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Abstract
Aims/hypothesis Type 1 diabetes is an autoimmune disease affecting ~400,000 people across the UK. It is likely that environ-
mental factors trigger the disease process in genetically susceptible individuals. We assessed the associations between a wide
range of environmental factors and childhood type 1 diabetes incidence in England, using an agnostic, ecological environment-
wide association study (EnWAS) approach, to generate hypotheses about environmental triggers.
Methods We undertook analyses at the local authority district (LAD) level using a national hospital episode statistics-based
incident type 1 diabetes dataset comprising 13,948 individuals with diabetes aged 0–9 years over the period April 2000 to
March 2011. We compiled LAD level estimates for a range of potential demographic and environmental risk factors including
meteorological, land use and environmental pollution variables. The associations between type 1 diabetes incidence and risk
factors were assessed via Poisson regression, disease mapping and ecological regression.
Results Case counts by LAD varied from 1 to 236 (median 33, interquartile range 24–46). Overall type 1 diabetes incidence was
21.2 (95%CI 20.9, 21.6) per 100,000 individuals. The EnWAS and disease mapping indicated that 15 out of 53 demographic and
environmental risk factors were significantly associated with diabetes incidence, after adjusting for multiple testing. These
included air pollutants (particulate matter, nitrogen dioxide, nitrogen oxides, carbon monoxide; all inversely associated), as well
as lead in soil, radon, outdoor light at night, overcrowding, population density and ethnicity. Disease mapping revealed spatial
heterogeneity in type 1 diabetes risk. The ecological regression found an association between type 1 diabetes and the living
environment domain of the Index of Multiple Deprivation (RR 0.995; 95% credible interval [CrI] 0.991, 0.998) and radon
potential class (RR 1.044; 95% CrI 1.015, 1.074).
Conclusions/interpretation Our analysis identifies a range of demographic and environmental factors associated with type 1
diabetes in children in England.

Keywords Childhood diabetes . Disease mapping . Environmental exposures . Environment-wide association study . Hospital
episode statistics . Routine health data . Type 1 diabetes
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Introduction

Type 1 diabetes is an autoimmune disease resulting in the
destruction of pancreatic insulin-secreting beta cells [1]. The
majority of people with type 1 diabetes require lifelong insulin
replacement therapy and have reduced life expectancy and
quality of life; their treatment places a substantial economic
burden on health services, with direct UK health costs estimat-
ed at £1bn in 2010–2011 [2].

Genetic predisposition plays a role in the development of
type 1 diabetes. Althoughmore than 40 risk loci are associated
with type 1 diabetes [3], most individuals who possess type 1
diabetes risk genes do not, however, develop diabetes [3–5],
suggesting additional factors are needed to trigger and drive
the disease process.

Various environmental triggers of type 1 diabetes have
been proposed [3–5]. Viral infections have long been associ-
ated with type 1 diabetes [6]. Several studies have reported
finding enteroviruses, anti-enterovirus antibodies or enterovi-
rus RNA more frequently in diabetic individuals than in
healthy individuals [7]. A viral aetiology is also supported
by the observed spatial and/or temporal clustering of type 1
diabetes [8], seasonal variation in onset [9], and various social
and demographic factors that relate to population mixing (and
potential for infection), e.g. urban/rural status, remoteness,
population density, overcrowding and socioeconomic status/
social class [10, 11]. Other, non-infectious environmental vari-
ables have also been implicated, including levels of nitrates in
drinking water [12] and meteorological factors such as
sunshine duration and temperature [13].

We aimed to identify environmental correlates of child-
hood type 1 diabetes in England, using an agnostic, ecological

environment-wide association study (EnWAS) approach to
generate hypotheses about potential environmental triggers
of type 1 diabetes for testing in further studies.

