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Large-scale efforts like the ENCODE Project have made tremendous progress in cataloging the genomic binding patterns of

DNA-associated proteins (DAPs), such as transcription factors (TFs). However, most chromatin immunoprecipitation-se-

quencing (ChIP-seq) analyses have focused on a few immortalized cell lines whose activities and physiology differ in impor-

tant ways from endogenous cells and tissues. Consequently, binding data from primary human tissue are essential to

improving our understanding of in vivo gene regulation. Here, we identify and analyze more than 440,000 binding sites

using ChIP-seq data for 20 DAPs in two human liver tissue samples. We integrated binding data with transcriptome and

phased WGS data to investigate allelic DAP interactions and the impact of heterozygous sequence variation on the expres-

sion of neighboring genes. Our tissue-based data set exhibits binding patterns more consistent with liver biology than cell

lines, and we describe uses of these data to better prioritize impactful noncoding variation. Collectively, our rich data set

offers novel insights into genome function in human liver tissue and provides a valuable resource for assessing disease-re-

lated disruptions.

[Supplemental material is available for this article.]

Complex gene regulatory networks underlie key aspects of human
development, tissue physiology, and cell fate determination
(Karlebach and Shamir 2008; Spitz and Furlong 2012). These
gene expression programs are coordinated by DNA-associated
proteins (DAPs), especially sequence-specific transcription factors
(TFs), which bind to promoters, enhancers, silencers, insulators
and other cis-regulatory elements (Spitz and Furlong 2012).
Owing to their fundamental biological importance, disease can re-
sult from disruption or alteration of trans-acting DAPs or the cis-
regulatory elements to which they bind (Khurana et al. 2016; Sur
and Taipale 2016). Accordingly, the interactions of DAPs and cis-
regulatory sequences have been investigated extensively (The
ENCODE Project Consortium 2007, 2012; Gerstein et al. 2012;
Andersson et al. 2014). These studies have been greatly aided by
high-throughput sequencing technologies that map genome-
wide binding patterns of DAPs, in particular via chromatin im-
munoprecipitation sequencing (ChIP-seq) (Johnson et al. 2007;
Robertson et al. 2007).

The vastmajority of genome-wideDAPbindingmaps, includ-
ing many generated by the ENCODE Project (https://www.
encodeproject.org), are based on a small number of mostly tu-
mor-derived cell lines. These studies revealed strong correlations
between open chromatin, transcription factor binding, DNA
methylation levels, and transcription of nearby genes (Xie et al.
2013). Studies of DNA binding proteins reveal regulatory networks
associated with a variety of experimental perturbations and some
cell-type specificity (Gerstein et al. 2012; Gertz et al. 2012a;

Reddy et al. 2012a; Savic et al. 2015a, 2016). Additional research
further explored the molecular determinants that contribute to
cell-type specificity (Gertz et al. 2013; Mortazavi et al. 2013), in-
cluding the identification of sequence variants that drive changes
to the epigenome (McVicker et al. 2013) and genomic hallmarks
that predict active TF binding sites (Savic et al. 2015b). However,
these in vitro systems are likely to be limited in the extent towhich
they recapitulate in vivo tissue environments, especially for non-
cancerous tissues (Sandberg and Ernberg 2005; Ertel et al. 2006).

The generation of genome-wide, DAP binding patterns
in healthy human tissue is essential to improving our understand-
ing of transcriptional control within a physiological context.
Recently, reference epigenomes, consisting of histone modifica-
tion, DNase hypersensitivity, and DNA methylation measure-
ments, have been compiled for more than 100 primary tissues by
the Roadmap Epigenomics Consortium et al. (2015). Their integra-
tive analysis found that regulatory marks, particularly enhancer-
associated H3K4me1 peaks, exhibited tissue-specific enrichment
for relevant complex trait–associated variants. Further, epige-
nomic features were found to be highly predictive of cancer
somaticmutationburdens, and the chromatin landscape of the ap-
propriate primary tissue greatly outperformed that of matched
cancer cell lines (Polak et al. 2015). These findings demonstrate
the promise of mapping the regulatory landscape of primary tis-
sues and highlight a need for identifying the trans-acting factors
bound to likely regulatory regions and the sequence variation
that may affect their activity.
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Results

DAPs display extensive colocalization

We performed pairs of replicate ChIP-seq
assays for each of the 20 DAPs (Supple-
mental Table S1) in two primary liver tis-
sue samples (Supplemental Table S2), for
a total of 80 ChIP-seq experiments. We
selected DAPs based on the availability
of suitable ChIP-seq-grade antibodies
and their expression levels in the liver,
ultimately assaying 17 sequence-specific
TFs, two DAPs involved in maintaining
chromatin structure, CTCF and RAD21,
and RNA polymerase II (POLR2A), which
is directly involved in transcription.
ChIP-seq experiments were conducted
in accordance with ENCODE guidelines
(Landt and Marinov 2012). All replicate
pairs were strongly correlated, and ca-
nonical motif enrichment was detected
for all sequence-specific TFs (Supplemen-
tal Table S3; Supplemental Material). We
identified between 909 and 60,597 bind-
ing events for each DAP and tissue
sample (Supplemental Table S1) and
identified more than 440,000 binding
sites, spread over 150,000 unique geno-
mic locations, across all DAPs in both
livers.

