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Abstract In the present study, we investigate the effect ex-
trinsic (habitat and season) and intrinsic (host’s age and sex)
factors on the richness, diversity, and structure of parasite
component communities and aggregation patterns in the hel-
minth fauna of the great cormorant Phalacrocorax carbo from
northeastern Poland. The helminth fauna of cormorants from
the brackish water habitat was far richer (30 species) than in
those from freshwater lakes (18 species) and strongly depend
on season and age of the host. The values of diversity index
strongly varied in relation to habitat and host age with clear
seasonal differences in the value of diversity index, i.c., its
value increased over time in adults from the brackish water
habitat and decreased in those from the freshwater lakes. The
number of helminths in adult and immature birds varied,
depending on the season and habitat: in the brackish water
habitat, the overall percentage of helminths was higher in
spring than in summer, while in the freshwater habitat a higher
proportion of helminths was recorded in summer. During
spring, in the brackish water habitat, we observed a higher
level of aggregation (for all groups of helminths) than in
autumn. The opposite pattern was found in the freshwater
habitat. However, this regularity was typical of adult birds
only. In immature hosts, the level of aggregation was not
predictable and varied among the higher taxa. Our study
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clearly showed that processes determinate diversity, structure,
richness, and patterns of aggregation in helminth assemblages
of avian hosts are multi-origin and highly complex.

Introduction

Parasitic assemblages are highly structured groups, composed
of many species and shaped by an array of ecological and
evolutionary factors. Because of their complexity, precise
identification of processes, which determine the structure
and diversity of the helminth communities, as well as distri-
bution of parasites among host populations are still among the
crucial problems in parasite ecology. In the past decade, a
number of papers described the effects of several extrinsic
(geographical distribution of host species, quality and diver-
sity of habitat, season, etc.) and intrinsic (host’s age and sex,
migrations, etc.) factors on the formation and functioning of
helminth assemblages. They primarily focused on the analysis
of temporal and spatial variability of helminth communities of
easily available hosts: fishes (e.g., Seifertova et al. 2008; Timi
et al. 2010; Pérez-del-Olmo et al. 2011) and small mammals
(e.g., Gotiy de Bellocq et al. 2003; Behnke et al. 2008a, b).
To date, relatively little attention was paid to comprehen-
sive analyses of the processes governing the structure, rich-
ness, and diversity of internal parasite assemblages in avian
hosts. The helminth communities of birds, especially those
closely associated with water, are generally far richer and
more diverse than those of fish and mammal hosts (Kennedy
et al. 1986; Bush et al. 1990; Poulin 1997), and the processes
which determine their composition are definitely more com-
plicated (e.g., Bykhovskaya-Pavlovskaya 1962; Dogiel 1962;
Bush 1990). Most of the studies dealing with the variation of
structure, richness, and diversity of helminth assemblages in
avian hosts overlooked key interactions between the various
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levels of organization of parasitic assemblages, especially
between the component- and infracommunities. Each of these
levels developed under different evolutionary and ecological
pressures, and only their parallel analysis allows a precise
identification of factors determining the structure and diversity
of parasite communities. Component communities (assem-
blages of populations of all parasite species exploiting some
subset of host individuals—Bush et al. 1997) are relatively
long-lived (their lifespan is equal to the duration of the host
population) and therefore relatively stable; they are formed
over evolutionary time scales as a result of speciation, extinc-
tion, colonization, and host switching (Poulin 2007a).
Infracommunities (all parasites of different species in the same
host individual—Bush et al. 1997) are relatively short-lived
(duration limited to the host individual’s lifespan) and show
the greatest variation. They are mainly affected by ecological
factors and result from acquisition of new parasite individuals
and from their demographic consequences (Poulin 2007a).
However, attempts at a holistic approach to the analysis of
processes shaping the diversity and structure of the helminth
assemblages in avian hosts, taking into account all helminth
taxa, hierarchical structure of parasite assemblages and full
range of variability, arising from biology and ecology of the
birds, are few. Previous studies were based on small samples
of birds (Edwards and Bush 1989; Bush 1990) or on host
species (e.g., sedentary species with less varied diet and poor
helminth fauna—Calvete et al. 2003, 2004) whose character-
istics did not reflect the full complexity of the processes
forming their helminth assemblages.

Detailed knowledge of factors determining the aggregated
distribution of helminths among their host populations is
crucial to understanding the processes shaping the structure
and functioning of parasite communities. Some authors pro-
posed that aggregated distribution of parasites should be
regarded as a characteristic feature of parasitism, widely ob-
served among several groups of macroparasites (Crofton
1971; Shaw and Dobson 1995; Poulin 2007b). Generally,
the aggregated distribution of parasites may be caused by
heterogeneity of the hosts (Wilson et al. 2002; Poulin 2007a;
Matthee and Krasnov 2009) or by demographic processes in
the parasite populations (Anderson and Gordon 1982; Poulin
2007b). Host-dependent factors have been suggested as more
important in generating aggregative patterns than are parasite-
related mechanisms (Wilson et al. 2002; Matthee and Krasnov
2009), but this subject is still debated (Morand and Krasnov
2008). When aggregation patterns are similar between differ-
ent helminth species exploiting the same host species and host
population, these patterns are governed by the host’s biology.
When, however, these patterns are produced by parasite-
related differences, they should vary among parasite species
(Matthee and Krasnov 2009; Marques et al. 2010; Pérez-del-
Olmo et al. 2011), showing differences in their life strategies;
for example, food-transmitted parasites exhibit a more
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pronounced aggregation (Bush et al. 1993; Marcogliese
2007). Furthermore, when the main patterns are similar in
different taxa, but are pronounced to different degrees, then
the differences are likely to be produced by among-parasite
differences in life history, but the causes underlying such
differences are not well understood (Morand and Krasnov
2008). This clearly shows that detailed studies comprising
both aggregation patterns among different parasite taxa infect-
ing a single host population at a given time and place, and
different host populations and/or groups of hosts with differ-
ent characteristics (age, sex, breeding status, etc.) are neces-
sary to understand these processes. In recent literature, such
analyses concerning helminth parasites are extremely rare
(Newey et al. 2005; Marques et al. 2010); in avian hosts, the
issue has been investigated only to a limited extent (Kanarek
2011; D’Avila et al. 2012).