Methods

Health data

We obtained type 1 diabetes data from National Health
Service (NHS) Digital hospital episode statistics (HES)
records (https://digital.nhs.uk/data-and-information/data-
tools-and-services/data-services/hospital-episode-statistics)
held by the UK Small Area Health Statistics Unit. We
identified all inpatient admissions for children aged 0–
9 years with a primary diagnosis of type 1 or type unknown
diabetes (ICD-9 codes: 250X1, 250X3, 250X, 250X9 [www.
icd9data.com/2007/Volume1]; ICD-10 codes: E10X, E12X,
E13X, E14X [http://apps.who.int/classifications/icd10/
browse/2016/en]) admitted between 1 January 1992 and 31
March 2011, to create a dataset of incident diabetes during the
period 1 April 2000 to 31 March 2011 based on first
admission for each unique patient [14]. Readmissions were
excluded on the basis of the unique patient identifier (HES-
ID) and for those with missing HES-ID (predominantly affect-
ing admissions prior to 1997), from unique combinations of
date of birth, sex and pseudonymised postcode. We summed
observed counts to the 2001 local authority district (LAD)
level (n = 354 LADs in England, mean population
~140,000) and calculated age- and sex-adjusted expected
counts using the England-wide dataset as the reference.
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Environmental data

We generated LAD level estimates of exposure to a range of
environmental factors, as summarised below and in electronic
supplementary material (ESM) Table 1. We used the Office
for National Statistics 2001 postcode population headcounts
for population weighting, and analyses were conducted in
ArcGIS (Environmental Systems Research Institute,
Redlands, CA, USA, 2017).

Meteorological conditions We calculated population-
weighted LAD level daily mean sunshine duration for 1980–
2005 at a 1 × 1 km resolution using data supplied by the
British Atmospheric Data Centre [15]. We calculated
population-weighted LAD level annual minimum and maxi-
mum temperatures using the Met Office UKCP09 dataset
containing monthly mean daily minimum and maximum
temperatures for 1981–2010 on a 5 km grid point scale. We
used population weighting of monthly mean pre-vitamin D
action spectrum ultraviolet for postcode districts, from
July 2002 to June 2003, to calculate LAD level annual mean
ultraviolet radiation [16].

Built environmentWe summed the percentage of the total area
of each LAD comprising green space, blue space, built envi-
ronment and intense agriculture using the 25× 25 m resolution
Centre for Ecology and Hydrology land cover map 2000 [17].
Using Ordnance Survey greenspace data [18], we calculated
the percentage of each LAD’s population that met Natural
England’s accessible natural greenspace standard (ANGSt)
criteria of: (1) at least 2 hectares of greenspace, no more than
300 m (5 min walk) from home; (2) at least one accessible 20
hectare site within 2 km of home; (3) one accessible 100
hectare site within 5 km of home; (4) one accessible 500
hectare site within 10 km of home [19]. We calculated the
proportion of population in each LAD, classified as rural or
urban using the Department for Environment, Food and Rural
Affairs (Defra) rural/urban classification for 2001 [20].

Environmental pollutants We calculated the population-
weighted LAD level mean radon potential class using 1 ×
1 km resolution data from the Public Health England–British
Geological Survey 2007 Indicative Atlas of Radon in the
United Kingdom [21]. We modelled population-weighted
LAD level annual mean estimates of background particulate
matter with an aerodynamic diameter <10 μm (PM10), nitrogen
dioxide and nitrogen oxides (2001); particulate matter with an
aerodynamic diameter <2.5 μm (PM2.5), carbon monoxide and
sulphur dioxide (2002); and ozone and benzene (2003) using
1 × 1 km background pollution data from Defra [22]. We also
derived population-weighted annual mean nitrogen dioxide and
PM10 (2007) from an EU-wide land use regression model
(100 × 100 m) [23] to check for consistency across different

models. We calculated population-weighted LAD level lead,
cadmium and arsenic in soil via empirical Bayesian kriging
using the British Geological Survey’s Geochemical Baseline
Survey of the Environment [24] and National Soil Inventory
soils summary information [25]. We calculated population-
weighted LAD level estimates of nitrates in drinking water
(2000–2010) using data from 14 water companies (Anglian
Water, Bristol Water, South Staffs Water, Northumbrian
Water, Portsmouth Water, Severn Trent Water, SES Water,
Southern Water, South East Water, South West Water,
Thames Water, United Utilities, Dŵr Cymru Welsh Water and
Wessex Water). We calculated population-weighted LAD level
agricultural farmland use of six different groups of pesticides
(fungicides, herbicides and desiccants, growth regulators, insec-
ticides/nemacides/acaracides, molluscicides and repellents, and
other) and total pesticide use using data from the Integrated
Assessment of Health Risks of Environmental Stressors in
Europe project [26], derived from Defra’s June 2000
Agricultural Returns census and the Pesticides Usage Survey
carried out by the Food and Environment Research Agency
(now Fera Science). We calculated population-weighted LAD
level estimates of light at night, in deciles, using data produced
as part of the Mapping Night-time Light Emissions project [27]
available at 200 × 200 m resolution.

