 
for trusses [11, 12, 13, 14]. Some early work was pursued to take large 
displacements and nonlinearity into account using the Method of Mov-

ing Asymptotes (MMA), in order to optimize compliant mechanisms 
[15]. Equivalent static loads were used to optimize the shape of a non-
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linear structure by converting the problem to a linear static response 
optimization and performing classical topology optimization [16].

Most work on topology optimization uses the Solid Isotropic Mate-

rial with Penalisation (SIMP) method, which structures the problem as 
a gradient-based formulation [17], or an Evolutionary Structural Opti-

mization approach, which uses a non-gradient-based formulation [18]. 
An Evolutionary Structural Optimization approach has also been used 
with shape optimization [19]. In the usual formulations, these meth-

ods pose the problem as a finite element problem where each unit cell 
can be void or filled, and the optimization routine decides how to fill 
each individual cell. Some other interesting optimization approaches 
have also been proposed. For instance, a genetic algorithm is used to 
build grippers by using a “library” of compliant building blocks [20]. 
In another genetic algorithm optimization scheme, a skeleton of the 
structure defines the underlying connectivity of a structural continuum 
together with segments of material surrounding the skeleton [21]. Sim-

ilar multi-objective design methods have been used in optimization of 
several nonlinear geometric structures considering design constraints 
[22, 23, 24, 25]. These methods circumvent the costly issue of op-

timizing each individual cell in the finite element formulation. In a 
heuristic method called Proportional Topology Optimization, the design 
variables are assigned to finite elements proportionally to the value of 
stress in the stress-constrained problem and compliance in the minimum 
compliance problem [26]. A convolutional neural network [27] and a 
machine-learning approach [28] have been used to increase the speed of 
the optimization procedure. Instead of optimizing the material distribu-

tion of each cell of the entire FEM, the material distribution of a lattice 
structure can be used, which significantly reduces the computational 
cost of the optimization [29, 30]. This lattice structure is well-suited 
for 3D printing applications. For MEMS devices, shape optimization has 
been performed to enhance the performance of comb drives [31, 32], 
and topology optimization has been used to find the optimal topology of 
grippers [33] and resonators [34]. Topology optimization has been used 
to optimize the reliability of MEMS devices [35]. It should be noted that 
the Covariance Matrix Adaptation Evolution Strategy is an evolutionary 
optimization strategy that is similar to the genetic algorithm, and it has 
been applied to a MEMS resonator system [36]; although the optimiza-

tion problem is nonlinear, the nonlinearity of the system’s response was 
not considered. The genetic algorithm has also been applied to optimize 
the nonlinear vibratory response of a MEMS vibratory energy harvester, 
but the shape of the harvester was not considered in the optimization 
procedure [37].

For linear vibrations, the natural frequency of the system can be op-

timized using shape optimization [31] or topology optimization [29, 
30]. A binary level set framework was used for frequency optimization 
of drum and structure shape in [38, 39]. Through modification of a 
structure’s spatial material distribution, topology optimization presents 
a unique opportunity to overcome the barrier of tuning the nonlinear-

ity of distributed parameter systems to harness their rich dynamics. For 
strongly nonlinear systems, recent advances have allowed for applica-

tion of topology optimization [40, 41] and shape optimization [42, 43] 
to nonlinear vibratory systems. Importantly, incremental harmonic bal-

ance was used to formulate a topology optimization scheme, in order to 
modify quadratic and cubic nonlinearities of a clamped-clamped beam 
[41]. The nonlinear normal modes for a clamped-clamped beam and 
a coupled-mode resonator were calculated to modify the cubic non-

linearity and modal coupling, respectively [44]. This work has been 
experimentally validated with a MEMS implementation for shape opti-

mization [45]. These useful papers lay a basis to build further topology 
optimization implementations to tune nonlinearities in distributed pa-

rameter systems.

Gradient-based approaches, such as the ones mentioned above, are 
computationally efficient. However, these gradient-based approaches 
cannot readily be applied to general nonlinear systems. For this reason, 
this paper presents a genetic algorithm implementation for shape opti-

mization to tune the nonlinear stiffness of a continuous system. This is a 
2

general method that can be used to optimize any continuous system. In 
this parallelizable formulation, the nonlinear force-displacement curves 
of different beams are used to optimize the shape.