As others have previously observed
in cell lines (Xie et al. 2013), we found a
high degree of colocalization among
our assayed factors. Hierarchical cluster-
ing of normalized ChIP-seq read count
correlations revealed strong correlations
between many pairs of DAPs in both tis-
sues (median rho of 0.718 and 0.642, and
maximum rho of 0.889 and 0.863, in the
adult/male and child/female livers, re-
spectively), with no factors negatively
correlated (Fig. 1A,B). We further found
that, despite age, sex, and other life histo-
ry differences, ∼75% of all DAP binding
sites were shared between the two donors
in at least one replicate (53% are com-
mon among all four data sets) (Fig. 1C).
We observed stronger binding similarity
between maps of a given DAP from the
two samples than between two different
DAPs in the same sample (Wilcoxon
test, P < 0.0001) (Supplemental Figs. S1,
S2). Consistent with their roles in main-
taining genome insulation and three-
dimensional genome structure (Mer-
kenschlager and Nora 2016), RAD21
and CTCF displayed the most distinctive
binding patterns and clustered separately
from all other DAPs in both tissues. To
determine whether the degree of interaction we observed between
factors exceeds random expectation, we randomly sampled geno-
mic regions matched for length, GC content, and repetitive se-

quence content to the observed binding sites (Fletez-Brant et al.
2013). Compared to randomly sampled regions, observed DAP
binding sites covered ∼50% fewer bases (Fig. 1D), indicating that

Figure 1. DAPs exhibit extensive binding colocalization. (A,B) Heatmaps of Spearman correlation ma-
trix of normalized DAP binding intensities at all observed binding sites in the adult/male (A) and child/
female (B) liver. (C) Stacked bar plot displaying the number of peaks for each TF. Bars are divided into
those that are shared between both replicates of both donors (green), shared between a donor and
one replicate of the other donor (purple), or specific to the adult/male (red) or child/female donor
(blue). (D) Cumulative number of base pairs covered per binding site included in adult/male liver ob-
served data (red) and null regions (black) matched for length, GC content, and repeat content. (E)
Heatmap of a pairwise Spearman correlation matrix, ordered identically to A, indicating the correlation
of allele bias in DAPs from the adult donor that overlap a heterozygous SNP for each pair of factors. The
color of each panel indicates the strength of the correlation, with gray indicating that less than 25 peaks
met inclusion criteria for allele bias analysis for a given pair.
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observed overlap rates are far above random expectation (P <
0.0001). Binding sites of FOXA1, a pioneer factor (Zaret andCarroll
2011), had the greatest mean number of overlapping sites, and the
degree of colocalization at FOXA1 binding sites differed dramati-
cally from non-FOXA1 bound sites (Supplemental Fig. S3).

We used phased WGS data to examine the allele specificity
of DAP colocalization. We assessed the degree of allele bias, mea-
sured as the fraction of ChIP-seq reads containing the reference
sequence (hg19), for each DAP at all heterozygous single-nucleo-
tide variants (SNVs) that overlapped with an adult DAP binding
site (DeSantiago et al. 2017). Correlation analyses of the degree
of allele bias at each SNV between all possible pairs of DAPs
revealed that factors possessed highly correlated allele biases, indi-
cating that groups of DAPs bound near one another show prefer-
ence for the same allele (Fig. 1E; Supplemental Table S4). Our
binding sites are derived from bulk tissue; thus, DAP binding
hubs may arise from direct DAP–DAP interactions or reflect open
chromatin where multiple factors are capable of binding.

There is significant interest in using chromatinmodifications
and DAP binding to identify phenotypically relevant regulatory
sites, and previous work demonstrated that clusters of DAP bind-
ing sites can be useful predictors of enhancer activity (Dogan
et al. 2015). We found that sites bound by more DAPs were more
strongly conserved across the mammalian phylogeny (rho =
0.960, P = 7.08 × 10−6) (Supplemental Fig. S4A). These sites were
also enriched for the activating histone 3 acetylation marks on ly-
sine 9 (H3K9ac) and lysine 27 (H3K27ac), and they were relatively
depleted for the repressive histone 3 methylation marks on lysine

9 (H3K9me3) and lysine 27 (H3K27me3) (Supplemental Fig. S4B–
E). Together, these data show that DAPs colocalize extensively, of-
ten at the same allele, and sites of increased DAP interaction occur
in evolutionarily conserved regions of open chromatin.

DAP binding recapitulates known liver expression programs

A catalog of DAP binding in liver tissue allows for consideration of
the functional consequences of binding on gene expression. We
performed quadruplicate RNA-seq experiments on each donor tis-
sue. In general, gene expression was correlated between livers, but
genes with an expression change of fourfold or greater overlapped
significantly with genes associated with age and gender in an inde-
pendent liver tissue data set (Fisher’s exact test, P = 3.3 × 10−125 and
0.031) (Supplemental Fig. S5; The GTEx Consortium 2015).
Integrating expression data with DAP binding, we found that
30% of all Ensembl (GRCh37_E75) annotated genes harbored at
least one binding site within 1 kb of their transcriptional start sites
(TSSs), and >7% of genes harbored binding events for six or more
different DAPs in both adult and child (Fig. 2A; Supplemental Fig.
S6A). POLR2A promoter binding within 1 kb of a gene’s TSS was
strongly associated with expression in both livers (Wilcoxon test,
P < 0.0001, mean TPM without POLR2A = 22.3, and mean TPM
with POLR2A = 121.8). Gene expression level was also strongly cor-
related with the number of factors bound within 1 kb of their TSS
(rho = 0.533 for adult and rho = 0.526 for child) (Fig. 2B;
Supplemental Fig. S6B), however, this effect diminished rapidly
as the distance to TSS expanded beyond 1 kb (Fig. 2C).