Demographic characteristics We calculated LAD level popu-
lation density (people per km2) using the Office for National
Statistics LAD level mid-year population estimates for 2000
and 2001 [28]. We calculated per cent overcrowded house-
holds per LAD using 2001 census data [29]. We assigned
population-weighted LAD level 2004 Index of Multiple
Deprivation (IMD) and domains of IMD (income deprivation;
employment deprivation; health deprivation and disability;
education, skills and training deprivation; barriers to housing
and services; crime; the living environment) using data from
the Department for Communities and Local Government [30]
and the method proposed by McLennan et al. [31]. We aggre-
gated LAD level weekly tobacco expenditure per person
≥16 years of age, obtained from CACI (London, UK, www.
caci.co.uk) 2014 census output area data. We assigned LAD
level percentages of white (white British, white Irish, white
other), black (black Caribbean, black African, black) and
Asian (Indian, Pakistani and Bangladeshi) ethnicity using
2001 census data.

Statistical methods

To assess the association between type 1 diabetes and the 53
environmental factors, we proceeded in stages. In the first
stage, using a frequentist EnWAS approach, we fitted for each
environmental variable a LAD level univariable Poisson
regression with the type 1 diabetes case count as the depen-
dent variable and the age- and sex-adjusted expected count as
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the offset. To account for multiple testing, we applied a
Bonferroni correction control procedure. The EnWAS results
are presented in a Manhattan plot, which shows the –log10(p
value) × sign of association, i.e. the statistical significance and
direction, but not magnitude, of the unadjusted association
between each variable and type 1 diabetes incidence.

In the second stage, we fitted, for each environmental vari-
able, the same univariable Poisson regression models but in a
Bayesian framework, to include the spatial dependency
between neighbouring LADs (‘disease mapping’), and report-
ed the 95% credible intervals (CrIs) [32]. We mapped the
spatial residual RR to identify areas of high and low risk,
jointly with posterior probability maps as a measure of uncer-
tainty (i.e. to identify areas with an 80% probability of risk
being higher or lower than the national mean).

In the third stage, we fitted a multivariable Poisson ecolog-
ical regression, which included those environmental risk
factors that presented an adjusted p value <0.05 in the
EnWAS and a relevant CrI (i.e. RR >1 or <1) from the disease
mapping. As many of the risk factors were correlated, we
created a heat map to identify key variables from each corre-
lated ‘group’ of variables (many of the air pollutants, for
instance, were correlated such that they could not be included
together in the same model) for inclusion in the ecological
regression. Disease mapping and ecological regression
accounted for the spatial random effect and were fitted using
R-INLA (www.r-inla.org [33]), with a variation of the Besag–
York–Mollie model [34] that allows estimation of a mixing
variable to explain how much variability is due to spatial
component or over-dispersion in the data [35].

Fig. 1 Manhattan plot of associations between the 53 demographic and
environmental variables and type 1 diabetes, where variables with log10-
transformed p values above and below the black lines (Bonferroni correc-
tion) are statistically associated with type 1 diabetes (red, positively; blue,
negatively). ANGSt criteria are defined in the Methods section; ‘sign’

indicates the sign of association, such that the plot shows the statistical
significance and direction, but not magnitude, of the unadjusted associa-
tion between each variable and type 1 diabetes incidence; EU-LUR,
European land use regression air pollution model; UV, ultraviolet
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Ethics approval

The study used Small Area Health Statistics Unit data, obtain-
ed from NHS Digital and the Office for National Statistics.
The study was covered by national research ethics approval
from the London–South East Research Ethics Committee
(reference 17/LO/0846). Data access was covered by the
Health Research Authority Confidentiality Advisory Group
under section 251 of the National Health Service Act 2006
and the Health Service (Control of Patient Information)
Regulations 2002 – HRA CAG reference: 14/CAG/1039.