For the shape optimization presented in this manuscript, a unique 
genetic algorithm implementation is formulated to optimize the shape 
of a beam. In this formulation, relatively sparse control points are used 
with a piecewise cubic Hermite interpolating polynomial spline to cre-

ate one quarter of a beam. This spline was chosen because it avoids 
overshooting the control points, which would create an unduly wavy 
beam shape. Overshooting is a significant issue, since it could also cause 
some combinations of control points that are within the chosen bounds 
but produce a spline that is outside of these chosen bounds. This spline 
is constructed to have a slope of zero at the clamped end and at the mid-

point of the beam to preserve smoothness at the center. The crossover 
step in the genetic algorithm is formulated to preserve local relation-

ships between the control points, as these local relationships between 
adjacent points are likely important in creating a macroscale nonlin-

ear stiffness of the beam. The force-displacement curve is found using a 
Total Lagrangian geometrically exact nonlinear finite element scheme. 
In addition to this unique formulation that requires few control points 
and preserves local relationships between these control points, the ob-

jective functions used here are somewhat non-standard. The results are 
verified using time-marching with the finite element method in Sec-

tion 4. It is found that the non-standard objective functions did indeed 
produce more hysteresis in the case of the nonlinear objective function 
and less hysteresis in the case of the linear objective function.

As an example case, two clamped-clamped beams were optimized to 
have a more nonlinear and a more linear response as compared to its 
rectangular prism counterpart. The force-displacement curves and fre-

quency response curves are determined through finite element analysis 
of the beam shapes. Instead of optimizing the material distribution of 
each cell of the beams, a spline is used to describe the boundary of a 
clamped-clamped beam. Parametric control points were tuned with the 
genetic algorithm to optimize the shape of the spline. For thin struc-

tures, this prevents holes from forming inside the structure, which could 
be difficult to fabricate and could cause localized vibratory modes to 
form. It also decreases the parameter space that is being optimized.

2. Finite element formulation

The description of the body is performed using a Total Lagrangian 
geometrically exact nonlinear finite element scheme, with a consistent 
mass matrix. This means that there is no approximation to the kine-

matics of the strain. The resulting nonlinear equations are solved to 
equilibrium iteratively. The FEM formulation is implemented in MAT-

LAB, following the assembly procedures of Hughes [46], while nonlin-

ear stress and strain measures are built following Belytschko et al. [47].

The open-source meshing program, GMSH [48], is used to generate 
the nodal locations and element connectivity. In this formulation, all 
volume elements are isoparametric 27-node hexahedra. Fully quadratic 
elements are chosen to avoid any issues with locking due to bending. 
Standard Gauss-Legendre quadrature is used to consistently integrate 
the internal forces, stiffness matrix, and mass matrix.

The material law chosen is inspired by [49, 50], and this law can be 
viewed as a generalization of engineering stress-strain with invariance 
to rigid-body motion. The polar decomposition of the deformation gra-

dient, 𝐅 = 𝐑𝐔, is one method to build the pure stretch tensor, 𝐔 [51]. 
In structural mechanics, co-rotational methods are employed as a local 
frame to decompose rigid motion from deformation. The polar decom-

position provides this in a point-wise continuous fashion through each 
element. The benefit is an elastic law that is linear-with-respect-to-stretch

as opposed to other geometrically exact laws, such as the Saint Venant–

Kirchhoff model, that are not.

The Biot (or Jaumann) strain is defined in eq. (1) as:

𝐋 =𝐔− 𝐈. (1)
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The hyperelastic material law is based on Hooke’s Law for an isotropic 
material, except the strain is replaced with 𝐋, and the stress is the 
work-conjugate symmetric Biot stress 𝐆. This modified Hooke’s Law 
is defined as eq. (2), which is stated in terms of Young’s Modulus, 𝐸, 
and Poisson’s Ratio, 𝜈, as:

𝐆 = 𝐸

(1 + 𝜈)
𝐋+ 𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
tr(𝐋)𝐈. (2)

Relating it to the 2𝑛𝑑 Piola-Kirchhoff stress tensor, 𝐒, is needed, since 
the latter is used throughout the FEM solver. In general, the stresses can 
be related in the following eq. (3) [52]:

𝐆 = 1
2
(𝐔𝐒+ 𝐒𝐔) (3)

Since the material is isotropic, it can be simplified as in eq. (4), which 
gives the explicit relation:

