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ABSTRACT: Herein, the impacts of sulfonation temperature (100−120
°C), sulfonation time (3−5 h), and NaHSO3/methyl ester (ME) molar ratio
(1:1−1.5:1 mol/mol) on methyl ester sulfonate (MES) yield were studied.
For the first time, MES synthesis via the sulfonation process was modeled
using the adaptive neuro-fuzzy inference system (ANFIS), artificial neural
network (ANN), and response surface methodology (RSM). Moreover,
particle swarm optimization (PSO) and RSM methods were used to improve
the independent process variables that affect the sulfonation process. The
RSM model (coefficient of determination (R2) = 0.9695, mean square error
(MSE) = 2.7094, and average absolute deviation (AAD) = 2.9508%) was the
least efficient in accurately predicting MES yield, whereas the ANFIS model
(R2 = 0.9886, MSE = 1.0138, and AAD = 0.9058%) was superior to the ANN
model (R2 = 0.9750, MSE = 2.6282, and AAD = 1.7184%). The results of
process optimization using the developed models revealed that PSO
outperformed RSM. The ANFIS model coupled with PSO (ANFIS-PSO) achieved the best combination of sulfonation process
factors (96.84 °C temperature, 2.68 h time, and 0.92:1 mol/mol NaHSO3/ME molar ratio) that resulted in the maximum MES yield
of 74.82%. Analysis of MES synthesized under optimum conditions using FTIR, 1H NMR, and surface tension determination
showed that MES could be prepared from used cooking oil.

1. INTRODUCTION
The search for biodegradable and renewable feedstock for
commercial production has been a research focus in recent
time due to the depleting nature of crude oil and the necessity
to safeguard the environment from the toxicity of petrochem-
ical products.1,2 Vegetable oil, algal oil, animal fat, and used
cooking oil (UCO) are renewable and biodegradable feed-
stocks that can replace finite petroleum-based chemicals. UCO
is a low-quality raw material whose use could reduce the cost
of producing biodiesel (an intermediate product of methyl
ester sulfonate). Besides, the processing of UCO aids in the
effective conversion of biomass to useful products.3,4

Currently, large volumes of UCO are produced around the
world and pose a waste disposal issue.5,6 As a result, there is a
need to develop an innovative technology for collecting UCO
from various locations and using it as a feedstock in the
commercial production of fatty acid methyl ester (FAME) for
surfactant (methyl ester sulfonate, MES) synthesis.1,7

Surfactants are derived from either petrochemicals or
oleochemicals.1 Surfactants derived from bio-oils have been
found to be nontoxic, less viscous, biodegradable, soluble in
water, and slightly irritant to humans4,8 when compared to
petroleum-based surfactants such as cetyltrimethylammonium-

bromide (CTAB), internal olefin sulfonate (IOS), and sodium
dodecyl sulfate (SDS), which may soon be phased out owing
to the depletion of crude oil reserves.7,9 One of the kinds of
oleochemical-based surfactants is fatty acid methyl ester
sulfonate (MES).
MES is an anionic surfactant made by either direct

sulfonation of FAME with a sulfonating agent such as SO3,
chlorosulfonic acid, oleum, or NaHSO3 or neutralization of
fatty acid methyl ester sulfonic acid (MESA) with sodium
hydroxide.4,9 Although the air-SO3 falling film sulfonation
process is efficient for MES production, it can only be done on
a large scale continuously. However, because the former can be
run batch-wise or continuously, the NaHSO3-based sulfonation
process has been proposed as a viable alternative to the air-SO3
falling film sulfonation method. Furthermore, unlike air-SO3
falling film sulfonation, the NaHSO3-methyl ester sulfonation
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process does not release heat.10,11 Wibowo et al.12 reported
MES synthesis via sulfonation of palm oil methyl esters with
NaHSO3, with an MES yield of 93.2%. Using the NaHSO3
sulfonation process, a novel castor oil fatty acid methyl ester
ethoxylate sulfonate was synthesized.13 When UCO methyl
ester was sulfonated with NaHSO3, a sulfonated product with
improved properties was formed.7

Numerous studies have explored the use of conventional
methods to assess the factors influencing the sulfonation
process. Using this approach, experimental runs were
performed by methodically changing the examined variable
while maintaining the other variables constant. The perform-
ance ability of response surface methodology (RSM) in the
sulfonation process has previously been reported.7 The use of
conventional methods is characterized by several uncertainties.
For example, although RSM can be used to lower experimental
runs required to examine the impacts of various input factors
and their combined influence on the response, it is unable to
capture a chemical or biological process’ nonlinear behavior.
Moreover, all of the contributing factors must be tested again,
which result in a doubtful number of experimental runs.
More recently, robust statistical modeling tools of artificial

intelligence techniques such as the adaptive neuro-fuzzy
inference system (ANFIS) and artificial neural network
(ANN) have been exploited for modeling processes because
they can be used to approximate the nonlinearity associated to
a biochemical process system. ANN imitates the brain process
mechanism and hence consists of a group of neurons that are
linked together in multiple layers. These multiple layers form
the basis of the ANN and are referred to as multilayered
perceptron (MLP) comprising three layers, viz., input, hidden,
and output layers. A benefit of ANN is that it may estimate a
variety of nonlinear functions without the need for a specific
fitting function to be specified.14 ANN has been employed in
various chemical processes, such as enzymatic-catalyzed
reactions,15,16 esterification and transesterification reaction
for biodiesel synthesis,17−20 polymerization reactions,21,22 and
the photocatalytic process.23 ANFIS is a technique that
combines both fuzzy systems and neural networks in a single
framework. This offers the ANFIS an advantage such as the
ability to demonstrate ambiguity, learning steps, as well as the
computational power of neural networks.24 It has also been
used in various chemical processes.25−28 Advantages of ANN
and ANFIS compared to RSM have been extensively reported
in many studies.18,19,23,29,30

