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Abstract: The receptor for advanced glycation end products (RAGE), a multi-ligand receptor, is mostly
associated with promoting inflammation and oxidative stress. In addition to advanced glycation
end products (AGEs), its ligands include High mobility group box 1 protein (HMGB-1), S-100
proteins and beta-sheet fibrils. The effects of several metals and metalloids on RAGE expression and
activation have been recently studied: in vivo and in vitro exposure to methylmercury, selenium, zinc,
manganese, and arsenic was associated with a variety of RAGE-related alterations and behavioral
impairments, which are mostly dependent upon the administration procedure (local vs. systemic) and
age during exposure. Recently, C. elegans has been proposed as a potential novel model for studying
RAGE-related pathologies; preliminary data regarding such model and its potential contribution to
the study of metal-induced RAGE-related pathologies are discussed.

Keywords: receptor for advanced glycation end products; methylmercury; selenium; zinc; arsenic;
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1. Introduction

The receptor for advanced glycation end products (RAGE) is a mammalian, multiligand receptor
of the immunoglobulin family. RAGE is found on the surface of a variety of cell types and was first
identified and described in 1992, initially as a specific binding site for advanced glycation end products
(AGEs) [1]. RAGE is expressed in different cell types such as neurons, dendritic cells, neutrophils,
monocytes/macrophages, lymphocytes, cardiomyocytes and vascular endothelial [2].

RAGE can bind to different ligands such as AGEs, Aβ, fibrillar Aβ, high-mobility group
box protein (HMGB1), macrophage-antigen-1 (Mac1), S-100 proteins, β-amyloid, β-sheet fibrils,
and lipopolysaccharide [3–6]. This binding of RAGE and its ligands results in depletion of
cellular antioxidant defense mechanisms and generation of reactive oxygen species. It also induces
up-regulation of inflammatory cytokines through RAGE signal transduction and activation of
transcription factors that are associated with pathologies, such as diabetes, atherosclerosis, coronary
artery disease, cancer, and neurodegenerative diseases [6–10].

Previous reports indicate that chemical elements can affect RAGE expression and activation and
lead to changes in cell signaling pathways which, in turn, are associated with the onset and exacerbation
of diabetes, hypertension, cancer and also neurodegenerative illnesses such as Alzheimer’s disease
(AD) and Parkinson’s disease [11–13]. Several chemical elements (metals, metalloids, and non-metals)
play an essential role in human life and are considered/assumed to be essential to metabolic function.
However, some essential elements such as selenium and manganese can be recognized as toxic in
excess [14]. On the other hand, some elements are considered “toxic elements”, denoting that even at
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low levels of exposure some adverse effect is likely to occur; such is the case for arsenic or mercury
exposure [14].

In this context, the present review focuses on the role of RAGE in neurodegenerative
and other diseases which are related to exposure to specific elements (Table S1). In addition,
the potential contribution of a novel C. elegans model for the study of RAGE-related metal-induced
neurodegeneration is discussed.

2. MeHg

Mercury is a heavy metal, which can be found in different chemical forms: elemental or Hg0,
inorganic Hg compounds (Hg+ or Hg2+) and organic compounds, such as ethylmercury (EtHg)
and methylmercury (MeHg) [15,16]. Excessive exposure to MeHg occurs, most commonly, through
consumption of contaminated fish and seafood. Several studies highlight the ability of MeHg to cross
the blood-brain barrier (BBB) and cause neurotoxicity and it can lead to impairments in developing
brains in fetuses and children [12,17,18].

In a recent study, developmental neurotoxicity following prenatal exposure to MeHg was studied
in rats: pregnant rats were exposed by gavage between gestational day 5 and parturition and the
offspring were tested behaviorally and their brains were analyzed [12]. Using an open-field test,
decreased exploration behavior and increased anxiety-like behavior were observed in rats prenatally
exposed to MeHg; the novel-object recognition task unveiled a deficit in short and long-term memory
in these rats as well. Along with these behavioral findings, hippocampal decrease in RAGE expression
was found in brains of MeHg exposed rats.

To better understand the role of mercury exposure in Alzheimer’s disease (AD) commencement
and exacerbation, another study focused on the effects of MeHg exposure on amyloid β-protein (Aβ)
in the brains of adult rats [19]. Following chronic administration by gavage, hippocampal levels
of Aβ increased in a dose-dependent manner while levels of RAGE increased in the brain capillary
endothelium. As RAGE plays a crucial role in transferring Aβ from the interstitial fluid into the
brain [20,21], it is argued that the detrimental effects of MeHg may not be related to generation and
degradation of Aβ in the brain, but more likely to Aβ transport to and from the brain.