Results

TheHES-derived dataset included 13,948 incident type 1 diabe-
tes cases aged 0–9 years and first admitted to hospital with a
type 1 diabetes diagnosis over the period April 2000 to

March 2011. Case counts by LAD varied from 1 to 236 (median
33, interquartile range 24–46). The overall incidence was 21.2
(95% CI 20.9, 21.6) per 100,000; age- and sex-standardised
incidence rates ranged from 4.45 to 80.55 per 100,000.

The Manhattan plot (Fig. 1) shows that 30 of the 53 envi-
ronmental variables were significantly associated with type 1
diabetes after applying the Bonferroni correction for multiple
testing (p < 0.0009); all but four showed negative associa-
tions. A quantile–quantile plot of the –log10(p values) (ESM
Fig. 1) shows an S-shaped plot suggesting under-dispersed
data, and deviation from expectation under the null. Figure 2
plots the CrIs from the Bayesian Poisson regression (disease
mapping), which additionally accounts for the spatial depen-
dency between areas. Fifteen of the 30 variables that were
statistically significantly associated with type 1 diabetes inci-
dence in the frequentist EnWAS were also found to be signif-
icantly associated with type 1 diabetes after accounting for
spatial dependency in the data (Table 1).

Fig. 2 CrIs for RRs for each of the environmental variables from the
Bayesian ecological regression, where those with 95% CrIs >1 or <1
(red dashed line) are statistically associated with type 1 diabetes.

ANGSt criteria are defined in the Methods section; EU-LUR, European
land use regression air pollution model; UV, ultraviolet
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Table 1 Direction, magnitude and significance of the association with type 1 diabetes incidence for each environmental variable for the frequentist
ecological EnWAS and Bayesian disease-mapping approach

Variable EnWAS Disease mapping

Mean 95% CI Adjusted p valuea Mean 95% CrI

Minimum sunshine duration 0.920 0.877, 0.966 0.001 0.973 0.854, 1.108
Maximum sunshine duration 0.938 0.888, 0.991 0.023 0.963 0.835, 1.109
Minimum temperature 0.956 0.931, 0.982 0.001 0.959 0.913, 1.008
Maximum temperature 0.959 0.946, 0.972 <0.001 0.985 0.941, 1.031
Yearly ultraviolet radiation 1.000 1.000, 1.000 <0.001 1.000 0.999, 1.000
Land cover
Green space 1.000 0.999, 1.002 0.487 1.001 0.998, 1.003
Blue space 1.001 0.998, 1.003 0.636 0.998 0.994, 1.003
Built-up space 0.997 0.997, 0.998 <0.001 0.999 0.998, 1.000
Intense agriculture 1.003 1.002, 1.003 <0.001 1.001 1.000, 1.002

ANGSt 1b 0.996 0.995, 0.998 <0.001 0.999 0.996, 1.001
ANGSt 2b 0.998 0.997, 0.998 <0.001 0.999 0.998, 1.000
ANGSt 3b 0.999 0.999, 1.000 <0.001 1.000 1.000, 1.001
ANGSt 4b 0.999 0.999, 1.000 0.007 1.001 1.000, 1.002
Rural status, % 1.001 1.001, 1.002 <0.001 1.000 1.000, 1.001
Urban status, % 0.999 0.998, 0.999 <0.001 1.000 0.999, 1.000
Aggregate radon potential classc 1.049 1.031, 1.067 <0.001 1.047 1.018, 1.078
Fine particulate matter (PM2.5) 0.939 0.925, 0.954 <0.001 0.972 0.942, 1.005
Particulate matter (PM10)