To increase the effectiveness of the process, it is essential to
optimize the process parameters.31 Due to the local
optimization method by RSM that is only capable of searching
local optima, a global optimization method such as particle
swarm optimization (PSO) is needed that would locate the
global optimum of a given function. PSO is a renowned
metaheuristic population-based approach. It is a stochastic
optimization technique that is based on the swarm behavior
such as flocking of birds and schooling fish. Whereas RSM has
its own inbuilt optimization algorithm, ANN and ANFIS
developed models need to be coupled with PSO to estimate
the global optima of a process. It is noteworthy to state that
there has not been a report in the open literature in the
optimization of the sulfonation process using the trio of RSM-
PSO, ANN-PSO, and ANFIS-PSO.
Thus, methyl ester sulfonate synthesis via sulfonation of

methyl ester (ME) with NaHSO3 was modeled using the trio
of ANFIS, ANN, and RSM optimization techniques. The

influence of temperature, time, and molar ratio of NaHSO3 to
ME on the sulfonation process was investigated. The
effectiveness of the methods was determined statistically by
employing the average absolute deviation (AAD), correlation
coefficient (R), coefficient of determination (R2), adjusted R2,
and mean square error (MSE). Furthermore, ME and MES
produced under optimum conditions were characterized using
FTIR, 1H NMR, GC-FID, and surface tension determination
analyses.

2. METHODOLOGY
2.1. Materials. UCO utilized for the experiment was

obtained from an eatery in Dehradun, India. The procedure

used in pretreating the oil sample and its physicochemical
properties have been previously reported.7 All the chemical

Table 1. Experimental Ranges and Levels of the Operational
Parameters

level

parameter description −α −1 0 +1 +α
T sulfonation

temperature
(°C)

96.84 100 110 120 123.16

t sulfonation
time (h)

2.68 3.0 4.0 5.0 5.32

M NaHSO3/ME
molar ratio
(mol/mol)

0.92:1 1:1 1.25:1 1.5:1 1.58:1

Table 2. Features of the Developed ANN and ANFIS Model

model property value/remark

ANN training function Levenberg−Marquardt
backpropagation

performance function MSE
learning supervised
input layer transfer function no transfer function is used
output layer transfer function purelin
hidden layer transfer function hyperbolic tangent sigmoid

(tansig)
number of training iterations 120
number of best iterations 70
number of input neurons 3a

number of hidden neurons 10
number of output neurons 1b

ANFIS fuzzy type Sugeno
input 3a

output 1b

membership function generalized bell-shaped
input/ouput membership
function

3

and method product
or method probabilistic
implication method product
aggregation sum
number of rules 27
number of of linear
parameters

54

number of nonlinear
parameters

27

output membership function
type

linear

aSulfonation temperature, sulfonation time, and NaHSO3/ME molar
ratio. bMES yield.
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compounds (KOH, CH3OH, NaHSO3, Al2O3, and NaOH)
herein were provided by Thermo-Fisher Scientific Industries,
Mumbai, India.
2.2. Preparation of ME and MES. 2.2.1. ME Synthesis.

The methanolysis process was used to convert UCO to methyl
esters in a round-bottom flask. The process was carried out at a
temperature of 65 °C for a duration of 1 h. The molar ratio of
UCO to methanol was 1:6, and KOH was used as catalyst with
a concentration of 1.0 wt %. After completing the reaction
process, the resulting product was separated into two layers
(upper and lower layers) via a separating funnel. Subsequently,
the upper layer (a mixture of biodiesel and unreacted
methanol) was evaporated in a rotary vacuum evaporator to
remove methanol. Thereafter, the produced biodiesel was
washed severally with warm water to remove dissolved KOH
and finally dried to remove moisture.
2.2.2. MES Synthesis. MES was synthesized using the

method described by Wibowo et al.,12 that is, sulfonation of
UCO methyl esters with NaHSO3 in a two-neck round bottom
flask with a magnetic stirrer. ME, NaHSO3, and alumina (as
catalyst) were fed to the reaction vessel and stirred at 400 rpm.
The operating parameters (molar ratio of NaHSO3 to ME,
time, and temperature) were adjusted to the desired operating
values (see Table 1). When the sulfonation reaction was
completed, a centrifuge was employed to remove the residual
NaHSO3 at a rotating speed of 7500 rpm for 20 min.
Afterward, the methyl ester sulfonic acid (MESA) obtained
from the supernatant was purified with methanol for 1.5 h at
55 °C. Finally, the purified product was neutralized by adding

the 20% NaOH solution dropwise while stirring until a pH of
about 8.0 was achieved. After methanol recovery with a rotary
evaporator, a sticky pale yellow liquid product (MES) was kept
in a covered container for quality analysis. The MES yield (Y1)
was calculated as the percentage of the mass of MES obtained
(MMES) to the mass of ME used (MME).