Figure 2. DAP occupancy correlates with gene expression. (A) Pie chart representing the percentage of genes containing a specified number of bound
DAPs within 1 kb of their TSS. (B) Expression level of genes binned by the number of DAPs bound within 1 kb of their TSS in the adult/male donor. (C)
Correlation between expression level of genes and the number of factors bound (as described in B) for a range of distance to TSS thresholds.
Correlations are aggregated cumulatively. (D) Correlation between POLR2A binding and neighboring gene expression allele bias over a range of distance
thresholds. Ninety-five percent confidence intervals (red) were calculated by randomly shuffling all SNP pairs that met a distance threshold 100 times. (E)
Bar plot showing the fraction of expressed SNPs with significant allele bias with varying numbers of neighboring DAPs that also exhibited allele bias within
20 kb.
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Based on the allele bias in DAP binding, we expected a similar
bias in gene expression with preference to bound alleles. Using
phased WGS data with RNA-seq, we found bias in POLR2A occu-
pancy within 1 kb of a gene’s TSS was strongly correlated (rho =
0.750) with expression of the same allele. The strength of this cor-
relation dropped rapidly as the distance between binding site and
TSS was expanded (Fig. 2D). A similar pattern was observed with
several other DAPs (e.g., CEBP, MAX, RXRA and SP1), although
the strength of these correlations was reduced and many correla-
tions fell within the null expectation at a majority of distance
thresholds. Conversely, repressive factors such as REST and
NR2F2 exhibited negative correlations (Supplemental Figs. S7,
S8; Supplemental Table S5). EGR1 also displayed a negative corre-
lation with allele expression. EGR1 is not generally considered to
be a repressive factor, although a few studies demonstrated potent
EGR1 repressive activity (Tan et al. 2003; Feng et al. 2015). The
number of neighboring DAPs with significant allele bias was also
associated with the likelihood of observing significant allele bias
in gene expression (Fig. 2E).

We also explored the consequences of DAP binding by iden-
tifying the pathways that might be regulated by these factors. For

each DAP, we calculated the distance between the TSSs of genes in
every Reactome (http://www.reactome.org) pathway and the near-
est binding site for that DAP. We compared the distribution of
those distances to that of the background transcriptome using a
Kolmogorov–Smirnov (KS) test (Fig. 3A; Supplemental Fig. S9;
Supplemental Table S6). For nearly all DAPs (median KS test P <
0.05), we observed strong enrichments for pathways highly active
in liver tissue such as lipid and carbohydratemetabolism, drugme-
tabolism, and complement activation (indicated by “1” in Fig. 3A).
We identified other pathways specific to subsets ofDAPs. Pathways
regulating stem-cell state and cell division (indicated by “2” in Fig.
3A) were largely restricted to SP1, YY1, andGABPA binding events.
For example, the Hedgehog “on” state (REACT_268718) pathway
acts as a key regulator of animal development and differentiation
(Ingham et al. 2011). SP1, YY1, and GABPA were all bound within
1 kb of the TSSs of nearly 50% of the 60 genes within this pathway.
In comparison, a distance threshold of 1 Mb is required to achieve
a similar degree of occupancy for any other DAP (Fig. 3B;
Supplemental Fig. S10). SP1, YY1, and GABPA have been previous-
ly described as interacting partners (Galvagni et al. 2001; Rosmarin
et al. 2004), and these pathway enrichments are consistent with

Figure 3. Primary liver tissue data recapitulate liver expression programs. (A) Heatmap of KS-test statistic indicating the level of enrichment for proximal
binding to each Reactome pathway for each DAP. The color bar on the left indicates the mean expression level of genes within a pathway. Boxed regions
indicate core liver pathways bound by all DAPs (1) or DAP-specific pathways involved in cell division and differentiation (2). (B) Representative private path-
way plot demonstrating enrichment for proximal GABPA (green), SP1 (blue), and YY1 (red) binding compared to TAF1 (orange), FOXA1 (purple), and
ZBTB33 (black). (C,D) Dots represent KS-test statistic of enrichment for proximal binding of each factor to liver (red/purple), skin (blue), and cortex
(green)-specific genes in adult/male tissue (C) and HepG2 cells (D).
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previous studies implicating GABPA in controlling stem cell main-
tenance and differentiation (Yu et al. 2016).