In this paper, we investigate the effect of several extrinsic
(habitat and season) and intrinsic (host’s age and sex) factors
on the richness, diversity, and structure of parasite component
communities and aggregation patterns in the helminth fauna
of the great cormorant Phalacrocorax carbo from northeast-
ern Poland. To our knowledge, the presented work is one of
the few investigations based on a large sample of birds and
considering the full range of variation resulting from the host’s
biology and ecology and the hierarchical structure of parasite
assemblages.

Materials and methods
Study area, sampling, and processing protocols

In 2001-2005, a total of 491 great cormorants P carbo
sinensis (Blumenbach, 1798) of different ages (209 nestlings,
202 adults, and 80 immature individuals) from northeastern
Poland were subject to full helminthological examination.
Two locations (breeding colonies on Lake Wulpinskie
53°21'N, 19°14'E and Lake Selment Wielki 53°47'N, 22°31’
E) represented typical inland freshwater habitats; another two
were typically estuarine and brackish (breeding colony at Katy
Rybackie on the Vistula Spit 54°21'N, 19°14'E and the Vistula
Lagoon 54°35'N, 19°48'E). The study areas were described in
detail by Kanarek (2009). Adult and immature birds were shot
before the breeding season (March—April) and in summer
(July—August), after the end of the breeding season. Nestlings
were collected from nests located in selected breeding colo-
nies (May—June). Based on the plumage, the birds were clas-
sified as either adult (sexually mature) or immature individ-
uals (individuals which had left the nest, but had not reached
sexual maturity). Sex was determined by gonad inspection
only in the adult and immature individuals; the degree of
gonad development precluded sexing of the chicks. The
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structure of the sample in terms of habitat, age, sex, and season
is presented in Table 1.

The birds were then transported to the laboratory and
immediately examined for parasites or frozen (—20 °C) for
later necropsy. Full-body necropsy followed the commonly
accepted protocols. Prior to identification, the helminths were
washed in physiological salt solution, counted, fixed and
preserved in 70 % ethanol, and then processed according to
the standard techniques; digeneans, tapeworms, and acantho-
cephalans were stained with alcohol borax carmine,
dehydrated, cleared, and mounted in Canada balsam. Nema-
todes were cleared in glycerine or lactophenol and, after
identification, transferred to 70 % ethanol. Voucher specimens
are deposited in the Polish Collection of Parasitic Helminths,
Museum of Natural History, Wroctaw University, Poland.

Ecological terminology and indices of community structure

The ecological terms used here follow Bush et al. (1997). The
helminth species were divided into three ecological groups:
cormorant specialists, generalists, and captured specialists.
The cormorant specialists were defined as species which
mature mainly in cormorants or in other members of the
family Phalacrocoracidae, the generalists as species which
grow to adulthood in a wide variety of avian species of
different families and in fish-eating mammals, and the cap-
tured specialists as those with narrow host specificity, for
example birds of families other than Phalacrocoracidae or
marine mammals. Classification of helminth species to a
specific ecological group is often problematic and depends
mainly on the local compound community structure (Edwards
and Bush 1989; Bush 1990). For this classification, we used
data obtained during a comprehensive analysis of helminth
communities of several species of water and wading birds
from northern Poland (Kanarek, unpublished data), and the
data from Central Europe contained in the studies of Sitko
et al. (2006), Sitko and Okulewicz (2010), and Sitko (2011).

In order to measure the indices of component community
richness and diversity, observed helminth species richness,

estimated species richness, Simpson’s Index of Dominance,
and Brillouin’s Index of Diversity were calculated. Because
the observed species richness of component communities
depends on the sampling effort and the presence of rare
species in the analyzed sample, species richness should be
estimated (see review in Poulin 2007a). To assess the estimat-
ed species richness of the component communities, we calcu-
lated three non-parametric estimators, recommended for anal-
ysis of parasite communities: Chaol, first-order Jacknife esti-
mator (Jackl), and bootstrap estimator (Boot) (e.g., Poulin
1998; de la Luz Romero-Tejeda et al. 2008; for detailed
description of these estimators see Colwell 2009). Two hun-
dred randomizations with replacement were generated for
each component community and for pooled data; the software
used was EstimateS v. 8.2 (Colwell 2009). Statistical signifi-
cance of differences between the observed and estimated
species richness was tested with chi-square test. Simpson’s
Index of Dominance and Brillouin’s Index of Diversity were
calculated for each component community and for pooled
data. Simpson’s Index of Dominance (Magurran 2004) was
calculated as D=X[n;(n; — 1)) NN — 1)], where n; is the
number of individuals of species i and N is total number of
helminths in the community. Brillouin’s Index of Diversity
(Legendre and Legendre 1998) was calculated using Stirling’s
approximation (Zar 1996) as H=1/N log (N!/n{'n,!ns!...
n,!), where N is the total number of helminths and 7, n,,
ns... n, are the numbers of specimens of 1, 2, 3... i species in
the analyzed community.

For qualitative comparisons between the analyzed commu-
nities, Jaccard’s Index of Similarity was used [/=c/(a +b +c¢),
where a is the number of parasite species in the first commu-
nity, b is the number of parasite species in the second com-
munity, and ¢ is the number of helminth species common to
both communities]. For quantitative comparisons, we used
Steinhaus’s Index, calculated as S=2W/(4 +B) where 4 and
B are the sums of abundances of all helminths in the compared
communities, and W is the sum of the minimum abundances
of the various species, this minimum being defined as the
abundance in the community where the species is the rarest.

Table 1 Number of Ph. carbo

specimens examined by habitat, Habitat Season Adult Immature Chicks
age, season, and sex
Female Male Total Female Male Total
Brackish water Spring 34 42 76 11 12 23
Summer 16 16 32 13 2 15
Combined 50 58 108 24 14 38 144
Freshwater Spring 14 35 49 1 0 1
Summer 36 45 19 22 41
Combined 23 71 94 20 22 42 65
Total 73 129 202 44 36 80 209
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Both indices were used as described by Legendre and Legen-
dre (1998).

Statistical analysis and aggregation parameters

The percentage distribution of higher taxa of helminths
(expressed as presence/absence) was also analyzed with max-
imum likelihood techniques based on log-linear analysis of
contingency tables using Statistica 9.1 software. The analysis
was initiated with the most complex model involving all
possible effects (site, season, and host sex) and interactions.
Because of the lack of seasonal variation and the impossibility
to sex the nestlings, they were excluded from this analysis.
Next, the minimum sufficient model was generated where chi-
square result was not significant, indicating that the model was
adequate in explaining the data. Log-linear analysis for the
presence of nematodes was performed with exclusion of
Contracaecum rudolphii due to its 100 % prevalence within
all adult and immature birds (for details see Kanarek 2011).