= ×Y
M
M

100 %1
MES

ME (1)

2.3. Model Development. 2.3.1. Sulfonation Process
Optimization by RSM. The central composite design (CCD)
of RSM was utilized to generate the data set for conducting the
experiment. To examine the influence of operational
parameters on the sulfonation process output (MES yield),
three numeric parameters (sulfonation temperature, sulfona-
tion time, and NaHSO3/ME molar ratio) were selected.
Fifteen experimental runs were suggested by the CCD as
indicated in Table 1, which were replicated twice, and the
average result of the decolorization efficiency was reported.
The response and operational parameters were correlated

using a second-order polynomial response equation (eq 2)
with all model terms.

= + + + + + +

+ + +

Y A B C AB AC

A B C

BCo 1 2 3 12 13 23

11
2

22
2

33
2

(2)

where Y stands for the process output (MES yield), βo
symbolizes the constant coefficient; β1, β2, and β3 are the
linear terms; β12, β13, and β23 are the coefficients of interaction
terms; β11, β22, and β33 denote the coefficients of quadratic
terms; and T, t, and M are the coded values of the sulfonation
process variables.
2.3.2. Development of the Sulfonation Process’ ANN

Model. Levenberg−Marquardt’s algorithm (LMA) was used to
create a feedforward, multilayer ANN because of its ability for
quick convergence and function modeling. Pure-linear (pure-
lin) and hyperbolic tangent sigmoid (tansig) transfer functions
were used for the input−output−hidden layers, respectively.
The chosen ANN had an input layer consisting of three
neurons (sulfonation temperature, sulfonation time, and
NaHSO3/methyl ester (ME) molar ratio) and a hidden−
output layer with one neuron (MES yield). Iteratively testing
different numbers of neurons (2−20) until the mean square
error (MSE) value of the target data was minimal and high R,
which is nearly equal to unity, was attained was used to obtain
the optimal hidden neuron number. The tangent sigmoid
function is described by eq 3, whereas the purelin transfer is
given by eq 4.

=
+

w
e

tansig( )
2

(1 )
1w2 (3)

=f w w( ) (4)

Every input and output data set was scaled back to a value
between −1 and +1. Because the tangent sigmoid transfer
function varies from −1 to +1, normalization is required. In
addition, the normalization ensures that overflow that may
result to very large or very small weight anomalies is avoided.32

The normalization was performed by using eq 5.

= X X
X X

Normalized
2( )
( )

A min

max min (5)

Table 3. Weights of ANN Model Employed for Analysis
Results

input weights
output
weight

neuron
sulfonation
temperature

sulfonation
time

NaHSO3/
ME MES yield

1 2.3174 1.6698 −1.0946 0.6126
2 2.2292 1.9752 −1.3210 1.1358
3 −2.3596 1.1338 −0.7228 0.3221
4 −2.3942 −1.1341 1.2867 −0.0173
5 −3.6142 1.1097 0.1621 1.8098
6 −1.4673 2.9082 0.9966 −1.1542
7 1.2220 −1.7860 1.7769 0.3842
8 2.5357 −0.8107 1.8620 0.9540
9 1.1485 1.7165 −1.9031 −0.2252
10 −1.4492 −1.3038 1.6817 −0.0526

Table 4. ANFIS Sensitivity Analysis Parameters

input variable minimum nominal maximum

temperature 96.84 110 123.16
time 2.68 4 5.32
NaHSO3/ME molar ratio 0.92 1.25 1.58

Table 5. PSO Features for RSM, ANN, and ANFIS
Developed Models

property value/comment

swarm size 10−15
initial range [0.1, 0.1]
self-adjustment 2
social adjustment 2
iteration 10−50
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where XA, Xmin, and Xmax signify the actual, minimum, and
maximum, respectively.
The data set points of input and output (15 in total) were

grouped into three subsets, viz., training (60%), validation
(20%), and testing (20%).33 This is crucial to determine the
model’s capacity for predicting hidden data that were not used
for training and to evaluate the ANN’s capacity for
generalization.34

2.3.3. Development of the Sulfonation Process’ ANFIS
Model. To prognosticate the MES yield of the sulfonation
process, the multiple-input−single-output (MISO) fuzzy
model was used to implement the ANFIS model. Three
inputs (sulfonation temperature, sulfonation time, and
NaHSO3/ME molar ratio) and one output (MES yield)
were employed to develop the ANFIS model. Three
generalized bell-shaped membership functions (gbellmf) of
first-order Sugeno fuzzy logic were employed for each of the
input factor. The output prediction of the ANFIS model was
done using hybrid learning algorithms integrated with the
defuzzifier formular. The framework was built employing
normalization, defuzzification and fuzzification, overall sum-
mation, and product.35 The Takagi−Sugeno IF−THEN rules
with regard to the input variables can be defined using rules 1
and 2, assuming a two input variable fuzzy inference system
(FIS) (u and v) and an output (w).35 The following expression
is given for rules 1 and 2:
Rule 1: IF u is A1 and v is B1,