𝐒 =𝐆𝐔−1 =𝐔−1𝐆. (4)

The 2𝑛𝑑 Piola-Kirchhoff stress tensor is then used in the formulation of 
Belytschko et al. [47] to build the internal forces, 𝐟int, of the system’s 
equations of motion, eq. (5):

𝐌�̈�(𝑡) +𝐃�̇�(𝑡) + 𝐟int(𝑡) = 𝐟ext(𝑡) (5)

where 𝐌 is the consistent mass matrix, 𝐃 is an optional damping matrix, 
and 𝐟ext(𝑡) is the vector of external loads and prescribed-displacement 
boundary conditions. The degrees of freedom, namely the displace-

ments of each node, are contained in 𝐪(𝑡). It should be noted that eq. (5)

is the spatially-discretized formulation of the beam, which is a simplifi-

cation of this system, as the beam is described by a partial differential 
equation.

The linearization of these equations, needed when using Newton-

Raphson schemes, can be involved. The non-typical part is how to 
compute the derivative of 𝐔 with respect to the degrees of freedom. 
Chen and Wheeler [53] provide a method for computing the deriva-

tive of 𝐔 with respect to 𝐅, which can then be used via a chain rule to 
compute the needed derivatives as shown in eq. (6):

𝜕𝐔
𝜕𝑞𝑘

= 𝜕𝐔
𝜕𝐅

∶ 𝜕𝐅
𝜕𝑞𝑘

=𝐑𝑇 𝜕𝐅
𝜕𝑞𝑘

− 1
det(𝐘)

𝐘
(
𝐑𝑇 𝜕𝐅

𝜕𝑞𝑘
− 𝜕𝐅𝑇

𝜕𝑞𝑘
𝐑
)
𝐘𝐔 (6)

where 𝐘 = tr(𝐔)𝐈 −𝐔, and the colon ∶ is a double contraction [51] be-

tween the rank-4 tensor, 𝜕𝐔
𝜕𝐅 , and the rank-2 tensor, 𝜕𝐅

𝜕𝑞𝑘
.

Classical load-stepping [47] is done on the static problem (�̈�(𝑡) → 𝟎, 
�̇�(𝑡) → 𝟎). It begins with the unloaded system at rest, and then a small 
fraction of the desired load is placed on the body. Equilibrium of the 
equations of motion is achieved via a Newton-Raphson method to a 
desired tolerance. This static load-stepping is used in the optimization 
step as a means to approximate the shape of the desired standing wave 
in a computationally inexpensive manner.

The dynamics of the optimized configurations are studied by pro-

ducing frequency-amplitude plots of the forced response. These are 
generated via a simple frequency sweep, in a manner that mimics a 
physical experiment and determines the stable periodic motions. The 
Generalized-𝛼 method [54] was chosen as the time-marching scheme. 
This method was extended to nonlinear systems [55, 56], and its prop-

erties are well-studied [57]. It is a single-parameter method, which is 
a descendent of the classical Newmark method used throughout com-

mercial FEM applications. The goal of this class of methods is to filter 
out high frequency oscillations and preserve low frequency information. 
The high frequency attenuation permits the step-size to be somewhat 
independent of the mesh size, otherwise Nyquist stability becomes dom-

inant as meshes are refined. This implicit method permits an accurate 
simulation of the principal dynamics while taking time-steps that are 
quite large compared to the higher natural frequencies of the mesh.
3

Fig. 1. Static load stepping. Load-stepping is used to find the force-

displacement curves, where 𝑓𝑠𝑡𝑎𝑡𝑖𝑐 is stepped through increments of 10−4 units, 
and this force is applied to all nodes at the geometric center of the beam. The 
beam’s force-displacement relationship shown here is for a 1:10:100 rectangu-

lar prismatic beam. The 𝑥-axis is in the direction of the width of the beam, 
the 𝑦-axis is in the direction of the length of the beam, and the 𝑧-axis is in the 
direction of the thickness of the beam. The 𝑥𝑐 -axis is at the center of the beam.

3. Genetic algorithm implementation of topology optimization

The genetic algorithm implementation described in this section do 
not require a gradient to be computed from the partial differential equa-

tion. The beams involved in this optimization are completely described 
by a set of control points, whose limits are described in Eq (12). The 
FEM formulation provided in the previous section is used to numerically 
obtain the linear and nonlinear stiffness terms for each beam described 
by a specific set of control points. These stiffness terms are then used 
to evaluate an objective function, which is minimized during the opti-

mization routine.