To characterize the aggregation patterns in the most abun-
dant higher taxa of helminths (Digenea, Cestoda, and Nema-
toda—Acanthocephala were excluded from the analysis be-
cause of their low abundance) in relation to selected factors,
we used variance-to-mean ratio (VMR) and D index of dis-
crepancy as the index of aggregation (for details see Poulin
2007a). The aggregation indices were calculated using the
software package Quantitative Parasitology v. 3.0 (Reiczigel
and Rozsa 2005). The level of aggregation was also assessed
with the parameter b of Taylor’s Power Law (Taylor 1961).
For that purpose, the log variance of the mean abundance was
plotted against the log mean of abundance (both calculated
separately for each site and age class) and the parameter b was
estimated with the regression coefficient of the regression line.
Statistical analysis of regression was performed using
Statistica v. 9.1 whereas dot graph, with line fitting by least
square methods, was made using Microsoft Office Excel
2007.

Results

In total, 31 helminth species were recorded. Among these, 14
were classified as cormorant specialists (Hysteromorpha
triloba, Holostephanus dubinini, Paryphostomum radiatum,
Petasiger exaeretus, Petasiger phalacrocoracis, Paradilepis
scolecina, Cyathostoma microspiculum, Contracaecum
rudolphii, Syncuaria squamata, Desmidocercella incognita,
Eustrongylides excisus, Baruscapillaria carbonis,
Baruscapillaria rudolphii, and Andracantha
phalacrocoracis), nine as generalists (Stephanoprora
pseudoechinata, Cercarioides aharonii, Cryptocotyle
concava, Metagonimus yokogawai, Metorchis xanthosomus,
Diphyllobothrium ditremum, Ligula intestinalis,
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Schistocephalus solidus , and Southwellina hispida), and eight
as captured specialists. The group of captured specialists
included two species of grebe specialists (Podicipedidac—
Echinochasmus coaxatus and Echinochasmus spinulosus),
two duck specialists (Anatidae—Apatemon gracilis and
Polymorphus minutus), and two marine mammal specialists
(Cetacea, Pinnipedia—Anisakis simplex and Corynosoma
semerme); one was characteristic of herons (Ardeidae—
Posthodiplostomum cuticola) and one of gulls (Laridae—
Cosmocephalus obvelatus) (for details see Supplementary
material).

In total, 381,035 helminth individuals were obtained, in-
cluding 225,949 Cestoda, 101,544 Digenea, 53,468 Nemato-
da, and 74 Acanthocephala. Most of the collected helminth
species were detected in the intestine, except five species
found in the proventriculus and gizzard (4. simplex, C.
rudolphii, C. obvelatus, S. squamata, and E. excisus), one
each in the gall bladder (M. xanthosomus), trachea (C.
microspiculum), and air sacks (D. incognita).

Habitat-dependent changes in the helminth community

The quantitative composition of the helminth fauna depended
strongly on the habitat: the majority of the helminths (253,925
specimens; 66 % of all helminths) were detected in hosts from
the freshwater habitat; a higher proportion of tapeworms was
found in birds from lakes Wulpinskie and Selment Wielki,
whereas in the Vistula Lagoon and the Vistula Spit the cor-
morant helminth fauna was dominated by trematodes and
nematodes (Table 2).

The helminth fauna of cormorants from the brackish water
habitat was far richer (30 species) than in those from lakes
Selment Wielki and Wulpinskie (17 species) (Table 3). Sev-
enteen species were common to both fresh- and brackish-
water component communities. Except for one captured spe-
cialist (P cuticola) and two generalists (M. xanthosomus and
L. intestinalis), all of them were cormorant specialists (H.
triloba, H. dubinini, P radiatum, P exaeretus, P
phalacrocoracis, P scolecina, C. microspiculum, C.
rudolphii, S. squamata , D. incognita , E. excisus , B. carbonis ,
B. rudolphii, and A. phalacrocoracis) (for details see Supple-
mentary material). Thirteen species were exclusive to the
brackish water component community (4. gracilis, E.
coaxatus , E. spinulosus, S. pseudoechinata, C. aharonii, C.
concavum, M. yokogawai, D. ditremum, S. solidus, A. sim-
plex, C. obvelatus, C. semerme, and S. hispida), while only
one was exclusive to the freshwater habitat (P minutus). The
numbers of species classified as cormorant specialists were
similar in the brackish water (15) and freshwater habitats (14).
In contrast, the number of generalists and captured specialists
in the brackish water component community (eight species)
was much higher than in the freshwater habitat (two species)
(for details see Supplementary material). The captured
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Table 2 Percentage distribution of higher taxa of helminths by habitat
and age of the host

Habitat Age category
Adult Immature Chicks Total
All helminths Brackish water 41 18.7 39.3 334
Freshwater 59 81.3 60.7 66.6
Combined 43 324 23.7 100
Digenea Brackish water 849 529 61.7 70.4
Freshwater 15.1  47.1 383 29.6
Combined 45 19.8 35 100
Cestoda Brackish water 155 8.9 0.03 10.3
Freshwater 84.5 91.1 99.9 89.7
Combined 42,6 412 16.2 100
Nematoda Brackish water 602  42.1 73.5 62.1
Freshwater 39.8 579 26.5 379
Combined 47.5 18.1 344 100
Acanthocephala  Brackish water 54 222 53 51.3
Freshwater 46 77.8 - 48.7
Combined 85.1 12.2 2.7 100

specialists and generalists representing Digenea showed a
distinct habitat-dependent variation: the first group was re-
corded mainly in the freshwater habitat (25.7 % vs. 2.1 %;
x*=33.865; P<0.001), while the prevalence of generalists
was two times higher in the brackish water habitat (52.7 % vs.
28.7 %; x>=16.838; P <0.001). Furthermore, the prevalence
of generalists was significantly higher in spring than in sum-
mer (47.6 % vs. 33.8 %; x>=5.540; P <0.018). No such
differences were observed for the group of cormorant special-
ists (x 2srre=1.547, P<0.213; X *spason=1.108, P <0.292).
No differences in the level of infection between adult and
immature birds were observed for any of the three groups of
digeneans. A similar pattern was displayed by the tapeworms:
both specialists and generalists showed a habitat-dependent
variation with the dominance of specialists in the freshwater
sites (100.0 % vs. 93.8 %; x*=8.659; P<0.003) and of
generalists in the brackish-water habitat (32.9 % vs. 2.9 %;
x2=41.955; P<0.001). Moreover, we observed a season-
biased distribution of the generalist tapeworms whose preva-
lence was six times higher in spring than in summer (30.2 %
vs. 5.3 %; x?=29.059; P<0.001). None of the tapeworm
species was classified as a captured specialist. The pattern
observed for the nematodes was different—they showed no
statistically significant dependence on any analyzed factor.