3. Selenium

Selenium is a nonmetal found in rocks, soil, and food; fruits, vegetables, and animal protein are
the main sources of the element. Selenium is involved in several biological pathways as an integral
component of selenoproteins such as glutathione peroxidase, an enzyme that scavenges for ROS
and plays an important role in oxidative injury prevention [22,23]. Moreover, selenium regulates
the activity of various enzymes involved in the processes of glycolysis and gluconeogenesis [24,25].
Low selenium intake is associated with developmental diseases and overexposure to selenium results
in toxicity [26].

Among the many processes affected by selenium are inflammation, oxidative stress, hormone
production and DNA methylation and repair [27]. Furthermore, selenium exhibits several insulin-like
effects related to glucose transport and glycolysis [28,29]. In an effort to conduct an in-depth study
of the insulin-like effects of selenium, a streptozotocin-induced rat model for diabetes was used:
in addition to mitigating diabetes-related altered activity of antioxidant enzymes and glycated
hemoglobin content, chronic selenium administration also lead to downregulation of nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-kB) and RAGE expression [30]. This effect
on RAGE was observed in both control and diabetic animals and the offered explanation was
decreased levels of glycosylated hemoglobin, secondary to the hypoglycemic effect of selenium. Finally,
it was hypothesized that selenium’s effect on RAGE and NF-kB would also lead to a reduction in
diabetes-related inflammation; this was, indeed, confirmed by histopathological studies.
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4. Zinc and Manganese

Zinc (Zn) is an essential element that is a component of several enzymes and is very important
to biochemical and physiological processes related to glucose metabolism, as it participates in the
synthesis, storage, secretion, and translocation of insulin [31–33]. Several epidemiologic studies have
reported a correlation between low levels of zinc and the occurrence of type 2 diabetes mellitus [34–38].
Zinc also plays a vital role in the maintenance and regulation of the immune system [39].

Manganese (Mn) is an essential dietary nutrient found in many foods such as legumes, grains,
nuts, rice, beans, and tea [40]. The metal is required for normal development and growth, as it
regulates bone formation, the immune and reproduction systems, and protein, carbohydrate and lipid
metabolism. Furthermore, manganese is used as a cofactor for several enzymes such as glutamine
synthetase, arginase and superoxide dismutase [41]. However, chronic exposure to high levels of
manganese may lead to toxicity, a condition referred to as manganism which results in extrapyramidal
motor disorders [42,43]. In addition, such exposure results in its accumulation in some brain regions—a
known risk factor for Parkinson’s disease [44,45].

The effects of zinc and manganese on AGE-mediated endothelial cell dysfunction were studied
in vitro using bovine aortic endothelial cells (BAECs) [13]. Initial exposure of the cells to AGEs
was followed by treatment with either zinc or manganese: when compared to cells which went
through AGEs exposure and no treatment, treated cells exhibited increased cell viability in both
cases; additionally, zinc treatment lead to a significant decrease in NF-kB activation and RAGE
expression and manganese treatment lead to significant downregulation of NF-kB expression and
nuclear translocation. A sizable nonsignificant decrease in RAGE expression was also observed
following manganese treatment, possibly due to the small number of subjects (N = 3). Future studies
should focus on the effects of these two metals on RAGE, since both metals showed a similar overall
tendency, namely decreased RAGE expression and, perhaps subsequently, mitigated inflammation.

5. Arsenic

Arsenic (As) is a metalloid that is widely distributed throughout the Earth’s crust in a variety
of chemical forms, including organic and inorganic species [46]. The inorganic arsenic species are
known human carcinogens, being found mainly in drinking water and foods such as rice, fish, and
vegetables [47,48]. The neurotoxic effects of arsenic exposure have been previously discussed: while
childhood exposure to arsenic may lead to reduced intellectual function and cognitive abilities, later
exposure may result in encephalopathies, memory, learning and concentration decline, and mood
disorders such as depression and anxiety [49–51].

Arsenic exposure has been associated with several peripheral vascular disease, diabetes, chronic
lung disease and also several types of cancer [52–56]. As most studies focus on high levels of
exposures, Lantz et al. studied the effects of low-dose chronic arsenic exposure on pulmonary protein
expression [57]. In their study, levels of several proteins in the lung-lining fluid were evaluated in
adult mice following a 4-week exposure to arsenic in drinking water: a negative correlation between
arsenic exposure dosage and expression of RAGE, with a higher dose leading to a larger decrease
in expression. To test this correlation in a human context, levels of RAGE expression from sputum
samples were compared with urinary arsenic concentration from the same subjects: here too a negative
correlation was found, as subjects with higher urinary arsenic concentrations had lower levels of
RAGE expression. Two suggested mechanisms for these findings are arsenic-induced alteration of
promoter region methylation and also altered transcriptional regulation of RAGE.