= + +e g u h v kTHEN 1 1 1 1

Rule 2: IF u is A2 and v is B2,

= + +e g u h v kTHEN 2 2 2 2

where the fuzzy sets are A1, A2, B1, and B2 and the outputs of
the system are u1 are u2. The controllable parameters of the FIS
are g1, g2, h1, h2, k1, and k2.
2.3.3.1. First Layer. This layer contains adaptive nodes with

three input parameters. Each node n is defined by the following
function:

= u( )n A
1

n (6)

where the input parameter to node n is designated as u and ψn1
(symbolizes MF) is the fuzzy set. An is the membership class
that implies when the provided input n satisfies A.
The expression of gbellmf is given as

=
+

u( )
1

1
A

u k
g

h2n

n
n

p (7)

where gbellmf premise parameters are gp, hp, and kp. The width
of the curve is modified by g and h (both must ≥0), and k is
the curve’s midpoint. The MF values vary between 0 and 1.
2.3.3.2. Second Layer. This region contains nonadaptive

nodes. Product of the incoming signals is performed in this
layer to subject all the weight (μ) to scrutiny. Each output
node demonstrates the firing strength of the weight.

= = =u u n( ) . ( ) , 1, 2n n A n B n
2

n n (8)

2.3.3.3. Third Layer. Each node runs the required fuzzy
rules, and this layer computes each level activation rule. This
layer is evaluated by dividing the firing strength of each rule by
the aggregate number of rules. This layer’s node is not
adaptable.

= =
+

=n, 1, 2n n
n3

1 2 (9)

2.3.3.4. Fourth Layer. Defuzzification is used in this layer to
calculate the output of the membership function. This layer’s
nodes are adaptable.

= = + + =Q g u h v k n. ( ), 1, 2n n n n n n n
4

(10)

where [gp, hp, kp] refers to a consequent parameter set.
2.3.3.5. Fifth Layer. This has the total of the individual

node’s outputs from the defuzzification layer. A single node
that represents the output indicates that the layer is not
adaptable.

= = =Q
Q

n.
.

, 1, 2n
n

n n
n n n

n n

5

(11)

Figure 1. Chromatogram of UCO methyl ester.
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where μ̅n. Qn denotes the output of node n in the
defuzzification layer. Table 2 summarizes the ANFIS features
that were employed in this study. The modeling of the ANFIS
was carried out in MATLAB 2018a using the fuzzy logic
toolbox.
2.4. Operational Parameters’ Sensitivity Study.

Conducting a sensitivity study will ensure how well the
model behaves. It is used to examine the impact of each input
parameter on the model response (output).36 The sum of
squares for each input term and the total of squares for all
input parameters were used to conduct the sensitivity analysis
for the RSM model.37 These sums of squares were utilized to
compute the percentage contribution of each input parameter
on the response (MES yield) following eq 12.

=% Input parameter contribution
SOS
SOS

i

o (12)

where SOSi and SOSo, respectively, represent the sum of
squares for a particular input factor and the total sum of
squares for all the input factors.
Sensitivity analysis of the input factors for the implemented

ANN model was carried out employing Garson’s method
following eq 13.38 The weights computed for both the input
parameters and the response (MES yield) are displayed in
Table 3. The calculated weights were employed to analyze the
relative importance of the operational factors.

i
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where the terms ni and nh symbolize the input and hidden
neurons, respectively. The connecting weight is represented by
β. The layers consisting of the input, hidden are designated by
i, h, and o superscripts, respectively, whereas neurons
embedded in the input, hidden, and output are symbolized
by the k, a, and b subscripts. Ωt is the tth input parameter’s
influence on the output parameter’s relative importance.
The ANFIS model’s input parameters were analyzed for

sensitivity by determining the maximal value of the selected
input parameters while retaining the remaining input
parameters at their nominal levels (the most frequent values).
The sensitivity study was carried out to validate the effect of
input parameters on the model response (MES yield) of the
implemented ANFIS model. To depict the response of the
ANFIS model, one variable was changed, whereas other
variables remained constant.39 Table 4 displays the nominal,
minimum, and maximal values that were employed to perform
the sensitivity analysis by the ANFIS model.
2.5. Process Parameter Optimization. The optimization

procedures of RSM and PSO were engaged to determine the
optimal blends of process variables to attain the highest MES
yield to improve the sulfonation process. The implemented
ANN, ANFIS, and RSM models were used as the optimization
algorithm’s fitness function. Table 5 illustrates parameters of
PSO employed for the variables’ optimization. The optimal
values prognosticated by RSM and PSO were validated in the
lab by completing the experiment in triplicate separately. By
averaging the values, the observed values and predicted values

Table 6. Composition of the FAME Intermediate Derived
from UCO

FAME profile
chemical
formula

retention
time (min)

composition
(wt %) class

methyl
myristate

C15H30O2 11.308 0.7 unsaturated

methyl
palmitate

C17H34O2 12.672 13.7 saturated

methyl
palmtoleate

C17H32O2 13.589 0.20 unsaturated

methyl stearate C19H38O2 14.662 5.4 saturated
methyl oleate C19H36O2 14.839 23.7 unsaturated
methyl
linoleate