c 0.958 0.949, 0.968 <0.001 0.977 0.958, 0.997
Nitrogen dioxidec 0.990 0.988, 0.993 <0.001 0.994 0.990, 0.998
Nitrogen oxidesc 0.996 0.995, 0.997 <0.001 0.997 0.996, 0.999
Carbon monoxidec 0.930 0.914, 0.946 <0.001 0.968 0.939, 0.999
Sulphur dioxide 1.006 0.997, 1.015 0.198 1.012 0.995, 1.030
Ozone 0.998 0.995, 1.001 0.179 0.999 0.991, 1.008
Benzene 0.989 0.969, 1.008 0.261 1.010 0.984, 1.036
PM10 (EU-LUR model) 0.976 0.970, 0.983 <0.001 0.989 0.977, 1.002
Nitrogen dioxide (EU-LUR model)c 0.992 0.990, 0.993 <0.001 0.994 0.991, 0.997
Leadc 0.999 0.999, 0.999 <0.001 0.999 0.999, 0.999
Cadmium 1.000 1.000, 1.000 0.096 1.000 1.000, 1.000
Arsenic 1.000 1.000, 1.000 0.165 1.000 1.000, 1.000
Nitrates in drinking water 0.997 0.996, 0.999 0.002 1.000 0.997, 1.003
Fungicides 1.000 1.000, 1.000 0.003 1.000 1.000, 1.000
Herbicides and desiccants 1.000 1.000, 1.000 0.055 1.000 1.000, 1.000
Growth regulators 1.000 1.000, 1.000 0.110 1.000 1.000, 1.000
Insecticides, nemacides and acaracides 1.000 1.000, 1.000 0.048 1.000 1.000, 1.000
Molluscicides and repellents 1.000 1.000, 1.000 0.018 1.000 1.000, 1.000
Other pesticides 1.000 1.000, 1.000 0.020 1.000 1.000, 1.000
Total pesticides 1.000 1.000, 1.000 0.014 1.000 1.000, 1.000
Outdoor light at nightc 0.996 0.995, 0.996 <0.001 0.997 0.995, 0.998
Population density (2000)c 0.964 0.957, 0.972 <0.001 0.976 0.963, 0.991
Population density (2001)c 0.965 0.957, 0.972 <0.001 0.977 0.963, 0.991
Overcrowdingc 0.959 0.949, 0.968 <0.001 0.976 0.958, 0.994
IMD 0.998 0.996, 1.000 0.024 0.998 0.994, 1.001
Living environment domainc 0.994 0.992, 0.995 <0.001 0.994 0.991, 0.997
Housing domain 0.993 0.991, 0.995 <0.001 0.996 0.992, 1.001
Education domain 1.003 1.001, 1.005 0.002 1.002 0.999, 1.005
Employment domain 1.012 0.996, 1.028 0.130 0.994 0.962, 1.027
Income domain 0.975 0.961, 0.989 0.001 0.978 0.953, 1.004
Crime domain 0.924 0.896, 0.952 <0.001 0.965 0.920, 1.013
Health domain 1.013 0.989, 1.038 0.284 0.997 0.950, 1.048

Tobacco expenditure 0.995 0.982, 1.009 0.503 0.991 0.964, 1.020
White ethnicityc 1.008 1.006, 1.009 <0.001 1.005 1.002, 1.008
Black ethnicityc 0.982 0.978, 0.986 <0.001 0.987 0.980, 0.994
Asian ethnicityc 0.989 0.986, 0.992 <0.001 0.995 0.990, 1.000

a p < 0.0009 to be significant after Bonferroni correction for multiple testing
bANGSt criteria are defined in the Methods section
c Variable significantly associated with type 1 diabetes across both approaches

EU-LUR, European land use regression air pollution model
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The RR of type 1 diabetes by LAD varied from 0.68 to 1.39
across England, with higher RRs (and those with an 80%
probability of risks being higher than the England mean)
appearing to be in coastal and more rural areas, notably
Norfolk, the North East and Cornwall (Fig. 3a, b). However,
rural/urban status was only associated with type 1 diabetes
incidence in the EnWAS; this finding was not replicated in
the disease-mapping analysis. A large proportion of the vari-
ability in type 1 diabetes (78%) was explained by the spatial
structured component. The spatial pattern was consistent over
time: LAD level observed counts for 2000–2005 vs 2006–
2011 were highly correlated (Pearson correlation 0.885).