Age-, sex-, and season-dependent variation in the helminth
community

Considering the pooled data, the greatest percentage of para-
sites was found in adults, followed by immature individuals

and chicks (Table 3; x*=34.046, P<0.001). The number of
helminths in adult and immature birds varied, depending on
the season and habitat: in the brackish water habitat, the
overall percentage of helminths was higher in spring than in
summer (70.8 % vs. 29.2 %), while in the freshwater habitat a
higher proportion of helminths was recorded in summer
(25.7 % vs. 74.3 %). This pattern was exhibited by almost
all the groups of helminths (Digenea brackish water 70.8 %
vs. 29.2 %, freshwater 36.7 % vs. 63.3 %; Cestoda brackish
water 78.3 % vs. 21.7 %, freshwater 22.9 % vs. 77.1 %,
Nematoda brackish water 59.8 % vs. 40.2 %, freshwater
44.1 % vs. 55.9 %); only Acanthocephala showed the oppo-
site tendency (brackish water 91.6 % vs. 8.4 %, freshwater
97.2 % vs. 2.8 %). The overall percentage of helminths found
in adult and immature birds was slightly higher in males than
in females (61.3 % vs. 38.7 %) for all the groups of helminths
(Digenea—56.4 % vs. 43.6 %; Cestoda—62.8 % vs. 37.2 %;
Nematoda—=62.1 % vs. 37.9 %), except Acanthocephala
(44.4 % vs. 55.6 %).

The comparison of the estimated and observed species
richness for each combination (see Tables 3, 4, and 5) revealed
no statistically significant differences between those values,
suggesting that the sample size was sufficient to detect the vast
majority of helminth species. The species richness of parasite
communities of birds from the brackish water habitat was
similar among all three age classes and was much higher than
in birds from the freshwater habitat, where the component
communities of adult and immature cormorants displayed the
same species richness while the lowest number of helminth
species was recorded in chicks (Table 3). Nine species of
helminths occurred in both types of habitats and in birds of
all the age classes. Except for one generalist (M.
xanthosomus ), they were cormorant specialists (H. triloba,
H. dubinini, P radiatum, P exaeretus, P phalacrocoracis, P
scolecina, C. rudolphii, and S. squamata). One species was
exclusive to adults (captured specialist—A. simplex), three
were exclusive to immature birds (two generalists—C.
aharonii and M. yokogawai, and one captured specialist—P
minutus), and five were exclusive to chicks (all captured
specialists—A. gracilis, E. coaxatus, E. spinulosus, C.
obvelatus, and C. semerme). Five species of parasites, com-
mon to adult and immature birds (E. excisus, B. carbonis, B.
rudolphii, A. phalacrocoracis, and S. hispida), were cormo-
rant specialists; one was classified as a generalist (S. hispida).
Five species were detected in adult and immature cormorants
exclusively in spring (M. yokogawai, A. simplex, E. excisus,
A. phalacrocoracis, and S. hispida), but only two in summer
(C. aharonii and P minutus) (for details see Supplementary
material). The largest number of cormorant specialists (14 and
15 species, respectively) and the smallest (two species) num-
ber of captured specialists occurred in adult and immature
birds. In contrast, the greatest number (six species) of gener-
alists and captured specialists, and the smallest number of
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Table 3 Measures of component community structure by habitat and host age

Habitat Age category
Adult Immature Chicks Total
Observed species richness Brackish water 22 21 21 30
Freshwater 17 17 11 18
Combined 22 25 21 31
Estimated species richness Chaol/Jack1/Boot Brackish water 21.7/22.3/22.1 18.8/21.1/19.8 20.4%21.4/20 28.7%/30.5/29.2
Freshwater 16.6/17.5/17.1 16.1/17.1/16.6 10.9%/11.1/11.1 17.6"/18.1/17.9
Combined 21.9/22.1/22.1 22.3./25.2/23.5 19.8/21.3/20.5 29/31.3/29.8
Simpson’s Dominance Index Brackish water 0.232 0.262 0.245 0217
Freshwater 0.699 0.729 0.484 0.655
Combined 0.385 0.593 0.263 0.400
Brillouin’s Diversity Index Brackish water 1.683 1.580 1.684 1.818
Freshwater 0.685 0.635 1.063 0.789
Combined 1.321 0.904 1.627 1.329

# Calculated using the classic formula (for details see Colwell 2009)

cormorant specialists (10) were recorded for chicks (for details
see Supplementary material).

The dependence between the species richness and season
was very clear in adults: soon after their arrival from the
wintering grounds, the species richness was the highest and
decreased over time both in the birds from the freshwater
habitat, and from the Vistula Lagoon (Table 4). The species
richness recorded for males was slightly higher than in fe-
males (Table 5).

Diversity, dominance, and similarity indices

The helminth fauna of birds from the brackish water habitat
was more diverse and less dominated compared to birds from
the freshwater habitat (Table 3). The highest value of
Brillouin’s Index of Diversity was recorded for adults from

the Vistula Lagoon, but combining hosts of both types of
habitat, the highest diversity and the lowest dominance were
recorded in chicks (Table 3). There were no fundamental
differences in the diversity or dominance indices between
males and females, neither among adult nor among immature
hosts (Table 5). We found clear seasonal differences in the
value of diversity/dominance indices: the helminth fauna of
both adult and immature hosts was more diverse in spring than
in summer (Table 5). As in the case of species richness, the
value of diversity index increased over time in adults from the
brackish water habitat and decreased in those from the fresh-
water lakes (Table 4). Table 6 shows values of Jaccard’s and
Steinhaus’s indices in relation to habitat and host’s age.
Jaccard’s index, based on presence/absence data, varied less
than Steinhaus’s index which considers abundance of species.
Qualitatively (Jaccard’s index), adult and immature hosts were

Table 4 Measures of adult and immature Ph. carbo component community structure in relation to habitat and season

Habitat Adult Immature Combined
Spring Summer Spring Summer Spring Summer

Observed species richness Brackish water 18 15 18 13 20 16

Freshwater 15 13 10° 14 15 15
Estimated species richness Brackish water 21.6/22.5/22.1 16.9/18.5/17.8 17.9%/19.7/18.6 13.2/14.1/13.7 23.2/24.6/23.9 17.6/19.4/18.6