C19H34O2 15.319 47.2 unsaturated

methyl
linolenate

C19H32O2 16.000 5.8 unsaturated

total saturated
(%)

19.1

total
unsaturated
(%)

77.6

total FAME
(%)

96.7

other 3.3

Table 7. The Three-Factor CCD Matrix and the Value of Prediction by the Developed Models

run
sulfonation

temperature, T (°C)
sulfonation time,

t (h)
NaHSO3/ME molar ratio, M

(mol/mol)
MES yield
(wt %)

RSM prediction
(wt %)

ANN prediction
(wt %)

ANFIS prediction
(wt %)

1 123.16 4 1.25 58.1 59.68 62.71 58.10
2 96.84 4 1.25 38.5 40.08 38.50 38.50
3 100 3 1 70 68.63 69.98 70.00
4 120 3 1.5 38.51 37.14 38.51 38.51
5 110 2.68 1.25 49.8 51.37 49.80 49.80
6 100 5 1.5 57.2 55.83 57.21 57.20
7 110 4 1.58 41.5 43.07 41.50 41.50
8 110 5.32 1.25 65 66.57 65.02 65.00
9 110 4 0.92 42.8 44.37 41.78 42.80
10 120 5 1 60 58.63 61.38 60.00
11 110 4 1.25 45.7 45.05 45.72 45.84
12 110 4 1.25 45 45.05 45.72 45.84
13 110 4 1.25 45.8 45.05 45.72 45.84
14 110 4 1.25 49 45.05 45.72 45.84
15 110 4 1.25 43.72 45.05 45.72 45.84
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were compared. PSO codes were developed using MATLAB
R2018a, while optimization by RSM was executed using
version 7.0.0 of the Design Expert software.
2.6. Appraisal of the Developed ANN, ANFIS, and

RSM Models. Statistical measures including the correlation
coefficient (R), coefficient of determination (R2), adjusted R2,
mean square error (MSE), and average absolute deviation
(AAD) were engaged to evaluate the developed models’

predictive efficacy. The statistical indicators were determined
using eqs 14−18.33,40
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where v is the number of operational parameters, n is the
experimental number points, xi, pr is the predicted value, xi, ob is
the experimental value, and xob, av is the mean of the observed
value.
2.7. Analysis and Characterization of ME and MES.

Transesterification and sulfonation processes’ products were
analyzed using different characterization techniques. A gas
chromatography-flame ionization detector (Agilent 7890A,
USA) and capillary column (size: 0.32 mm × 15 m, 0.10 mm
thickness) were used in determining the FAME profile of the
methanolysis product, as discussed in our previously reported
study.7 Furthermore, functional groups present in both
methanolysis and sulfonation products were evaluated using
Fourier transform infrared (FTIR) spectrophotometer (Perkin
Elmer, USA), whereas the chemical compositions of the two
products were analyzed with the aid of a nuclear magnetic
resonance spectrometer (1H NMR, Bruker Avance III-HD 500
MHz) with CDCl3 used as solvent. A surface tensiometer
(KRUSS Scientific, USA) was used to estimate the surface
tension of the MES solution at different concentrations.

Table 8. Test of Significance for Every Regression Coefficient and ANOVAa

source SS df MS F value p value

model 1292.22 9 143.58 17.8686 0.0027 significant
T 192.08 1 192.08 23.9045 0.0045
t 115.52 1 115.52 14.3766 0.0127
M 0.845 1 0.845 0.10516 0.7588
Tt 121.156 1 121.156 15.078 0.0116
TM 24.0891 1 24.0891 2.99791 0.1439
tM 396.736 1 396.736 49.3742 0.0009
T2 48.1694 1 48.1694 5.99473 0.0580
t2 403.473 1 403.473 50.2126 0.0009
M2 3.77958 1 3.77958 0.47037 0.5233
ANOVA
R2 0.96985
adjusted R2 0.91557
residual 40.1765 5 8.0353
lack of fit 24.9698 1 24.9698 6.56809 0.0625 not significant
pure error 15.2067 4 3.80168
total SS 1332.39 14
adeq precision 13.6056
CV (%) 5.66

aSS, sum of squares; MS, mean square; df, degree of freedom; CV, coefficient of variation.

Figure 2. Pareto chart of standardized effects for the RSM model. T,
sulfonation temperature; t, sulfonation time; M, NaHSO3/ME molar
ratio; L, linear; and Q, quadratic.

Table 9. Statistical Performance of the Developed Models

indicator RSM ANN ANFIS

R 0.9846 0.9874 0.9943
R2 0.9695 0.9750 0.9886
adj R2 0.9584 0.9659 0.9844
MSE 2.7094 2.6282 1.0138

AAD (%) 2.9508 1.7184 0.9058
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3. RESULTS AND DISCUSSION
3.1. Analysis of FAME Profile of Biodiesel Produced

from UCO. The GC-FID was used in analyzing the UCO
methyl ester composition, and the analysis results are shown in
Figure 1 and Table 6. As indicated in the results, the major

methyl esters detected in the UCO biodiesel were palmitic,
oleic, linoleic, linolenic, and stearic acids. The methyl linoleate
accounted for 47.2% of the whole intermediate product,
making it a dominant component in the synthesized UCO
FAME. Furthermore, the GC-FID results revealed that the
UCO biodiesel contained 19.10% saturated and 77.6%

Figure 3. Surface plots on the impact of (a) sulfonation temperature (°C) and sulfonation time (h), (b) NaHSO3/ME molar ratio and sulfonation
time (h), and (c) NaHSO3/ME molar ratio and sulfonation temperature (°C) on MES yield (%).