Chronic arsenic exposure has also been associated with several neurodegenerative phenomena,
including demyelination, altered chemical transmission, DNA defragmentation and lipid peroxidation;
in many cases, these processes are secondary to increased generation of reactive species. It has recently
been hypothesized that the deleterious effects arsenic exposure has on the nervous system, over
time, lead to the commencement and exacerbation of Alzheimer’s disease (AD) via Aβ production
and related pathways. This notion was recently addressed using the rat model, in a study where



Int. J. Environ. Res. Public Health 2018, 15, 1407 4 of 8

animals were exposed chronically to arsenic beginning fetal development and ending at 4 months
of age; following exposure, the animals were tested behaviorally and their brains were subsequently
analyzed [11]. Using a contextual fear conditioning test, arsenic exposure was associated with
behavioral impairments; complimentary to this observation, levels of both RAGE and Aβ were
elevated in the brains of exposed animals. Finally, levels of the low-density lipoprotein receptor-related
protein 1 (LRP1) were also evaluated, as this protein mediates Aβ clearance by transferring it from the
brain to the bloodstream [58]: levels of this protein were unchanged following arsenic exposure which,
along with elevated RAGE, further confirms the theory of arsenic-related generation and accumulation
of Aβ.

6. C. elegans Model for RAGE Study

Caenorhabditis elegans (C. elegans) is an expedient experimental worm-model due to its characteristics,
namely small size, short lifespan, rapid life cycle and translucent body, to name a few [59–61]. Most of
the C. elegans genes and almost half of its disease-related genes are evolutionarily conserved and this
worm has been used to study numerous human diseases and neurodegenerative disorders, such as AD,
Parkinson’s disease (PD), stroke, cancer and metabolic diseases [62–64]. Recently, the potential benefits
of using the C. elegans model for studying RAGE-related pathology have been discussed, as very
few mammals (in vivo) and cell lines (in vitro) are currently used in this context [3,65]. For example,
the effects of RAGE expression on daf-16 pathways could be further investigated in the worm, as these
pathways seem to mediate the ameliorative effects of human insulin on lifespan reduction and neuronal
damage—two phenomena which are exhibited following exposure to high glucose conditions [66].

Subsequently, a C. elegans strain expressing RAGE in neurons was generated to serve as a model
for studying RAGE-related pathologies [67]. Initial characterization of this worm included behavioral,
developmental and morphological assessment. Locomotion was evaluated in this strain in three
different contexts: general locomotion (no treatment), locomotion following heat shock and locomotion
following ethanol exposure. A decrease in general locomotion was observed using a method of
counting body bends (less body bends per minute for RAGE worms). Following heat shock and
ethanol exposure, a normal decrease in locomotion is observed in the wild-type (N2); the RAGE worm,
however, exhibited a significantly larger decrease in locomotion following these exposures. Another
behavior which was tested in the RAGE worm is pharyngeal pumping following heat-shock: here
too, N2 shows a decrease in pharyngeal pumping following such exposure. Indeed, the RAGE worm
exhibits a larger decrease in locomotion following heat-shock. Regarding development, two parameters
were evaluated in the RAGE worm as compared with N2: (1) the percentage of hatched worms 24 h
after egg laying and (2) the time it takes an egg to develop into an egg-laying adult. An overall
developmental delay was found, with a significant decrease of hatched RAGE-laid eggs after 24 h
and also a longer amount of time needed for RAGE worms to reach the egg-laying stage during
adulthood. Finally, the RAGE worm strain was crossed with several other strains, which have different
neurotransmitter systems tagged with GFP (dopaminergic, serotonergic, cholinergic, GABAergic and
glutamatergic). Using confocal microscopy, fluorescent signaling was evaluated in these crossed worms
to study RAGE-related neurodegeneration; a decrease in fluorescent signaling was found only in worms
with GFP-tagged dopaminergic system, suggesting some impairments to that system specifically.

In an extensive review regarding the use of C. elegans as a platform for studying metals-related
neurodegenerative diseases, the role of aluminum (Al), copper (Cu), iron (Fe), lead (Pb), manganese
(Mn), mercury (Hg), and zinc (Zn) in AD, PD, and other neurodegenerative diseases is discussed:
indeed, C. elegans proved to be a highly efficient screening system for metal-induced neurodegeneration,
as the use of this model lead to an in-depth understanding of metal transportation and homeostasis,
along with an insight into potential therapeutic methods for neurodegenerative diseases [68].

Considering this tremendous potency of the C. elegans model, the recently developed
RAGE-expressing worm strain is suggested as a favorable candidate for elucidating the role of RAGE
in metal-induced neurodegeneration. The ease and speed associated with this model, together with
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its conserved neurotransmitter biology, provide the ideal scaffolding for building a more efficient
experimental design and, ultimately, should greatly contribute to the study of RAGE-related metal
neurotoxicity and the development of relevant and efficient therapeutic strategies.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/15/7/1407/
s1, Table S1: The effects of metal toxicity on RAGE expression.
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