The beams studied here have a ratio of 1:10:100 for the thick-

ness, width, and length, respectively. The finite element formulation 
described in Section 2 was used for both the load-stepping simulations 
in this section and the time history simulations to find the hysteresis 
plots in the next section. The configuration of the load-stepping scheme 
is described in Fig. 1.

The simulations used in the genetic algorithm were run in parallel 
using the Henry2 high performance computing cluster at North Carolina 
State University. The Henry2 cluster is a heterogeneous cluster that in-

cludes state-of-the-art equipment, such as the newest CPUs, GPUs, and 
networking architecture while maintaining older resources as long as 
feasible. The cluster is an Intel Xeon based Linux cluster, and compute 
nodes include a mix of several generations of Intel Xeon processors pri-

marily in dual-socket blade servers. The FEM simulation of 1000 beams 
takes about 4 hours of wall time with this parallel architecture using 
this HPC.

3.1. Stiffness coefficients and objective functions

A polynomial containing 1𝑠𝑡 and 3𝑟𝑑 order terms was used to curve fit 
the relationship between the applied force and the beam’s displacement 
as a Duffing spring [58]:

𝑓 (𝑥𝑐) = 𝑘1𝑥
1
𝑐 + 𝑘3𝑥

3
𝑐 , (7)

where 𝑥𝑐 is the displacement of the center of the beam, 𝑘1 and 𝑘3 are 
the linear and nonlinear spring stiffness terms of the beam, respectively. 
This was chosen since the vibratory response of a clamped-clamped 
beam has the same qualitative shape as the Duffing equation [5]. The 
force and displacement data from the load-stepping simulation is fitted 
in Eq (7) to find the spring stiffness of the beam. Only 1𝑠𝑡 and 3𝑟𝑑 terms 
were used, because 2𝑛𝑑 , 4𝑡ℎ, and 5𝑡ℎ order terms were found to be ap-

proximately zero for the rectangular prism beam. If these other terms 
are included in the curve fit in the next section, they would converge to 
negative values, which effectively would over-estimate the cubic non-

linearity. For other systems with more complex nonlinearities, a similar 
reduced-order modeling procedure could be used to keep only terms 
that are significant in the curve fit of the original system. An example 
curve fitting is depicted in Fig. 2 for a rectangular prism beam. The best 
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Fig. 2. Force-displacement relationship of rectangular prism beam. A poly-

nomial was used to curve fit the relationship between the applied force and the 
beam’s spring force, 𝑓 (𝑥𝑐 ) = �̄�1𝑥𝑐 + �̄�3𝑥

3
𝑐
, where 𝑥𝑐 is the displacement of the 

center of the beam. It was found that �̄�1 = 0.0030 and �̄�3 = 0.0018 for the rectan-

gular prism beam. In the plot, the Xs correspond to numerical results, and the 
solid curve corresponds to the curve fit.

Fig. 3. Control points. Seven movable points, labeled 𝑎𝑗 -𝑔𝑗 , are chosen from a 
uniform distribution. A pchip spline is then used to smoothly connect the points.

fit stiffness values are found to be 𝑘1 = 0.0030 and 𝑘3 = 0.0018 for the 
rectangular prism beam, which are plotted as dashed lines in Fig. 5. 
It should be noted that a clamped-clamped rectangular prism beam is 
sometimes approximated as a Duffing oscillator, as the nonlinear be-

havior is dominant in the force-displacement curve as can be seen in 
Fig. 2.

Two different single objective functions were explored, 𝑂𝑙𝑖𝑛𝑒𝑎𝑟 and 
𝑂𝐷𝑢𝑓𝑓𝑖𝑛𝑔 :

𝑂𝑙𝑖𝑛𝑒𝑎𝑟(𝑘1, 𝑘3) = −
√

𝑘21 +
√

𝑘23
(8)

𝑂𝐷𝑢𝑓𝑓𝑖𝑛𝑔(𝑘1, 𝑘3) =
√

𝑘21 −
√

𝑘23
(9)

These objective functions are minimized in the optimization proce-

dure. The first of these objective functions, Eq (8), was chosen to create 
a beam that behaves more linearly; this objective function tries to si-
multaneously minimize the Duffing nonlinear term and maximize the 
linear term in the beam’s spring stiffness. The second of these objective 
functions, Eq (9), was chosen to create a beam that has a predominantly 
Duffing behavior; this objective function tries to maximize the Duffing 
nonlinear term and minimize the linear term in the beam’s spring stiff-

ness.