Figure 4. Optimal hidden neuron number. Figure 5. ANN topology with input, hidden (tansig transfer function),
and output layers (pure linear transfer function).
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unsaturated methyl ester contents, indicating that the

intermediate product satisfied the minimum requirement of

the ASTM and EN 14214 standard.41

3.2. Sulfonation Process Modeling via RSM. The CCD

matrix and the estimated value of MES yield by the RSM

model are shown in Table 7. The RSM model predicted a

range of MES yields between 37.14 and 68.63%. The

polynomial regression model obtained for the process using

Design Expert version 7.0.0 is described by eq 19.

= +
+ + + +

+

T t

M Tt TM tM T
t M

MES yield (%) 1233.11 10.39 220.40

363.29 0.81 1.44 58.47 0.03

8.03 12.43

2

2 2 (19)

where T is sulfonation temperature (°C), t is the sulfonation
time (h), and M is the NaHSO3/ME molar ratio (min).
Table 8 displays the ANOVA and statistical significance test

outcomes for the model. The Fisher test (F value) and p value
at a 95% degree of confidence were employed to determine
statistical significance. The model’s p value and F value are
0.0027 and 17.87, respectively, indicating that it is significant
overall. All the model terms are significant except for the

Figure 6. Regression plots for training, testing, validation, and overall data set for the developed ANN model.

Figure 7. Developed ANFIS model framework.
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NaHSO3/ME molar ratio (M), interaction between sulfona-
tion temperature and NaHSO3/ME (TM), quadratic of
sulfonation temperature (T2), and quadratic of NaHSO3/ME
molar ratio (M2). The model’s high R2 (0.9698) and adjusted
R2 (0.9685) values confirmed its validity. The Pareto chart was
employed to estimate each model term’s significance and their

interactions (Figure 2). The significance of each model term
on the chart depends on the length of the bar.42 Hence, from
the Pareto chart, the insignificant model term was the
quadratic term of the sulfonation temperature followed by
the interaction between sulfonation temperature and
NaHSO3/ME molar ratio term and the quadratic and linear
terms of the NaHSO3/ME molar ratio term, whereas other
model terms are significant. This corroborates the ANOVA
evaluations depicted in Table 8. The actual and predicted
values have low variance, as indicated by the low coefficient of
variance (CV), which is 5.66%. The signal/noise ratio is
gauged by adequate precision; a value >4 is desirable.43 The
value of 13.606 computed in this work (Table 9) implies an
adequate signal.
3.2.1. Variables’ Interactive Effect on Sulfonation Process

Response. Figure 3 depicts the interactive effect of temper-
ature, time, and NaHSO3/ME molar ratio on the sulfonation
process. There was a corresponding increase in MES yield with
increasing sulfonation temperature and time, as illustrated in
Figure 3a. Temperature was thought to determine the extent of
heat transfer by the catalyst (Al2O3) to improve the diffusion of

Figure 8. Developed ANFIS model rule viewer.

Figure 9. Experimental and predicted values vs run numbers for the
ANFIS model.

Figure 10. Experimental vs predicted values’ parity plots for the developed models.
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the NaHSO3 (sulfonating agent) into the liquid phase (methyl
ester), thus increasing the reaction rate. This finding was
consistent with previous research.9

The ME was sulfonated with NaHSO3 at a fixed temperature
of 110 °C to evaluate the combined effect of NaHSO3/ME
molar ratio and sulfonation time on MES yield. The MES yield
decreased with increasing molar ratio of NaHSO3 to ME and
sulfonation time (Figure 3b). This result indicated that the
highest MES yield was obtained at a low molar ratio of
sulfonating agent to intermediate product, implying that there
was no reaction of MES with unconsumed NaHSO3 in the
liquid phase.9 However, the minimum MES yield obtained at a
higher molar ratio of NaHSO3 to ME suggested that a high
concentration of unreacted sulfonating agent in the reaction
medium drove the reaction toward the formation of more
intermediates.44 This observation was corroborated by Figure
3c (effect of NaHSO3/ME molar ratio and temperature on
MES yield), where the maximum MES yield was achieved at
low NaHSO3/ME molar ratio, confirming that sulfonation

temperature was significant to MES yield (sulfonation process
output variable).
3.3. Sulfonation Process Modeling via ANN. The

experimental data set produced by the CCD was used to
execute the neural network model. Fifteen experimental data
points were adequately employed in total, of which 60% were
engaged to train the network model, 20% to test it, and the
remaining 35% to validate the model. Table 5 shows the
predicted results by the developed ANN model. To compute
the weights and biases for this network, the Levenberg−
Marquardt (LM) back-propagation procedure was engaged
during the training. The neural network was trained
heuristically with different hidden neurons (2 to 20). The
optimal hidden neuron selected was 10 because it gave the
MSE and highest R as shown in Figure 4. In this study, the
sulfonation process’ network structure is shown in Figure 5,
where 3 represents the input variables, 10 represents hidden
neurons, and 1 represents the output (MES yield). The results
of the regression for validation, training, testing, and overall are