The heat map (Fig. 4) shows the correlations between the 53
variables investigated. As the air pollutants, and many of the
demographic variables, were highly intercorrelated, they could
not be included in the samemodel. We developed an ecological
regression selecting non- (or less) correlated variables from
among the 15 variables significantly associated with type 1
diabetes in both the EnWAS and disease mapping (Table 2).
We included nitrogen dioxide (as amarker of air pollution), lead
in soil, radon potential class, ethnicity, overcrowding and IMD
living environment domain in the ecological regression and
found an association with the living environment (RR 0.995;
95% CrI 0.991, 0.998) and radon potential class (RR 1.044;

Fig. 3 Type 1 diabetes incidence in children aged 0–9 years, adjusted for
age and sex, 2000–2011, at LAD level in England. (a) Smoothed RRs and
(b) posterior probabilities, from disease mapping in R-INLA. (c)
Smoothed RRs and (d) posterior probabilities, from the ecological

regression model including nitrogen dioxide, lead in soil, aggregate radon
potential, black ethnicity, overcrowding and IMD living environment
domain
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95% CrI 1.015, 1.074), with 85% of the variability in type 1
diabetes risk explained by the spatial structured component.
With adjustment for these variables we identified fewer LADs
with an 80% probability of having a higher (74/354 vs 87/354)
or lower (79/354 vs 88/354) risk compared with England as a
whole (Fig. 3d, b). Models with PM10 instead of nitrogen diox-
ide, or with Asian ethnicity instead of black ethnicity, and

removal of lead in soil (due to correlations with nitrogen diox-
ide/PM10/ethnicity) did not materially alter the output.

Discussion

In our England-wide small area study, using data from nearly
14,000 childhood type 1 diabetes cases, we found marked
spatial heterogeneity in type 1 diabetes risk and identified
several environmental variables associated with type 1 diabe-
tes incidence which might warrant further investigation.
Pollution and demographic variables associated with
urbanicity, including air pollution, light at night and lead in
soil, along with population density, overcrowding and minor-
ity ethnic populations, were all negatively associated with
type 1 diabetes incidence in the age- and sex-adjusted analy-
ses, although these variables did not remain significant in a
multivariable ecological regression. The significant negative
association we observed between type 1 diabetes and the IMD

Fig. 4 Spearman’s rank correlation heat map for the demographic and environmental variables. ANGSt criteria are defined in the Methods section; EU-
LUR, European land use regression air pollution model; UV, ultraviolet

Table 2 Ecological regression for childhood type 1 diabetes risk,
adjusted for age and sex

Variable RR 95% CrI

Nitrogen dioxide 1.000 0.995, 1.005

Lead in soil 0.999 0.999, 1.000

Aggregate radon potential 1.044 1.015, 1.074

Black ethnicity 0.991 0.981, 1.001

Overcrowding 1.015 0.988, 1.044

IMD living environment domain 0.995 0.991, 0.998
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living environment domain and the positive association with
radon potential class did remain significant in the multivari-
able ecological regression. However, this model did not
explain the observed spatial structure in area level incidence,
suggesting other factors also play a role.

Ethnic differences in incidence have been reported previ-
ously, including in England, where Harron et al. found the
incidence of type 1 diabetes in non-South Asians to be signif-
icantly higher than in South Asians in Yorkshire [36]. In
Harron et al.’s individual level study the ethnicity of the type
1 diabetes cases was known, whereas in our area level study
the observed increase in type 1 diabetes incidence was in areas
with a higher proportion of white ethnic population, not neces-
sarily in people of white ethnicity.

In our study, living environment deprivation was the only
domain of IMD significantly (negatively) associated with type
1 diabetes, after accounting for the spatial dependency in the
data. This IMD domain describes deprivation in the ‘indoors’
living environment (specifically social and private housing in
poor condition and houses without central heating) and
‘outdoors’ living environment (comprising an overall air qual-
ity score and road traffic accidents involving injury to pedes-
trians and cyclists) [37]. We did not find any previous studies
looking at type 1 diabetes incidence and housing conditions,
but previous studies have looked at type 1 diabetes with
respect to composite measures of deprivation which might
correlate with components of the IMD indoor living environ-
ment domain. For example, Staines et al. and Crow et al.
reported a reduced risk of type 1 diabetes in children with
decreasing levels of deprivation in West Yorkshire, North
Yorkshire and Humberside [11] and northern England [10].