An important metric by which to assess the utility of our data
set is its enrichment for liver-specific gene programs relative to cell
line–derived DAP occupancy data. We defined liver-specific genes
as those with a mean RPKM of at least two across all GTEx liver
tissues and at least fivefold higher than themeanRPKM in all other
nonliver tissues. HNF4A and RXRA showed the greatest enrich-
ment for binding near the TSSs of liver-specific genes (Fig. 3C;
Supplemental Fig. S11), underscoring their importance in regulat-
ing liver-specific functions (Martinez-Jimenez et al. 2010;
DeLaForest et al. 2011; Li et al. 2015). Conversely, skin and cor-
tex-specific genes exhibited a much lower enrichment for proxi-
mal DAP binding compared to liver-specific genes. Notably, a
similar analysis of ChIP-seq data generated by our group in
HepG2 cells also revealed enrichment for promoter-proximal
binding to liver-specific genes (Fig. 3D). However, only 16% of
HepG2 peaks are shared with the adult donor; aggregated across
all 20 DAPs, proximal binding enrichment was significantly
more pronounced in primary liver tissue (paired Wilcoxon test,
P = 1.29 × 10−4). OnlyNR2F2 andHNF4G exhibited even nominal-

ly greater proximal binding enrichment in HepG2 cells than in liv-
er tissue (Fig. 3D). These results were robust to different thresholds
used to define tissue specificity (Supplemental Fig. S12). Previous
analysis of open chromatin across cell lines has been successful
in predicting cell-type–specific expression (Natarajan et al. 2012),
and these results suggest similar approaches utilizing DAP occu-
pancy could also be fruitful.

DAP binding sites are enriched for expression-QTL SNPs

We tested whether DAP binding sites, due to their demonstrated
effects on gene expression, were enriched for expression-QTL
(eQTL) SNPs in liver tissue cataloged by theGTEx Project.We com-
pared the number of significant eQTL SNPs overlapping binding
sites for a given DAP to 1000 randomly sampled sets of SNPs that
passed GTEx filtering, controlling for distance to nearest TSS and
minor allele frequency. This analysis revealed significant enrich-
ment (Bonferonni-adjusted P < 0.05) for 18 of the 20 assayed
DAPs (Fig. 4A; Supplemental Table S7A); the remaining two,
JUND and ATF3, trended toward significance (Bonferonni-adjust-
ed P = 0.06 and 0.12). This enrichment was generally specific to

Figure 4. DAP occupancy is enriched for relevant trait- and expression-associated sequence variation. (A) Red dots indicate the number of eQTLs falling
within a DAP binding site relative to the gray box plots, which represent 1000 randomly sampled null SNPs matched for distance to TSS and minor allele
frequency. (B) Relative rank of liver-specific eQTL compared to all GTEx tissue specific eQTLs in DAP binding sites assayed in HepG2 cells (blue) and adult
liver tissue (red). (C) Difference in enrichment (delta Fisher’s exact test odds ratio) for SNPs associated with liver-related phenotypes between binding sites
for 19 common DAPs assayed in HepG2 cells and liver tissue. GWAS terms represented by bars are provided in Supplemental Table 9A.
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liver eQTL SNPs. Repeating the analysis on three tissues (uterus, va-
gina, anterior cingulate cortex) with <35% eQTL SNPs shared with
liver revealed significantly less enrichment (Supplemental Table
S7B). To examine tissue specificity more comprehensively, we as-
sessed DAP binding site overlap with tissue-specific eQTLs (FDR
< 0.05 in only one tissue). Our DAP binding sites overlapped
with liver-specific eQTLs more often than any other tissue for 11
of 20 DAPs. (Supplemental Fig. S13; Supplemental Table S8).

In HepG2 cells, we observed a similarly strong enrichment for
liver eQTL SNPoverlap for all factors except SP1 (Supplemental Fig.
S14A; Supplemental Table S7A). However, this enrichment was
much less specific to liver eQTL SNPs, as we observed a stronger en-
richment in uterine, vaginal, and anterior cingulate cortex eQTLs
(Supplemental Table S7C). Moreover, we observed a reduction in
the level of enrichment for liver-specific eQTLs relative to non-liv-
er tissue-specific eQTLs in 10 of 19 DAPs that were assayed in
HepG2 cells, suggesting that, at least for some DAPs, tissue ChIP-
seq data better identify regions regulating tissue-specific gene ex-
pression (Fig. 4B; Supplemental Fig. S14B).

We also identified DAP binding sites that overlap with func-
tional SNPs with liver-related phenotypes by the NHGRI-GRASP
genome-wide association study (GWAS) catalog (https://grasp.
nhlbi.nih.gov/Overview.aspx). We found
greater enrichment (pairedWilcoxon P =
1.8 × 10−3) in liver tissue binding sites for
a majority of GWAS terms (45 of 66), in-
cluding insulin-like growth factor levels
and response to statins (Fig. 4C; Supple-
mental Table S9). HepG2 binding sites
did show greater enrichment for a few
terms, such as liver cancer risk and HDL
cholesterol levels.

DAP binding analyses to prioritize

impactful noncoding variation

One of the promises of high-throughput
cataloging of DAP binding is better iden-
tification of noncoding variation with
phenotypically relevant regulatory ef-
fects. A challenge associated with using
ChIP-seq data for this purpose is that
DAP occupancy peaks are often broad,
and it is unclear which bases within a
ChIP-seq peak significantly affect DAP
binding. We therefore assessed the de-
gree of mammalian evolutionary se-
quence conservation within ChIP-seq
peaks using Genomic Evolutionary Rate
Profiling (GERP) scores (Cooper et al.
2005). The mean GERP-RS score of each
protein’s binding sites was significantly
greater than the genome-wide average
but lower than protein-coding exons
(Supplemental Fig. S15). Although these
data likely reflect reduced constraint in
noncoding sequence relative to coding,
ChIP-seq-defined DAP binding sites of-
ten do not have the resolution to identify
the most critical nucleotides for DAP
binding, such as TF motifs, which are of-
ten more highly conserved than sur-

rounding sequences (The ENCODE Project Consortium 2012;
Reddy et al. 2012b). Recent studies have also indicated that se-
quence elements critical for determining DAP binding do not nec-
essarily reside solely in the canonical DNA sequence motif (Reddy
et al. 2012b; Deplancke et al. 2016; Tehranchi et al. 2016).