Table 10. Optimization Techniques and Model Validation

method reaction temperature (°C) reaction time (h) NaHSO3/ME (mol/mol) predicted MES yield (%) experimental MES yield (%)

RSM 101.38 3.06 1:1 65.43 67.03
RSM-PSO 96.84 2.68 1.18:1 67.25 68.01
ANN-PSO 99.16 2.68 0.99:1 72.35 73.22
ANFIS-PSO 96.84 2.68 0.92:1 74.82 77.96

Figure 11. Convergence and optimization result plots for the PSO. (a) RSM model, (b) ANN model, and (c) ANFIS model.
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displayed in Figure 6. The results revealed that the observed
and predicted values had a good degree of agreement.
3.4. Sulfonation Process Modeling via ANFIS. Figure 7

presents the framework of the ANFIS model. About 27 (3 × 3
× 3) rules consisting of three linguistic terms, viz., low,
medium, and high, were used for the ANFIS model (Figure 8).
Table 9 displays the ANFIS model’s predicted MES yields for
various experimental conditions. Figure 9 depicts graphs of
experimental and prognosticated values vs run numbers,

illustrating the model’s accuracy. The R, R2, and adjusted R2
values for the ANFIS model were 0.9943, 0.9886, and 0.9844,
respectively, confirming a strong correlation between the
experimental and predicted values. A good fit model is also
defined by a high R2 value.45 This suggests that the developed
model can account for 98.8% of the variation between
experimental and prognosticated values.46

3.5. Developed Models’ Performance Evaluation. By
computing the MSE R, AAD, R2, and adjusted R2, it was
statistically determined that the generated models were capable
of predicting the MES yield. Table 9 displays the outcomes
calculated from these statistical measures for the three models.
Figure 10 illustrates the regression plots of predicted and
observed values, which agree with the high values of R
obtained for the three models (Table 9). According to some
reports, the correlation between predicted and observed values
should be at least 0.8.45 Additionally, the three models’ R2
values were high, indicating strong model fitness.45 The
adjusted R2 was utilized to verify R2 overestimation, and all of
the models’ estimated values were high, demonstrating their
importance. The error terms (MSE and AAD) computed for
all the developed models have low values, demonstrating that
all the models have good precision and accuracy. The ANFIS
model was superior to RSM and ANN models, as indicated in
Table 9, whereas the RSM model has the lowest precision and
accuracy for predicting MES yield.
3.6. Optimization of the Input Process Variables for

the Sulfonation Process. The process input variables
(temperature of sulfonation, sulfonation time, and molar
ratio of NaHSO3/ME) were optimized using RSM, RSM-PSO,
ANN-PSO, and ANFIS-PSO. Employing the developed
models as objective functions, PSO was applied to obtain the

Figure 12. Level of importance of process input variables on MES yield.

Figure 13. FTIR spectra of ME and MES samples.
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best combination of the investigated input process variable for
the highest MES yield. The established optimum conditions
for each of the techniques are presented in Table 10. Figure 11
displays the optimization result for RSM-PSO, ANN-PSO, and
ANFIS-PSO. The estimated values were validated in duplicate
in the laboratory, and the mean value of the MES yield is
reported in Table 10. The order of the optimization is ranked
as ANFIS-PSO, ANN-PSO, RSM-PSO, and RSM (see Table
10). ANFIS-PSO gave the highest MES yield (74.8%) under
favorable conditions of reaction temperature 96.8 °C, reaction
time 2.68 h, and molar ratio of NaHSO3/ME molar ratio 0.92.
3.7. Sensitivity Analysis of the Input Variables on

MES Yield. Figure 12 displays the sensitivity analysis for the
ANFIS and ANN models. The outcomes exhibit a similar
pattern to that of RSM, where sulfonation temperature is the
most important input factor on the response (MES yield)

followed by sulfonation time and finally NaHSO3/ME molar
ratio. It was observed that the levels of importance varied for
the different modeling techniques (see Figure 12). Although
the level of importance for NaHSO3/ME molar ratio for the
RSM model was very low compared to ANN and ANFIS, none
of the process input factors, however, could be disregarded.
3.8. Analysis of MES Produced under Optimum

Conditions. 3.8.1. FTIR Analysis. Figure 13 presents the
FTIR analysis conducted on both ME and MES to determine
the functional groups. The FTIR spectra of ME and MES
revealed some peaks around 2939−2911 cm−1, indicating
−CH3 (methyl) stretching vibration.4,13 Also, the peak at 1745
cm−1 (C�O stretching) appeared in the spectra of both
samples, suggesting that the sulfonation process did not affect
the ester group, as reported for ME and MES obtained from
sesame oil.1 The new peaks at 1351, 1168, and 1089 cm−1 on
the spectrum of the UCO MES were all attributed to S�O
vibration reductions, indicating that sulfonic acid (−SO3H)
was successfully incorporated into the MES structure in the
form of C-SO3H.