3.2. Beam shape definition and constraints

To create the beam shapes, seven control points are generated those 
define one quarter of the beam, as shown in Fig. 3. A piece-wise cubic 
Hermite interpolating polynomial spline was used to smoothly connect 
these seven movable control points, using pchip in MATLAB. Two con-

straints are applied explicitly to generate the control points:

𝑥0 = 0 (10)

𝑑𝑥

𝑑𝑦

||||𝑦=0,𝑙∕ 2 = 0 (11)

The first constraint, Eq (10), sets the first control point to be fixed 
at the origin, where 𝑥0 is the control point at 𝑦 = 0. This, in turn, sets 
4

a fixed width at the two ends, and the other portions of the beam can 
be optimized with respect to this width as a reference. The second con-

straint, Eq (11), defines a zero slope of the spline at the origin and at 
the center of the beam (control point 𝑔𝑗 ) to mitigate sharp angles. The 
control points were chosen randomly from a uniform distribution, with 
probability density function:

𝑝0(𝑥) =

{ 1
𝑏0−𝑎0

if 𝑎0 < 𝑥 < 𝑏0

0 if 𝑥 < 𝑎0 or 𝑥 > 𝑏0
(12)

Here 𝑥 is the 𝑥-value of the control point, 𝑎0 = −0.45, and 𝑏0 = +0.45. 
The control points are movable along the 𝑥-axis and equidistant along 
the 𝑦-axis.

To create a symmetric beam, the quarter beam shape was rotated 
180◦ around the vertical axis, and the lower half of the beam was then 
rotated 180◦ about the horizontal axis as shown in Fig. 4. The horizontal 
mid-line of the beam is 0.5 units away from the origin in the positive 𝑥-

direction. The value for 𝑎0 and 𝑏0 were chosen so that the beam would 
always have a minimal width of 0.1 and maximal width of 1.9.

3.3. Genetic algorithm

The genetic algorithm is an optimization method that is especially 
well-suited for problems that are not gradient-based. At every step for 
this topology optimization method, the control points defining the beam 
are kept within the limits described in Eq (12). The genetic algorithm 
optimization was performed as follows:

1. 1000 beams were simulated using the load-stepping method with 
different control points. This will be referred to as the zeroth gen-

eration, 𝑔𝑒𝑛0.
2. The desired objective function is used to quantify the 10 most op-

timal beams.

3. These 10 most optimal beams are used in the crossover procedure

to find a new batch of beams. The crossover procedure is discussed 
below. This batch of beams created from this procedure are simu-

lated as the 𝑖𝑡ℎ generation crossover step, 𝑔𝑒𝑛𝑖,𝑐𝑟𝑜𝑠𝑠.
4. The desired objective function is used to quantify the top 10% most 

optimal beams.

5. These top 10% most optimal beams are used in the mutation pro-

cedure to find a new batch of beams. The mutation procedure is 
discussed below. This batch of beams created from this procedure 
are simulated as the 𝑖𝑡ℎ generation mutation step, 𝑔𝑒𝑛𝑖,𝑚𝑢𝑡.

6. Steps 2-5 are repeated until an end condition is met, such as the ob-

jective function stops improving. Here, five generations were used.

3.4. Crossover procedure

For the crossover procedure for generation 𝑖, the control points for 
the ten most optimal beams were first written in a matrix, 𝐶𝑖 , with 
control points 𝑎𝑗 − 𝑔𝑗 for the 𝑗𝑡ℎ beam, which is depicted in eq. (13):

𝐶𝑖 =

⎡⎢⎢⎢⎢⎢⎣

𝑎1 𝑏1 𝑐1 𝑑1 𝑒1 𝑓1 𝑔1
𝑎2 𝑏2 𝑐2 𝑑2 𝑒2 𝑓2 𝑔2
𝑎3 𝑏3 𝑐3 𝑑3 𝑒3 𝑓3 𝑔3
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑎10 𝑏10 𝑐10 𝑑10 𝑒10 𝑓10 𝑔10