Consequently, to systematically examine evolutionary con-
servation at base pairs most critical for DAP binding, we applied
a previously described method (Lee 2016) to train 10-mer-based
support vectormachines (SVMs) capable of distinguishing binding
sites identified in DAP ChIP-seq experiments fromunbound geno-
mic loci matched for GC and repeat content (Fig. 5A). These SVMs
were successful in predicting binding for all factors with amean re-
ceiver-operator characteristic area under the curve (ROC-AUC) of
0.928 and precision recall area under the curve (PR-AUC) of
0.702 (Supplemental Fig. S16A,B). A subset of 10-mers, each occur-
ring in a small percentage of total binding sites, were most predic-
tive of DAP binding (Supplemental Fig. S16C). Previous analyses
(Xie et al. 2013) identified a relative depletion in DAP motifs at re-
gions of high co-occupancy. We found associations between co-
occupancy and SVM classifier scores to be DAP-specific. For
CTCF and GABPA, we observed a decrease in our model’s confi-
dence in identifying binding at high occupancy sites, but this

Figure 5. SNPs capable of disrupting regulatory activity can be identified from liver-derived data. (A)
Diagram representing the pipeline for generating SVMs capable of distinguishing DAP binding sites from
matched null regions and scoring the predicted impact of all possible mutations on each DAP. (B) Box
plots of CTCF binding site overlapping, heterozygous SNPs predicted to be in the top∼1% for decreasing
binding affinity (red), to be in the top ∼1% for increasing binding affinity (blue), and to have no signifi-
cant impact on binding affinity (gray). The y-axis indicates the fraction of ChIP-seq reads mapping to the
reference allele. (C ) SVM scores for reference and alternate GTEx liver eQTL SNP alleles for CTCF. Red dots
indicate SNPs that hold a positive delta binding score in the top 0.1 percentile. Blue dots indicate SNPs
that hold a negative delta-binding score that falls in the bottom0.1 percentile of all scores. (D,E) Box plots
representing the luciferase activity of reference (red) and alternate (blue) sequence in eQTL SNPs predict-
ed to inhibit DAP binding (D) and induce TF binding (E). (∗) Two-tailed t-test P < 0.05; (∗∗) P < 0.005.
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trend was absent in other DAPs such as HNF4A and RXRA
(Supplemental Fig. S17). We computed a “delta” binding score
for all possible point mutations within DAP binding sites, defined
as the mean decrease in our SVMs’ classifier value for the alternate
base relative to the reference sequence. This strategy is similar to a
previously developed approach, “deltaSVM,” that focuses on local
disruptions of 10-mer feature weights (Lee et al. 2015). Bases with
themost negative delta binding score tended to be themost highly
conserved formost DAPs (Supplemental Table S10). DAPs with rel-
atively low mean binding site GERP scores, such as GABPA and
CTCF, harbored high levels of conservation at their predicted
most vulnerable nucleotide positions. We also observed a modest,
but significant, correlation between delta binding scores and the
observed degree of allele bias (FDR < 0.05) in binding sites for 13
of 20 DAPs (Fig. 5B; Supplemental Fig. S18; Supplemental Table
S11), further supporting our confidence in predicting putatively
impactful variation at DAP binding sites.

We ranked all GTEx liver eQTL SNPs using delta binding
scores to identify those most likely to alter a DAP binding site
(Fig. 5C). Because identifying common sequence variation with
functional significance is challenging for eQTL analyses and ge-
nome-wide association studies (GWASs) (Edwards et al. 2013),
weighting SNPs based on their likelihood to impact DAP binding
could be a useful approach for prioritizing follow-up of SNP associ-
ations. Of the top 0.1% of DAP-disruptive eQTL SNPs, several were
associated with one or more relevant phenotypes described in the
NHLBI-GRASP GWAS catalog (Supplemental Tables S12, S13), and
they were significantly enriched (Fisher’s exact test, P < 0.05) for
liver-related GWAS catalog terms compared to all significant liver
eQTL SNPs (Supplemental Fig. S19). To validate DAP binding dis-
ruptions, we selected five SNPs predicted to either increase or
decrease binding affinity and tested them in a luciferase reporter
assay in HepG2 cells (Fig. 5D,E; Supplemental Table S14).
Predicted SNP effects were confirmed for three of the five SNPs test-
ed (two SNPs with predicted loss of binding and one with greater
binding affinity relative to reference sequence), confirming the
regulatory impact of these SNPs. Of particular interest is the SNP
rs11870935, whose alternate allele is predicted to increase RXRA
binding affinity compared to the reference allele. It was associated
with cardiovascular disease, LDL cholesterol, and circulating tri-
glyceride levels in a recent GWAS (Teslovich 2010) and was
characterized as an intronic/promoter liver eQTL SNP for KPNB1,
a gene encoding an importin beta subunit critical for nucleocyto-
plasmic transport regulating cholesterol biosynthesis and insulin
resistance via SREBP and the NF-kB complex, respectively (Nagoshi
and Yoneda 2001; Wang et al. 2015).