Chaol/Jack1/Boot Freshwater ~ 16.6/17.4/17.1 13.4/14514 - 159/17.1165 16.7%17.6/17.2 17.1%/18.1/17.4

Simpson’s Dominance Index Brackish water 0.267 0.198 0.297 0.198 0.264 0.202

Freshwater 0.581 0.832 0.606 0.735 0.581 0.766
Brillouin’s Diversity Index ~ Brackish water 1.555 1.756 1.488 1.596 1.563 1.75

Freshwater 0.909 0.404 0.844 0.612 0.917 0.556

# Calculated using the classic formula (for details see Colwell 2009)
® Single specimens of host were investigated
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Table 5 Measures of adult and immature Ph. carbo component community structure in relation to season and sex of the host

Total

Immature

Adult

Season

Total

Male

Total Female

Male

Total Female

Male

Female

24
23

18 21 21 24
20

17
23

17
15
18

21 22 22
20
22

Spring

Observed species richness

19
23

18
25

18
22

17

Summer

26

25

22

Combined
Spring

23.2%24.2/23.7
22%/23.5/22.3

21.6/22.6/22.1 21.6/22.1/21.9  16.3%17.2/16.3  16.5/18.5/17.5  19.1%21/19.6 20.6/21.7/21.3  23.2%24.5/23.8
14.6/15.3/14.9

20.6/22.2/21.5
16.7/17.7/17

Estimated species richness

18.8%/20.4/19.3
23.8/25.1/24.4

0.353

16.8/18.2/17.4  18/19.5/18.7

15.8/17.3/16.5
20.8/23/21.8

0.293

18.7/20.4/19.5
22/22.2/22.1
0.321

16.4%/18.5/17.1
21.7/22.5/22.1

0.375

Summer

Chaol/Jack1/Boot

24.7/26.1/25.3

0.319

22.2/23.5/22.9

0.283

22.4/25.5/23.6

0.314

17.4%/18.3/17.8

0.389
0.678

21.3/22.5/22.1

0.274
0.435

Combined
Spring

Simpson’s Dominance Index

0.646 0.666 0.617 0.594 0.603
0.563 0.481

0.517

0.541

Summer

0.463

0.437

0.593
1.470

0.752

0.443 0.385 0.626

0.292
1.531
1.175
1.489

Combined
Spring

1.434
0.905

1.354
0.934

1.520
0.848
1.20

1.488
0.779
0.955

1.304 1.419 1.337
0.722

1.038
1.209

Brillouin’s Diversity Index

1.077
1.321

Summer

1.166

1.135

0.904

0.843

Combined

# Calculated using the classic formula (for details see Colwell 2009)

the most similar, chicks and adult/immature birds—the least
similar. Quantitatively (Steinhaus’s index), the most similar
age classes were adults and chicks, and the least similar age
classes were immature birds and chicks (Table 6). The
smallest quantitative similarity was recorded for the compo-
nent communities of chicks from the freshwater habitat and
those of adult/immature hosts from the Vistula Lagoon (Ta-
ble 6). The similarity between adult and immature birds from
the fresh- and brackish-water habitats was higher in spring
than in summer, both in qualitative (spring brackish water vs.
spring freshwater 0.293, spring brackish water vs. summer
freshwater 0.288, summer brackish water vs. spring freshwa-
ter 0.280, and summer brackish water vs. summer freshwater
0.274) and quantitative (spring brackish water vs. spring
freshwater 0.553, spring brackish water vs. summer freshwa-
ter 0.345, summer brackish water vs. spring freshwater 0.443,
and summer brackish water vs. summer freshwater 0.248)
terms.

Distribution and aggregation parameters

We investigated the presence of higher taxa of helminths
(Digenea, Cestoda, Nematoda, and Acanthocephala) in rela-
tion to extrinsic and intrinsic factors (habitat, season, age, and
sex). The log-linear analyses produced the following models:
for Digenea, sex/site x sex/age x season/age/site x Digenea/sea-
son/site (y2=12.987; P=0.737); for Cestoda, sex/sitexsex/
age x season/age/site x Cestoda (y>=18.980; P=0.523); for
Nematoda, sex/age x season/age/site x sex/site X Nematoda
(x*=23.571; P=0.262); and for Acanthocephala, sex/sitex
season/age/site x sex/age x Acanthocephala (y>=15.567; P=
0.743). The results clearly indicate a site- and season-
dependent relationship (i.e., adults were more infected during
spring, immature hosts in autumn) only for digeneans. The
presence of both tapeworms and acanthocephalans at the level
of component communities seems not to be affected by the
analyzed factors.

The examination of the relationship between the log vari-
ance of mean abundance and the mean abundance of Digenea,
Cestoda, and Nematoda in terms of Taylor’s Power Law
showed that all the analyzed taxa tended to have aggregated
distribution (b slope higher than 1). Digeneans were charac-
terized by the highest level of aggregation (b=1.951; P<
0.001); the b slope for tapeworms was 1.640 (P<0.001),
whereas for nematodes the value was relatively low (1.165)
indicating a random distribution (Fig. 1). However, ANOVA
test (P=0.135) for regression analysis for nematodes was not
statistically significant, and two other indices (VMR and D)
clearly indicate that nematodes are also characterized by ag-
gregated distribution. Surprisingly, values of both VMR and D
closely depended on the habitat, season, age, and sex of the
host (Table 7). During spring, in the brackish water habitat, we
observed a higher level of aggregation (for all groups of

@ Springer



844

Parasitol Res (2014) 113:837-850

Table 6 Values of Jaccard’s index for qualitative similarity and Steinhaus’s index for quantitative similarity between selected component communities in

relation to habitat and age of the hosts

Jaccard’s index for qualitative similarity

Steinhaus’s index for quantitative similarity

AdF Imm F Chic F F Com Imm C Chic C AdF ImmF Chic F F Com Imm C Chic C
AdB 0.772 0.695 0.500 0.376 0.351 0.535
Imm B 0.583 0.520 0.454 0.288 0.346 0.533
Chic B 0.480 0.461 0.550 0.191 0.209 0.394
B Com 0.580 0.383
AdC 0.807 0.642 0.897 0.620
Imm C 0.533 0.579

Table headers as coded as follows: Ad B adult brackish water, Ad F adult freshwater, /mm B immature brackish water, Imm F immature freshwater, Chic
B chicks brackish water, Chic F' chicks freshwater, B Com brackish water combined, F' Com freshwater combined, 4d C adult combined, /mm C

immature combined, Chic C chicks combined

helminths) than in autumn. The opposite pattern was found in
the freshwater habitat where the level of aggregation was
higher during autumn. However, this regularity was typical
of adult birds only. In immature hosts, the level of aggregation
was not predictable and varied among the higher taxa
(Table 7).