⎤⎥⎥⎥⎥⎥⎦
(13)

Next, the control points on one row of the matrix to the left of the 
vertical line are chosen; these points are then concatenated with the 
control points to the right of the vertical line. For example, in the matrix 
shown in eq. (14):, [𝐚𝟐, 𝐛𝟐] are concatenated with [𝑐𝑗 , 𝑑𝑗 , 𝑒𝑗 , 𝑓𝑗 , 𝑔𝑗 ] for 
1 ≤ 𝑗 ≤ 10.
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Fig. 4. Beam creation. The quarter section of the beam (green) is rotated around the vertical axis, and the lower half of the beam is rotated around the horizontal 
axis to create a symmetric beam.
Fig. 5. Results for zeroth generation. For 𝑔𝑒𝑛0 , 1000 beams with random con-

trol points were simulated. With varying control points, beams with different 
stiffness coefficients were created. In the top plot, Eq (9) was used as the ob-

jective function, and “cost” is the value of the objective function for each set of 
𝑘1 and 𝑘3 values. The circles on the plot denote the ten most optimal beams, 
which are used in 𝑔𝑒𝑛1,𝑐𝑟𝑜𝑠𝑠. In the bottom plot, the dashed lines are the values 
of the stiffness coefficients for the rectangular prism beam, and the dots denote 
the stiffness coefficients for each of the 1000 beam. Black denotes the linear 
stiffness term, 𝑘1 , and green denotes the cubic stiffness term, 𝑘3 . The values of 
𝑘1 and 𝑘3 are found by curve fitting the force displacement curve, such as the 
examples shown in Figs. 2, 7, and 8.

𝐶𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑎1 𝑏1 𝑐1 𝑑1 𝑒1 𝑓1 𝑔1

𝐚𝟐 𝐛𝟐 𝑐2 𝑑2 𝑒2 𝑓2 𝑔2

𝑎3 𝑏3 𝑐3 𝑑3 𝑒3 𝑓3 𝑔3
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑎10 𝑏10 𝑐10 𝑑10 𝑒10 𝑓10 𝑔10

⎤⎥⎥⎥⎥⎥⎥⎦
(14)

To create all of the control points, the vertical line used to perform 
the crossover is moved from left to right across matrix 𝐶𝑖; in this way, 
there are six crossover positions. Likewise, the row used to perform 
the crossover is moved from top to bottom across matrix 𝐶𝑖; in this 
way, there are ten sets of control points created from each row per 
crossover. Thus, there is a total of 600 sets of control points created 
from this crossover procedure, of which 60 of them are the original ten 
sets of “parent” control points. 50 of these duplicates are then removed, 
leaving 550 sets of “children” control points. The ten original “parent” 
control point sets are also members of the new set of control point sets; 
this ensures that, if none of the “children” control point sets improved, 
the new generation would not be worse than the previous generation. 
The crossover procedure was devised in this way, so that portions of the 
beam remain unchanged during this procedure.
5

3.5. Mutation procedure

From the crossover procedure just discussed, the top 10% of the con-

trol point sets for the most optimal beams are then used in the mutation 
procedure. For the mutation procedure of generation 𝑖, the 55 control 
point sets are first written as a matrix, 𝑀𝑖, with control points 𝑎𝑗 − 𝑔𝑗
for the 𝑗𝑡ℎ beam, which is depicted in eq. (15):

𝑀𝑖 =

⎡⎢⎢⎢⎢⎢⎣

𝑎1 𝑏1 𝑐1 𝑑1 𝑒1 𝑓1 𝑔1
𝑎2 𝑏2 𝑐2 𝑑2 𝑒2 𝑓2 𝑔2
𝑎3 𝑏3 𝑐3 𝑑3 𝑒3 𝑓3 𝑔3
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑎55 𝑏55 𝑐55 𝑑55 𝑒55 𝑓55 𝑔55

⎤⎥⎥⎥⎥⎥⎦
(15)

A random vector, 𝑟 = [𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟7], is then created. The 𝑟𝑘
values are chosen randomly from a uniform distribution, with probabil-

ity density function given by eq. (16):

𝑝𝑖(𝑥) =

{ 1
𝑏𝑖−𝑎𝑖

if 𝑎𝑖 < 𝑥 < 𝑏𝑖

0 if 𝑥 < 𝑎𝑖 or 𝑥 > 𝑏𝑖

(16)

where 𝑎𝑖 =
𝑎0
2𝑖 , and 𝑏𝑖 =

𝑏0
2𝑖 . For each row of matrix 𝑀𝑖, nine new control 

point sets are created by adding nine different random vectors to that 
row; this results in 495 “children” control point sets from the 55 “par-

ent” control point sets. The 55 original “parent” control point sets are 
also members of the new set of control point sets; this ensures that, if 
none of the “children” control point sets improved, the new generation 
would not be worse than the previous generation.