Disruption of DAP activity in hepatocellular carcinoma

DAP binding is important for the maintenance of tissue identity
through regulation of tissue-specific genes. This maintenance is
often disrupted during tumorigenesis, facilitating reversion to
less differentiated and more proliferative cell states (Sur and
Taipale 2016). We integrated our binding data with gene ex-
pression data from The Cancer Genome Atlas Project (TCGA;
https://cancergenome.nih.gov) to determine the extent to which
these factors regulate genes differentially expressed in cancer. We
found that DAP binding sites are enriched near genes differentially
expressed (FDR < 0.001, DESeq2) (Love et al. 2014) in tumor tissue
compared to adjacent normal tissue. In particular, we observed an
enrichment for genes down-regulated in tumor tissue (Fig. 6A).
HNF4A exhibited the strongest enrichment for binding near genes

down-regulated in cancer, in agreement with previous observa-
tions implicating it as a tumor suppressor gene (Ning et al. 2010;
Bonzo et al. 2012). GABPA and SP1 showed strong enrichment
(FDR < 0.05) for binding near genes up-regulated in tumor tissue.
This may be due to the importance of GABPA and SP1 proteins
for regulating stem cell state and cell division, as described in the
Reactome pathway enrichment analysis described above (Fig. 3A).

DNA methylation at DAP binding sites showed a relative
depletion in significant differences between tumor and adjacent
normal tissue (Fig. 6B,C). However significant increases inmethyl-
ation levels were more common at binding sites than significant
decreases for all DAPs, except GABPA, in agreement with gene ex-
pression observations in Figure 6A. FOXA1, which is known to be
methylation sensitive (Bartke et al. 2010; Zhu et al. 2016), was the
only DAP whose binding site exhibited a significant enrichment
for differential methylation. Nearly 25% of FOXA1 binding sites
overlapping CpG dinucleotides had significantly increased meth-
ylation in tumor compared to adjacent normal tissue (FDR < 0.05).

We also examined somatic variation at all DAP binding sites.
Analysis of whole-genome somatic single-nucleotide variation
(SNV) data from 258 hepatocellular carcinoma patients obtained
from the International Cancer Genome Consortium (ICGC; http
://icgc.org) revealed dramatically increased somatic mutation
burden in DAP binding sites compared to flanking regions for
the majority of tested DAPs (Fig. 6D; Supplemental Fig. S20).
This effect was not observed in an equivalent sample of variants
from the 1000 Genomes Project matched for reference and
alternate base pair composition (1K Genomes; http://www.
internationalgenome.org) (The 1000 Genomes Project Consortium
2015) (Fig. 6E). A significant proportion of this increasedmutation
burden can be explained by mutation rates at cytosine and gua-
nine nucleotides (Supplemental Fig. S21), which are enriched in
DAP binding sites (Kaiser et al. 2016). FOXA1 and FOXA2 binding
sites demonstrated increased somatic mutation burden after
correcting for base-pair composition (P = 0.01 and P = 0.03, respec-
tively), but the robustness of this observation is unclear given
that these effects did not survive correction for the scope of hy-
pothesis testing (FDR = 0.285) (Fig. 6D; Supplemental Fig. S20;
Supplemental Table S15). Interestingly,mutations in FOXA2 bind-
ing sites identified in tumor tissue harbored a more negative delta
binding score, on average, compared to binding sites overlapping
1K Genomes SNVs (Wilcoxon P = 6.4 × 10−38) (Fig. 6F).

Our tissue-based DAP binding exhibited increased enrich-
ment for proximal binding near genes down-regulated in liver can-
cer compared to adjacent normal tissue (pairedWilcoxon P = 4.6 ×
10−3), and conversely HepG2-derived DAP binding sites showed
greater enrichment for proximal binding near up-regulated genes
(paired Wilcoxon P = 2.1 × 10−4) (Fig. 6G). Moreover, HepG2-de-
rived binding sites exhibited a lower somatic mutation burden rel-
ative to flanking regions for all factors except for NR2F2 (paired
Wilcoxon P = 3.8 × 10−5) (Fig. 6H). More than twice as many
NR2F2 peaks were identified in HepG2 relative to our adult male
donor, and NR2F2 has an exceptional number of interacting part-
ners that control activity depending on cellular context (Litchfield
and Klinge 2012). Therefore, it is perhaps not surprising to see
NR2F2 as an outlier in this context. Overall, these data demon-
strate that DAP binding sites harbor an increased number of
somatic mutations compared to flanking regions, and although a
majority of this trend can be attributed to nucleotide composi-
tion-related tumor mutational processes, disruption of DAP bind-
ing sitesmay be an important mechanism for altering normal liver
gene expression programs. Furthermore, these results suggest

Ramaker et al.