Discussion

The helminth fauna of Ph. carbo from northeastern Poland is
rich in species and individuals which is characteristic of
parasite assemblages of most water and wetland birds (Bush
and Holmes 1986; Stock and Holmes 1987; Edwards and
Bush 1989). The overall value of Brillouin’s Diversity Index
(1.329) is higher than in other bird species and approaches
those observed in mammals (Kennedy et al. 1986; Kennedy
and Bakke 1989). The variability of structure, richness, and
diversity of helminth component communities in avian hosts
in relation to some extrinsic and intrinsic factors has been
poorly documented; however it is not surprising that extrinsic
rather than intrinsic factors play a major role in structuring and

F.

w

(¥

& Digenea
Cestoda
A& Nematoda
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Fig. 1 Aggregation level of higher taxa of helminths of P carbo
expressed as Taylor’s power relationship
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functioning of helminth assemblages (Behnke et al. 2008a, b).
The results presented in this paper clearly show that the
variation in richness, diversity, and structure of component
communities of the cormorant helminth assemblage are
governed by both extrinsic and intrinsic factors, with the
major role played by habitat, season, and host’s age, whereas
host’s sex is of only minor significance. Moreover, habitat,
season, and host’s age are not interdependent but interact
strongly. The results are only partly compatible with other
investigations which point exclusively to habitat as the most
important factor affecting the structure, richness, and diversity
of helminth component communities of avian hosts; other
factors are irrelevant (Edwards and Bush 1989; Bush 1990;
Calvete et al. 2003, 2004; Violante-Gonzalez et al. 2011).
Several authors have reported the effect of host’s age on the
occurrence of helminths in birds (Bakke 1972; Moore et al.
1987; Sitko 1993; Isomursu et al. 2006), as well as on seasonal
changes related to migrations (Tallman et al. 1985; Wallace
and Pence 1986; Ewart and McLaughlin 1990), but host’s sex
has been found to be relevant only in few cases (Alvarez et al.
2006; Isomursu et al. 2006; Monteiro et al. 2011). Unfortu-
nately, the observation is not supported at the component
community level. Likewise, we have found extremely com-
plex and inconsistent relationships between the values of
aggregation parameters in the higher taxa of helminths. The
distribution of all the analyzed helminth taxa is aggregated,
and the values of aggregation indices vary depending on
habitat, season, age, and sex of the hosts. Aggregated distri-
bution of parasites among hosts is mainly a consequence of
individual variation in susceptibility to helminth invasions,
resulting from behavioral, physiological, and immunological
differences among the hosts. An important role in the ob-
served distributions may have been played by other factors
arising from the seasonal variation in parasite recruitment by
birds, perhaps by habitat heterogeneity, or by dissimilarities in
distributions of potential intermediate or paratenic hosts
(Karvonen et al. 2004; Knudsen et al. 2004). A thorough
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Table 7 Values of variance-to-mean ratio (VMR) and index of discrepancy (D) of higher taxa of helminths in relation to habitat (B—brackish water, F—

freshwater), season, age, and sex of the host

Aggregation parameter ~ Taxon Habitat ~ Pull. Immature Adult
Male Female Male Female
Spring  Summer Spring  Summer Spring  Summer  Spring  Summer
D Digenea B 0.694 0.460 0.434 0.539 0.457 0.385 0.566 0.381
F 0.549 - 0.571 - 0.729 0.455 0.691 0472 0.607
Cestoda B 0.952 0.521 0.602 0.575 0.532 0.470 0.508 0.491
F 0.690 - 0.273 - 0.286 0.450 0.478 0.393 0436
Nematoda B 0.674 0.269 0.251 0.383 0.511 0.343 0.336 0.351
F 0.612 - 0.498 - 0.495 0.426 0.568 0318 0.338
VMR Digenea B 401.91 603.77 - 206.74  419.12 236.38  360.40 930.71 107.62
F 318.15 - 402.79 - 732.20 85.87 103.54 11444 4539
Cestoda B 2.00 390.67 661.80 172.38 289.45 145.82 138.06  106.79
F 1597.77 - 506.44 - 644.69 59143 1,025.37 39745 77596
Nematoda B 181.31 27.67 22.70 124.17 216.16  99.79 46.24 58.69
F 121.29 - 193.96 - 153.28 127.83  151.74 23.44 77.04

explanation of these relationships at the level of higher hel-
minth taxa requires a more detailed analysis at the level of
particular species. The highest values of aggregation parame-
ters have been recorded in chicks, relative to immature and
adult birds. This relationship may be a consequence of much
greater homogeneity in the population of adult and immature
birds, resulting from their longer life expectancies: individuals
most susceptible to parasitic infection may have been elimi-
nated from the population. This may suggest that chicks are
the most heterogeneous group, with high proportion of unin-
fected birds and birds with low mean infection intensities in
the early days of life, and more heavily infected individuals
just before fledging (Kanarek 2011). The host-dependent or-
igin of aggregation variation is also suggested by the relation-
ship between the values of aggregation and host’s sex, but the
trend of this variation and its strength are not unambiguous.
Male and female cormorants usually vary only slightly in their
feeding ecology: males, being heavier, dive deeper (Kato et al.
1999), so that the composition of their prey may slightly differ
from the composition of the diet of females, largely composed
of benthic fishes, heavily infected by helminth larval stages
(Ishikawa and Watanuki 2002). Moreover, males prey on
larger fishes than do females (Kato et al. 1996). These differ-
ences should, however, also be apparent in the richness,
structure, and diversity of helminth assemblages between
males and females at the level of component communities;
no such differences have been found. These differences are
most likely present at the infracommunity level and should be
much more apparent in particular species of helminths.