4. Results

The procedure described in Section 3 was repeated until a conver-

gence criteria was met. In this case, the genetic algorithm was stopped 
when the best beam from generation 𝑖 improved less than 2% as com-

pared to the best beam in generation 𝑖 − 1. Two beams were created: 
the linear beam configuration has a stiffness that is dominated by the 
linear term, which was created by using objective function Eq (8), and 
the nonlinear beam configuration has a stiffness that is dominated by 
the Duffing term, which was created by using objective function Eq 
(9). It should be noted that for entire optimization procedure the mini-

mum coefficient of determination of the curve fit was always near one 
(𝑚𝑖𝑛(𝑅2) > 0.997). It was found that a coarse mesh was sufficient to cap-

ture the nonlinearity and produce sufficient solutions. The mesh has 30 
elements in the length (𝑦), two in the width (𝑥), and one in the thickness 
(𝑧) for a total of 915 nodes.

In addition, the finite element model described in Section 2 was 
used to simulate sinusoidal base excitation, depicted in Fig. 6. It should 
be noted that the direction of oscillation was the same direction as the 
distributed load applied in the load-stepping cases.

In the bottom-right portion of Figs. 7 and 8, the frequency-amplitude 
relationship for the linear beam configuration and the nonlinear beam 
configuration are shown, respectively. In addition, the frequency-

amplitude relationship for the rectangular prism beam is also shown 
for comparison. In these numerical experiments, the frequency was 
quasi-statically increased so that the beam’s response would follow the 
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Fig. 6. Dynamic loading. After the force-displacement curves are optimized, 
the dynamic response of the sinusoidally forced clamped-clamped beam is 
found. For the dynamic loading, 𝑓 (𝑡) = 𝑎𝑠𝑖𝑛(Ω𝑡), where 𝑎 is the amplitude of 
the sinusoidal forcing and Ω is the forcing frequency.

Fig. 7. Optimized linear beam configuration. Top: The linear beam con-

figuration is shown, with control points 𝑎 = −0.450, 𝑏 = −0.446, 𝑐 = −0.450, 
𝑑 = −0.301, 𝑒 = −0.448, 𝑓 = −0.450, 𝑔 = −0.450. The green portion represents the 
quarter of the beam described by these control points, while the rest of the op-

timized beam is plotted in black. Bottom-left: The force-displacement curve of 
the linear beam configuration (green) and the rectangular prism beam (black). 
Bottom-right: The frequency-amplitude response of the linear beam configura-

tion (green) and the rectangular beam (black), when the forcing amplitude is 
set to 0.4. Notice that the linear beam configuration has no noticeable jump in 
the frequency-amplitude plot, while the rectangular prism beam does. In the 
lower left plot, the Xs correspond to numerical results, and the solid curve cor-

responds to the curve fit.

stable branch of the frequency-amplitude curves, which are seen in the 
lower-left portions of Figs. 7 and 8. The “jump” in the beam’s response 
happens near the termination point of a stable branch, while an unsta-

ble branch is not shown.

4.1. Linear beam configuration

When minimizing the objective function found in Eq (8), the topol-

ogy optimization procedure produces the beam shape found in Fig. 7. 
Using the linear objective function, there was a 1.3% improvement 
from generation 4 to generation 5. This linear beam configuration is 
shown in the top portion of Fig. 7. The force-displacement curve is 
shown in the bottom-left portion of this figure. For the rectangular 
prism beam, 𝑘1 = 0.0030 and 𝑘3 = 0.0018. For the linear beam configu-

ration, 𝑘1 = 0.0038 and 𝑘3 = 0.0027. Both the linear and cubic stiffnesses 
increased.