1956 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222083.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222083.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222083.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222083.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222083.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222083.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222083.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222083.117/-/DC1
https://cancergenome.nih.gov
https://cancergenome.nih.gov
https://cancergenome.nih.gov
https://cancergenome.nih.gov
https://cancergenome.nih.gov
http://icgc.org
http://icgc.org
http://icgc.org
http://icgc.org
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222083.117/-/DC1
http://www.internationalgenome.org
http://www.internationalgenome.org
http://www.internationalgenome.org
http://www.internationalgenome.org
http://www.internationalgenome.org
http://www.internationalgenome.org
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222083.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222083.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222083.117/-/DC1


noncancerous tissue-based ChIP-seq assays may provide insight to
regulatory regions disrupted in cancer that are not accessible from
tumor-derived cell lines.

Discussion

We provide a comprehensive evaluation of DAP binding by gener-
ating 80 independent ChIP-seq data sets from liver tissues from
two individuals. Some of our observations mirrored what has
been seen in cell culture–based assays (Yan et al. 2013). For exam-
ple, we observed a high degree of co-occupancy fromour DAPs, in-

cluding >7% of genes with more than six DAPs bound (Figs. 1C,
2A). DAP co-occupancy showed strong allele bias and correlated
with conservation, marks of open chromatin, and neighboring
gene expression (Fig. 2B; Supplemental Fig. S4). It remains unclear
whether these “hubs” of DAP activity are mediated through direct
DAP–DAP interactions or simply facilitated by an open chromatin
state established by pioneer factors. Previous investigations (Xie
et al. 2013) of genomic regions enriched for hundreds of DAPbind-
ing sites found a relative depletion ofDAPmotifs, implicatingnon-
specific chromatin accessibility as the driver of promiscuous
binding. Similarly, we observed a depletion in our ability to predict

Figure 6. Primary tissue-derived DAP occupancy complements existing cell line data in characterizing liver cancer–associated genomic changes. (A)
Color bars indicating the KS-test statistics for enrichment for binding proximal to the TSS of genes with significantly decreased (blue) or increased (red)
expression in tumor tissue compared to adjacent normal tissue for each DAP. (B,C) Percentage of probes with significantly increased or decreased meth-
ylation in tumor compared to adjacent normal tissue overlapping a binding site of each DAP. Red dashed lines indicate 95% confidence intervals based on
random sampling of an equivalent number of null probes. (D,E) Bars representing the number of somatic mutations (D) or matched 1000 Genome Project
(E) mutations observed at contiguous 10-bp bins covering all FOXA2 peaks and flanking 1-kb regions. (F ) Delta binding scores of all binding sites overlap-
ping either somaticmutations found in cancer (red) or natural variationmeasured in 1000 Genomes (blue). (G) KS-test statistics for binding proximal to the
TSS of genes with significantly increased or decreased expression in tumor tissue compared to adjacent normal tissue in HepG2 cells (blue) and adult liver
tissue (red). (H) Mean somatic mutation burden of DAP binding sites over flanking regions in HepG2 cells (blue) and adult/male tissue (red). Regions are
shaded according to whether HepG2- or tissue-derived peaks display greater enrichment.
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DAP binding at sites of high co-occupancy for some factors; how-
ever, there was no association between predictive power and de-
gree of co-occupancy for other DAPs, indicating that sequence
specificity at sites of high DAP occupancy are factor dependent.

Although some of our observations were similar to what has
been observed in vitro, our analysis highlights the value in per-
forming ChIP-seq analysis in primary tissue to characterize tis-
sue-specific gene regulation. The DNA-binding proteins we
analyzed show a high degree of promoter-proximal binding near
genes uniquely expressed in the liver (Fig. 3C), and these DAP
binding events are preferentially enriched in liver-specific eQTL
SNPs compared to eQTLs specific to other tissues (Fig. 4B), in agree-
ment with previous analyses of general chromatinmarks in prima-
ry tissue (Roadmap Epigenomics Consortium et al. 2015). These
tissue-specific correlations were diminished in the HepG2 cell
line (Fig. 3D), demonstrating that analysis of primary tissue can
improve our understanding of in vivo gene regulation and liver
pathophysiology. Although cell linesmay lack some tissue-specific
signals, our data nicely complement HepG2 data specifically in re-
lation to cancer: HepG2-derived DAP binding sites occur more
commonly near genes overexpressed in liver tumors, whereas tis-
sue-derived DAP binding sites were more common near genes
with decreased expression in tumors (Fig. 6G). Furthermore, tis-
sue-derived DAP binding sites exhibited higher enrichment for
somatic mutations compared to flanking regions than that ob-
served in HepG2 cells (Fig. 6H). The complementary nature of
our data with existing cell line–based experiments suggests it will
facilitate investigations of cis-regulatory element disruption across
a variety of liver pathologies.

We have also demonstrated an effective application of these
data to prioritize impactful noncoding sequence variations, which
we validated by observations of conservation, allele-specific bias in
DAP occupancy at sites of heterozygous SNPs (Fig. 5B), and in vitro
reporter assays (Fig. 5D,E). Several putative DAP-disruptive eQTL
SNPs were associated with relevant phenotypes in liver tissue, in-
cluding glucose homeostasis, drug metabolism, and circulating
lipid levels, and therefore represent a promising resource for future
mechanistic follow-up. Despite a limited sample size, our applica-
tion of thismethod for prioritizing variants represents an improve-
ment over large agnostic assays that have reported a success rate
<5% (Tewhey et al. 2016).