The taxonomic structure of the cormorant helminth fauna
(dominance of digeneans relative to nematodes, tapeworms,
and acanthocephalans) is characteristic of fish-eating birds; in

avian hosts, a high proportion of invertebrates in the diet
results in an increase in the qualitative richness of tapeworm
fauna (Stock and Holmes 1987; Bush 1990; Vasileva and
Georgiev 1999; Storer 2000). In the environmental conditions
of northeastern Poland, the diet of great cormorant is based
exclusively on fish (Stempniewicz et al. 2003a, b); in the case
of the majority of detected parasites, birds become infected by
eating fish which contain invasive stages (for details see, e.g.,
Barus et al. 1978; Ryzhikov et al. 1985; Sitko et al. 2006;
Sitko and Okulewicz 2010). Amphipods are the only source of
invasive forms of the acanthocephalans P minutus (Schmidt
1985). Life cycles of some species (P exaeretus, P
phalacrocoracis, C. aharoni, C. microspiculum , B. carbonis,
B. rudolphii, and A. phalacrocoracis) are not completely
known, but some (P exaeretus, P phalacrocoracis, C.
aharoni, C. microspiculum, and A. phalacrocoracis) most
probably use fishes as hosts for their invasive forms (Pearson
and Prévot 1985; Iskova 1985; Kanarek 2009; Sitko 2011).
Life cycles of two detected species of capillarid nematodes (B.
carbonis and B. rudolphii) are unknown; however, other
nematodes of the genus Baruscapillaria detected in birds
have direct life cycles with no intermediate or paratenic hosts
(Moravec et al. 1987). It therefore seems unlikely that the
infective stages of these nematodes may be present in fish.
From this point of view, it is interesting that sexually mature
individuals of a capillarid avian nematode, Ornithocapillaria
appendiculata, typical parasite of the cormorant Ph.
brasilianus (Moravec et al. 2000), have been detected in
freshwater fish from Mexico.

Only 15 out of the 31 helminth species detected in the great
cormorant can be classified as cormorant specialists. All of
them, along with one captured specialist (P cuticola) and two
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generalists (M. xanthosomus and L. intestinalis), occur in the
analyzed hosts irrespective of habitat. The species identified
as generalists and captured specialists occur almost exclusive-
ly in birds from the brackish water habitat which directly
affects the much higher values of species richness and diver-
sity indices observed in hosts from the Vistula Lagoon and the
Vistula Spit. Distinct differences in the composition and struc-
ture of helminth assemblages between conspecific avian hosts,
which occur in highly diverse habitats, are usually a conse-
quence of the presence or availability of specific intermediate
hosts and are closely associated with specific habitat condi-
tions (Sitko 1993; Simkova et al. 2003). In the case of fish-
eating birds, these differences are due to the occurrence of
invertebrate intermediate or paratenic hosts (snails, arthro-
pods, etc.) rather than to differences in prey composition
between sites. Furthermore, larval stages of helminths, which
mature in piscivorous birds, are generally characterized by
very broad spectra of intermediate/paratenic fish hosts. The
Vistula Lagoon, the main feeding area for cormorants from the
breeding colony on the Vistula Spit (Bzoma et al. 2003), is
typically estuarine and brackish, with distinct marine influ-
ences (Chubarenko and Margonski 2008). In contrast, lakes
Waulpinske and Selment Wielki are typical inland freshwater
lakes. Interestingly, despite the much higher species richness
observed in cormorants from the Vistula Lagoon and the
breeding colony on the Vistula Spit, only few of the recorded
species can be regarded as typically associated with marine
environment. Only two generalists (C. concave and S.
pseudoechinata) and two captured specialists (4. simplex
and C. semerme) can be regarded as characteristic marine
species. The life cycles of S. pseudoechinata and C. concava
are dependent on hydrobiid snails of the genera Peringia and
Ecrobia (formerly Hydrobia) (Zander et al. 1984; Kaie 1986).
The nematode A4. simplex uses planktonic Euphasiacea as the
most important intermediate hosts (e.g., Klimpel et al. 2004;
Levsen and Lunestad 2010), and the acanthocephalans C.
semerme utilizes benthic arthropods of the genus
Monoporeia, mainly M. affinis (e.g., Sinsalo and Valtonen
2003; Valtonen et al. 2004). Both Hydrobia sp. and
Monoporeia sp. occur in the Gulf of Gdansk and in the Vistula
Lagoon (Wenne and Wiktor 1982; Herra and Wiktor 1985;
Ezhova et al. 2005); Euphausiacea have not been found be-
cause of the low salinity (Grabda 1974). The occurrence of L3
A. simplex in adult cormorants sampled in the Vistula Lagoon
in early spring results from the lagoon serving as an important
spawning area for the herring Clupea harrengus from the
West Baltic, Danish Straits, and the North Sea; the herring is
heavily infected by larvae of 4. simplex (Shukhgalter 2002)
and provides a convenient source of food for the cormorant in
early spring (Stempniewicz and Grochowski 1997). Interest-
ingly, other digenean species found only in cormorants from
the brackish water habitat (4. gracilis, E. coaxatus, and E.
spinulosus) have life cycles that are associated with typically

@ Springer

freshwater snails of the genera Lymnea and Bithynia (see
Sitko et al. 2006 for review). Two species of tapeworms,
classified as generalists (D. ditremum and S. solidus), are also
regarded as characteristic of freshwaters (e.g., Andersen and
Gibson 1989; Zander 1998; Tolonen et al. 2000), with fresh-
water copepods serving as intermediate hosts (see, e.g.,
Ryzhikov et al. 1985 for review). This is a consequence of
the estuarine character of the Gulf of Gdansk and the Vistula
Lagoon, where typically freshwater and marine species co-
occur. Moreover, the Gulf of Gdansk (with Vistula Estuary)
and the Vistula Lagoon are very important areas for birds
during breeding and migration (Kosmicki et al. 2010; Mokwa
et al. 2010). The widespread occurrence of many species of
fish-eating birds may lead to accumulation of invasive forms
of helminths in intermediate or paratenic hosts (Ondrackova
et al. 2004; Hechinger and Lafferty 2005; Fredensborg et al.
2006), which significantly increases the probability of finding
helminth species that are not host specific or have a wide host
spectrum (Edwards and Bush 1989). For example, the occur-
rence of the nematode C. obvelatus exclusively in cormorants
from the brackish water habitat seems to result from the rather
widespread occurrence of gulls and terns which are its typical
final hosts, rather than from the local habitat conditions or the
presence of intermediate hosts (amphipods and fishes—Wong
and Anderson 1982).