In Fig. 7, the dynamic forcing amplitude was set to 𝑎 = 0.04; for 
this large amplitude, the rectangular beam has a noticeable jump in the 
amplitude at a frequency of approximately 15 rad/s. This is expected, 
since a clamped-clamped rectangular beam has a cubic stiffness term. 
However, the linear beam configuration, even for this large amplitude 
of forcing, does not exhibit a jump in the amplitude as the frequency is 
changed.
6

Fig. 8. Optimized nonlinear beam configuration. Top: The nonlinear beam 
configuration is shown, with control points 𝑎 = 0.278, 𝑏 = −0.450, 𝑐 = −0.450, 
𝑑 = −0.445, 𝑒 = −0.276, 𝑓 = −0.894, 𝑔 = 0.402. The green portion represents the 
quarter of the beam described by these control points, while the rest of the opti-

mized beam is plotted in black. Bottom-left: The force-displacement curve of the 
nonlinear beam configuration (green) and the rectangular prism beam (black). 
Bottom-right: The frequency-amplitude response of the nonlinear beam config-

uration (green) and the rectangular beam (black), when the forcing amplitude 
is set to 0.4. Notice that the nonlinear beam configuration has a noticeable jump 
in the frequency-amplitude plot, while the rectangular prism beam does not. In 
the lower left plot, the Xs correspond to numerical results, and the solid curve 
corresponds to the curve fit.

4.2. Nonlinear beam configuration

When minimizing the objective function found in Eq (9), the topol-

ogy optimization procedure produces the beam shape found in Fig. 8. 
Using the nonlinear objective function, there was a 0.051% improve-

ment from generation 4 to generation 5. This nonlinear beam config-

uration is shown in the top portion of Fig. 8. The force-displacement 
curve is shown in the bottom-left portion of this figure. For the rectan-

gular prism beam, 𝑘1 = 0.0030 and 𝑘3 = 0.0018. For the nonlinear beam 
configuration, 𝑘1 = 0.0006 and 𝑘3 = 0.0018. In this case, the cubic stiff-

ness term stayed almost the same as the rectangular prism case, while 
the linear stiffness term decreased considerably.

In Fig. 8, the dynamic forcing amplitude was set to 𝑎 = 0.01; for this 
small amplitude, the rectangular beam has no noticeable jumps. This 
is expected, since the nonlinear terms can be ignored for such small 
amplitudes. However, the nonlinear beam configuration, even for this 
small amplitude of forcing, does exhibit a jump in the amplitude as the 
frequency is changed at approximately 7 rad/s.

5. Conclusions

The shape optimization procedure presented in this paper is a gen-

eral method to optimize the nonlinear response of continuous sys-

tem, without the necessity of analyzing nonlinear normal modes. This 
method could be used for systems that do not lend themselves to non-

linear normal mode analysis. As an example, a clamped-clamped beam 
was optimized to have a desired response.

By first using the force-displacement curve fit, a beam was pro-

duced that was either more nonlinear or less nonlinear than its rect-

angular prism counterpart. This procedure was shown to create beams 
that have strong amplitude dependence. The linear beam configuration 
(with spring stiffnesses 𝑘1 = 0.0038 and 𝑘3 = 0.0027) was linear for much 
higher amplitudes than its rectangular prism counterpart (with spring 
stiffnesses 𝑘1 = 0.0030 and 𝑘3 = 0.0018), as no noticeable jump was 
found in its frequency response curve. The nonlinear beam configura-

tion (with spring stiffnesses 𝑘1 = 0.0006 and 𝑘3 = 0.0018) was nonlinear 
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for much smaller amplitudes than its rectangular prism counterpart, as 
a noticeable jump was found in its frequency response curve even when 
none was present for the rectangular prism beam.

The beam is constructed with fabricability in mind. The spline used 
here avoids overshoot. Additionally, there are no sharp edges, because 
of the choice to set a zero slope condition on the clamped end of the 
beam and at the center, since the beam is created by reflection about 
a vertical axis at the center. Without changing the objective functions, 
the resulting beam shapes found from this study could be physically 
implemented to have any desired natural frequency by using materials 
with a specific modulus of elasticity or by changing the thickness of the 
beam. If a specific material was desired a priori to the optimization, the 
objective functions themselves could be modified to include the natural 
frequency as well, though this would likely have some effect on the 
achieved nonlinearity as well.
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