With respect to overcrowding, previous studies in
Northern Ireland [38] and West/North Yorkshire and
Humberside [11] reported negative associations between
type 1 diabetes risk and overcrowding. Our finding of a
negative association between overcrowding and type 1
diabetes is in keeping with these earlier studies, although
overcrowding did not remain significant in our multivar-
iable ecological regression.

Previous studies have reported inconsistent findings on the
association between type 1 diabetes and air pollution. In
Southern California, pre-diagnosis ozone and PM10 exposure
was significantly higher in people with type 1 diabetes diag-
nosed before 5 years of age, although nitrogen dioxide, sulphur
dioxide and sulphate exposures were significantly lower in the
later onset group [39]; a significantly higher OR was found for
cumulative exposure to ozone and sulphate [40]. In Bavaria,
Germany, exposure to PM10 and nitrogen dioxide was reported
to accelerate the manifestation of type 1 diabetes [41]. Our area
level observations of a negative association between type 1
diabetes and air pollution do not corroborate these findings.

We found a small but significant negative association
between type 1 diabetes and lead in soil in our EnWAS and

Bayesian analyses, although this association did not remain
significant in the multivariable ecological regression. A study
in Sardinia reported a significant negative correlation between
type 1 diabetes incidence rates and lead in stream sediments [42].

We found a negative association between type 1 diabetes
and both light at night and population density in our EnWAS
and Bayesian analyses, although these variables are highly
correlated [43]. A negative association between type 1 diabe-
tes and population density has been observed elsewhere [11,
38], although others have reported a positive association [44,
45]. Researchers have theorised that population density and
overcrowding might associate with type 1 diabetes via a viral
aetiology and/or hygiene hypothesis [5–7], although popula-
tion density is also closely associated with other urban
phenomena, including air pollution, ethnicity and land
contamination (e.g. lead in soil), as discussed above.

We found a consistent, significant positive association
between radon potential class and type 1 diabetes risk across
all our analyses. In the UK, higher radon potential tends to be
found in rural areas, especially in South West England and
Wales [46]. Our aggregate measure of radon potential was
calculated from Public Health England–British Geological
Survey radon data, where each 1 km grid square is classed
according to the percentage of homes (0–1%, 1–3%, 3–5%, 5–
10%, 10–30% or >30%) within each grid square predicted to
be above the action level of 200 Bq/m3, which does not
convert well to an aggregate, population-weighted ecological
measure of radon exposure. We could find no other studies
specifically linking radon exposure to type 1 diabetes to
support our finding.

In our ecological analyses we found little evidence of an
association between type 1 diabetes and the meteorological
variables sunshine hours, temperature or ultraviolet B
exposure. Previous studies reporting such associations
have often taken a continental or global approach [47],
where variation in these variables will be considerably
greater than those observed across England. We found no
evidence to support an association between type 1 diabetes
and nitrates in drinking water. The mean LAD level nitrate
concentration we calculated across England was 17 mg/l
(range 0.02–39 mg/l), which is below the WHO drinking
water guideline value of 50 mg/l. Nonetheless, 194 of the
319 LADs where nitrate levels could be assessed had mean
nitrate levels above the 14.85 mg/l upper tertile of nitrate
levels at which a significantly increased risk was observed
in Yorkshire [12]. Our inability to observe an association
between nitrates in drinking water and type 1 diabetes is
unlikely, therefore, to be because nitrate levels were below
a threshold at which an association might be expected to be
observed. In our analyses we found no evidence of an
association between land use variables or pesticide use
and type 1 diabetes, in keeping with the findings of an
earlier study [48], although pesticide use in our study
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reflected agricultural use on farmland within each LAD,
rather than household use, which may be a more direct
and relevant metric.

Strengths and limitations

Our large, national study benefits from wider exposure differ-
entials than observed in the regional studies previously under-
taken in the UK and elsewhere. Our small area approach
might have reduced components of ecological bias owing to
within-area heterogeneity, whichmight have affected previous
assessments using countries as the unit of analysis. We applied
an agnostic analytical approach (EnWAS), corrected for multi-
ple testing, to assess a wide range of environmental variables,
including many meteorological, demographic and pollution
variables that have been found—often inconsistently—to
associate with childhood type 1 diabetes. We employed multi-
ple analytical approaches to assess the consistency and robust-
ness of our findings.