Apart from the richness and diversity differences between
the two habitats, they differ fundamentally in the structure of
their helminth fauna. The dominance of tapeworms in birds
from the freshwater habitat is due to the very high abundance
of the small P scolecina,, which is typical of the great cormo-
rant. The first intermediate host of P scolecina is the freshwa-
ter copepod Eudiaptomus graciloides (Jarecka 1970). The
invasive form occurs only in fishes, mainly cyprinids
(Kozicka 1971). E. graciloides is occasionally recorded in
the Gulf of Gdansk and the Vistula Lagoon in areas adjacent to
river mouths (Wiktor et al. 1982; Adamkiewicz-Chojnacka
1983; Wiktor and Zmijewska 1985); however, larvae of P
scolecina are only rarely found in fish from the Vistula La-
goon (Rolbiecki 2003), which suggests an overlapping limited
life cycle in brackish-water habitats. The observed habitat-
dependent differences in the structure of helminth assem-
blages may also be largely due to salinity or hydrological
characteristics of the water bodies. The two freshwater lakes
(Selment and Wulpinskie) are relatively large and deep, with a
limited littoral zone which is very likely to facilitate transmis-
sion of helminths with life cycles involving pelagic copepods.
In this context, the dominance of digeneans in the helminth
fauna of birds from the brackish water habitat may be a
consequence of the character of the Vistula Lagoon. The
lagoon is relatively shallow, with the average depth less than
2.7 m (Chubarenko and Margonski 2008) which, combined
with the rich benthic fauna (Ezhova et al. 2005), facilitates
transmission of developmental stages from snails to fishes.
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Marine environments hold generally far richer benthic than
pelagic systems (e.g., Gray 1997) which promotes a greater
diversity of parasitic helminths in marine ecosystems
(Marcogliese 2007).

At the component community level, the helminth assem-
blage of the great cormorant from northeastern Poland shows
some age- and season-related variation in its richness and
diversity, but in avian hosts (especially regular migrants),
age and season are not independent factors. Usually, helminth
assemblages of adults tend to be richer in species than those of
juveniles which results from accumulation of helminth species
over time and from occurrence of some helminths acquired by
adult hosts in the wintering grounds (Bykhovskaya-
Pavlovskaya 1962; Smogorzhevskaya 1976; Kennedy and
Bakke 1989). The absence of distinct differences in species
richness between adults, immature individuals, and chicks
from the brackish water habitat is surprising. This unusual
situation results from the large number of species of captured
generalists and specialists recorded in chicks from the Vistula
Spit. The differences are much more pronounced in birds from
the freshwater habitat: the species richness in chicks is much
smaller than in adults and immature birds, which results from
the absence of several species of cormorant specialists which
are exclusive to adult and immature hosts. Overall, the chick
helminth assemblage shows a low specificity: there is a small
proportion of cormorant specialists coupled with a large pro-
portion of captured specialists and generalists, which may
result from a handicapped immune system function in young
birds (Haussmann et al. 2005; Lavoie et al. 2007; Noreen et al.
2011). It is difficult to explain the observed pattern on the
basis of possible diet differences between birds of different
ages: the cormorant is a typical piscivorous opportunist and
exploits fish species which are locally the most abundant and
the most available. Consequently, differences in the qualita-
tive and quantitative food composition between individuals of
different ages (especially between chicks and their parents) are
very unlikely. The lack of well-developed immune mecha-
nisms in young cormorants facilitates host colonization by
species which are specific to other fish-eating birds and may
explain the very high parameters of helminth occurrence in the
oldest chicks and juveniles.

The helminth fauna of adult and immature birds includes
some species which are absent in chicks (M. yokogawai, C.
aharonii, A. simplex, E. excisus, B. carbonis , B. rudolphii, A.
phalacrocoracis, S. hispida, and P minutus ), they are classi-
fied mainly as cormorant specialists (E. excisus, B. carbonis
B. rudolphii, and A. phalacrocoracis). Of these, only two
species (B. carbonis and B. rudolphii) occur in adult and
immature hosts independent of the season. The other species
are found only in spring (4. simplex, M. yokogawai, E.
excisus, A. phalacrocoracis, and S. hispida) or in summer
(C. aharonii and P minutus). Except for 4. simplex, whose
occurrence in spring is closely associated with the local

marine influences in the Vistula Lagoon ecosystem, their
presence only in spring clearly indicates their being
transported by migrating cormorants from the shores of the
Mediterranean. Cormorants nesting in Poland migrate regu-
larly; their main wintering grounds are located in western and
southern Europe, especially in the Mediterranean, and in
North Africa (Bzoma et al. 2005). The surprising record of
C. aharonii in immature cormorants in late summer seems
not to be a consequence of the occurrence of their larval
stages in northeastern Poland, but suggests a possible long
survival (up to several months) of this species in its avian
hosts since their return from the wintering grounds. This is
confirmed by observations of Sitko (1993), who recorded
C. aharonii in Sterna hirundo and Chroicocephalus
ridibundus a few months after the end of migration. Inde-
pendent of the season, the occurrence of nematodes and B.
carbonis and B. rudolphii only in adult and immature hosts
may indicate an effect of behavioral factors on the likeli-
hood of infection. The life cycle of these capillarid nema-
todes is most probably direct (Moravec et al. 1987), and
contact with soil is a prerequisite for young birds to get
infected. In Central European conditions (unlike northern
Europe or the British Isles), the great cormorant nests in
trees, and direct transmission of these geohelminths to the
chicks is difficult. After leaving the nests, the cormorants
have a greater chance of contact with soil (e.g., when
resting on islands, cliffs etc.), which may explain the ap-
pearance of these nematodes only in immature and adult
hosts.

Having returned from their wintering grounds in early
spring, the adult hosts from both habitats hold helminth as-
semblages which are very similar in their richness and diver-
sity. Immediately after returning, adult cormorants start
nesting and raise their chicks, which for a few months are
confined to a specific habitat, so that the richness, diversity,
and structure of the helminth fauna reflect the habitat quality.
In the case of immature cormorants, the mechanism is much
more complicated because of their nomadic behavior. The
value of Brillouin’s Index of Diversity for immature cormo-
rants, almost two times higher in spring than in summer, is
especially surprising. The phenomenon can be explained by
the fact that the immature cormorants sampled in spring are 2-
year-old birds and were analyzed after their return from the
wintering grounds (rich and diverse helminth fauna), whereas
the immature birds sampled in summer were a mixture of 2-
year-old and younger birds (soon after leaving their nests, in
their first year of life), characterized by a much poorer and less
diverse helminth fauna.

The species richness, diversity, and structure of helminth
assemblages of the great cormorant at the level of component
community vary widely depending on the habitat, season, and
host’s age; these factors are interrelated. The interactions
between the host’s sex and the richness, diversity, and
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structure of the helminth assemblage are much less significant.
Such interactions should be much more apparent at the
infracommunity level.
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