There are important limitations to our study. First, we priori-
tized the breadth of factors assayed, which constrained us to con-
ducting assays on only two individuals. This limits our ability to
construct reasonable estimates of natural variation in DAP occu-
pancy or to identify robust associations between DAP occupancy
and donor demographics like age, sex, or ethnicity. In addition,
we assayed only a small portion of the known DAPs expressed in
humans (Fulton et al. 2009), and repressive factors are particularly
underrepresented in our sample. Sampling a larger number of
DAPs would likely reveal a more comprehensive picture and un-
cover additional putatively disruptive regulatory sequence vari-
ants. Cell-type heterogeneity is a potential source of noise in our
data set and could obfuscate comparisons with independently de-
rived tissue samples. However, we observed no decrease in the
number of replicate concordant peaks in our tissue-derived data
set compared to HepG2, a high degree of peak overlap across do-
nors, and an enrichment for previously described liver expression
programs. Further analysis of homogenous cell types could be
complementary to our bulk tissue-derived data set in dissecting
the regulatory landscapes of specific cell populations and provide
a more detailed understanding of which cell types are most likely

affected by trait-associated sequence variation. Previous analyses
have also suggested that HepG2 cells exhibit features similar to pe-
diatric hepatoblastoma, potentially confounding our comparisons
with adult liver expression and cancer genomic data sets (Pang
et al. 2004).

Despite the significant amount of work to be done in fully
characterizing the regulatory landscape of the human genome,
the application of genomic techniques has shed light on the
high level of coordination required for the precise, spatiotemporal
control of gene expression. Although painstaking efforts by large
consortia have greatly contributed to our understanding of these
intricate molecular processes, one notable hurdle that remains is
validating functional genomic data generated in cell culture mod-
els in tissues. This work will serve as an important resource to the
research community and will further facilitate a broad functional
genomic investigation of DAP binding in additional human
tissues.

Methods

ChIP-seq, WGS, and RNA-seq sample preparation

Liver tissue was obtained from both deceased donors and flash fro-
zen at the time of organ procurement. ChIP-seq was performed in
replicate for each DAP using a previously established method
(Savic et al. 2013). Antibodies used for ChIP-seq assays are listed
in Supplemental Table S16. Binding sites were identified using
the MACS peak caller (Zhang et al. 2008). Narrow peaks were de-
fined as 100-bp segments of DNA centered on the peak summit.
Replicate BAM files for each factor analyzed in our human tissue
donors, except for EGR1, were obtained from previous work in
our group in HepG2, which is publicly available at the ENCODE
data portal (https://www.encodeproject.org). 10x Chromium,
WGS, and phased BAM and VCF files were generated from frozen
liver tissue from each donor via the 10x Genomics Longranger
pipeline by the HudsonAlpha Genomic Services Lab (https://gsl.
hudsonalpha.org/information/10X). RNA was obtained via four
independent tissue pulverizations on each liver and extracted
using the Norgen Animal Tissue RNA purification kit. RNA-seq li-
braries were generated using Tn-RNA-seq, a transposase-mediated
construction method, as previously described (Gertz et al.
2012b). Sequencing reads were aligned using a previously de-
scribed pipeline (Alonso et al. 2017). For all analyses, we used
hg19 rather than the more recent GRCh38 build in order to facil-
itate comparative analysis with public data such as GTEx and
ENCODE.

Allele-specific binding and expression analysis

Allele bias in DAP occupancy was assessed with ChIP-seq data us-
ing the R package “BaalChIP” (DeSantiago et al. 2017). Allele-spe-
cific expression was calculated for each expressed heterozygous
SNP using the GATK “ASEReadCounter” function according to
previously described best practices (Castel et al. 2015).

Gene set–ChIP binding proximity analysis

For a given pathway or gene set, the distribution of distances from
the TSS of each gene to the nearest binding site for a given factor
was compared to the distribution of TSS to nearest binding site dis-
tances for the entire transcriptome as previously described (Savic
et al. 2016) and significance was determined using the nonpara-
metric Kolmogorov–Smirnov test.
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Support vector machine training

SVMswere trained on replicate-concordant narrow peak sites from
the adult liver using amethodpreviously established (Ghandi et al.
2014; Lee 2016). This resulted in 20 SVMs, one for each DAP ana-
lyzed. To identify GTEx liver eQTL SNPs likely to modulate DAP
binding affinity, we obtained 100 bp of genome sequence centered
on each liver eQTL SNP generating two, 100-bp sequencewindows
containing the reference or the alternate allele. The reference and
alternate sequences were scored with the each of the 20 SVMs
trained on each DAP analyzed. The reference classifier value was
subtracted from the alternate allele to obtain a delta binding score.

The Supplemental Methods includes additional information
on sample preparation for ChIP-seq and RNA-seq as well as analy-
sis and SVM training and correlation with public data sets.

Data access

ChIP-seq data from this study have been submitted to the
ENCODE data portal (https://www.encodeproject.org) under the
sample accession numbers ENCDO882MMZ and ENCDO060
AAA. RNA-seq andWGS data from this study have been submitted
to the Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih
.gov/geo/) under accession number GSE102188 and to the
Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra)
under the NCBI BioProject (https://www.ncbi.nlm.nih.gov/
bioproject/) accession number PRJNA396912, respectively.
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