Our HES-based incident dataset will likely include some
readmissions (i.e. prevalent cases), because we were unable to
exclude children who moved (and therefore changed post-
code) before the introduction of the unique identifier HES-
ID [14]. Some incident cases may be absent from our dataset,
e.g. children treated outside the NHS setting. We have shown
previously that HES-based data show good concordance with
well-ascertained regional register data, especially from the
year 2000 onwards, and for children aged 0–9 years [14],
which influenced our choice of time period and age groups
for this study. Type 1 diabetes is a heterogeneous disease [1,
49], and environmental triggers may differ in those with early
onset vs those who present with diabetes at an older age. As
noted above, we excluded children aged >9 years from our
analysis but combined the 0–4 and 5–9 year age groups to
ensure case counts per LAD were sufficient to deliver robust
and interpretable results. Nonetheless, the LAD level sex-
adjusted incidence rate for 0- to 4-year-olds vs 5- to 9-year-
olds showed only a weak correlation (r = 0.35), as did age-
adjusted LAD level incidence for boys vs girls (r = 0.24).
Further analyses at a coarser geographic resolution might
reveal different associations by age group and/or by sex,
although with loss of spatial granularity in the exposure vari-
ables. The HES data capture details of diabetic individuals’
age and sex, admission date and diagnosis but do not provide
any information on family history, lifestyle or diet, nor were
area level data available for these variables. As such, analysis
of the impact of these potential confounders on disease risk
could not be assessed.

With respect to the meteorological, demographic and pollu-
tion variables investigated, these were available at a range of
scales, and we had to average each to LAD level. Some vari-
ables, specifically radon potential class and pesticide use, were
derived from data not ideally suited to the purpose. For other

variables (e.g. air pollutants and population density), the
aggregation to LAD level was at the loss of potentially impor-
tant spatial granularity, which might have attenuated possible
associations. While we tried to select environmental variables
at or shortly before baseline (i.e. ~2000), this was not possible
for all variables, including metals in soil and meteorological
data, which were based on data collected over the study period
and preceding decades, and the data on tobacco expenditure
and ANGSt criteria, which were based on information which
post-dates the end of the HES-based incident dataset. While
this temporal mismatch between the environmental and health
data might have introduced bias, the persistence in relative
ranking at the LAD level of many of the studied environmen-
tal and demographic variables [50] suggests that any such bias
is unlikely to have materially altered our findings.

As this is an area level study, ecological bias may be pres-
ent, such that the ecological associations we observedmay not
reflect associations between these environmental variables
and type 1 diabetes at the individual level. As many of the
variables assessed were intercorrelated it was not possible to
develop a full, mutually adjusted model; as such, confounding
bymeasured and unmeasured variables (including diet, family
history, etc.) may remain. We corrected for multiple testing
and focused on those associations which were consistent
across the EnWAS and disease-mapping analyses; nonethe-
less, there remains a risk of false-positive results and poten-
tially important confounders which we could not assess.
Replication in an independent cohort and/or in analyses
undertaken at the individual level would be useful to validate
and confirm these findings.

Conclusions

Many demographic and environmental variables have been
proposed as risk factors for childhood type 1 diabetes to explain
disease onset and/or progression. Despite the many ecological
and individual level epidemiological studies undertaken over
the past 40 years, few variables have been consistently found
to associate with type 1 diabetes. Our ecological EnWAS and
disease mapping suggests a strong spatial structure in disease
risk across England, with several environmental (PM10, nitro-
gen dioxide, nitrogen oxides, carbon monoxide, lead in soil,
radon, outdoor light at night) and demographic (overcrowding,
population density, ethnicity) variables associated with risk of
type 1 diabetes. The geographic distribution of type 1 diabetes
risk highlights rural and/or coastal areas as having higher risk,
potentially supporting the hygiene hypothesis and/or indicating
a protective effect of features associated with the urban envi-
ronment and/or spatial variation in genetic susceptibility.
Further investigation, at the individual level, may help identify
modifiable environmental triggers of type 1 diabetes.
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