4 These FTIR data confirmed that the
sulfonation product was methyl ester sulfonate.
3.8.2. 1H NMR Analysis. The 1H NMR results of the ME

and MES samples are shown in Figure 14. The signals at
around 0.88−0.97 ppm in the ME spectrum were attributed to
the methyl (CH3−) proton of the fatty acid chains, whereas
the signals at around 1.41−2.10 ppm were attributed to the
methylene (−CH2−) protons of saturated acyl chains.1 Peaks
at 3.71 and 5.42 ppm, respectively, indicated the presence of
protons of CH3−O− in ester and −CH�CH of the vinyl
group.47 However, after the conversion of ME to MES via the
sulfonation process, some signal disappeared while some new

Figure 14. 1H NMR spectra of ME and MES.

Figure 15. Surface tension−concentration plot for MES.
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signals were formed, indicating that the target product (MES)
was successfully formed. New signals formed at 0.83 ppm
(terminal methyl (CH3−) proton), 2.38 ppm (allylic (�CH−
CH2−CH�) protons), 3.37 ppm (−OCH3− linked with the
ester group), and 3.68 ppm (proton linked with carbon atom
bearing the −SO3 (sulfonate) group) were detected.
Interestingly, the 1H NMR signals of the produced MES
confirmed the presence of methyl, ester, and sulfonate groups.
3.8.3. Surface Tension Analysis of MES. Figure 15 displays

the plot of surface tension against MES concentration. The
result revealed a decrease in surface tension with increasing
MES concentration. However, the values of MES surface
tension stabilized as saturation of solution/air interface with
molecules of surfactant set in.4 In addition to this, the values of
the critical micelle concentration (CMC) and corresponding
surface tension were estimated from Figure 15. The point
where the descending and horizontal lines intercept was taken
as the value of CMC. Regarding the results obtained, the
values of the CMC and corresponding surface tension were
118 mg/L (0.118 g/L) and 32.1 mN/m, respectively.
Comparing the MES synthesized in the current work and
MES obtained from mango kernel oil by Sathi Reddy et al.,48

the CMC of the former was slightly greater than the CMC of
the latter (80 mg/L). However, the CMC of MES synthesized
from castor oil using chlorosulfonic acid (sulfonating agent)
was 205 mg/L,49 and this was higher than the CMC of MES
produced herein. The discrepancy might be due to the
different source of intermediate product and sulfonating agent
used. Nevertheless, MES with lower CMC often possesses
improved hydrophobic surface and reduced surface tension
capability as the surfactant molecules can arrange themselves
closer to the surface.4

3.9. Reaction Mechanisms for Methanolysis of Used
Cooking Oil and Sulfonation of Methyl Ester. Reaction

Scheme 1 shows the mechanism for the transesterification of
UCO into fatty acid methyl esters. During methanolysis of
UCO in the presence of a catalyst (KOH), the triglycerides
(TG) present in UCO convert to diglycerides (DG) followed
by the conversion of DG to monoglycerides (MG) and then
finally to glycerol (G). Overall, 1 mol TG reacts with 3 mol
methanol in the presence of a KOH catalyst to produce 1 mol
glycerol and 3 mol methyl esters (ME, desired product), which
correspond to the various fatty acid methyl esters detected (see
Table 6).
Scheme 2 displays the reaction mechanism for the

sulfonation of fatty acid methyl esters with NaHSO3. The
hydrosulfite (SO3H) anion replaces a hydrogen atom attached
to the α-carbon of methyl ester, and Na+ is removed during
sulfonation, resulting in the formation of an intermediate
product (MESA), which is purified by methanol and
subsequently neutralized by NaOH solution at controlled
conditions (pH and temperature) to produce methyl ester
sulfonate (RCH(SO3Na)CO2CH3) and water.

4. CONCLUSIONS
This work focused on the significance of selecting the right
modeling and optimization strategies to convert UCO to MES
through the transesterification−sulfonation process. Detailed
modeling of the process was executed using ANFIS, ANN, and
RSM. Moreover, RSM, RSM-PSO ANN-PSO, and ANFIS-
PSO were used in optimizing the three investigated input
process variables (reaction temperature, sulfonation time, and
NaHSO3/methyl ester molar ratio) to obtain the highest MES
yield. According to statistical measures for evaluating the
efficiency of the created models, the RSM model recorded the
least efficiency in predicting MES yield (R = 0.9846, MSE =
2.7094, and AAD = 2.9508%). The ANFIS model out-
performed the ANN model (R = 0.9874, MSE = 2.6282, and
AAD = 1.7184%) in terms of R, MSE, and AAD. The results of
the optimization demonstrate that ANFIS-PSO provided the
best combination of operation parameters (sulfonation
temperature 96.84 °C, sulfonation time 2.68 h, and
NaHSO3/ME molar ratio 0.92:1 (mol/mol)) with the highest
MES yield (74.82%). Finally, sensitivity analysis of the input
variables on MES yield depicts that the ranking of the level of
importance of the process variables is sulfonation temperature
> sulfonation time > NaHSO3/ME molar ratio.
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