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Purpose: Amnestic mild cognitive impairment (aMCI) is a transitional state

between normal aging and Alzheimer’s disease (AD). However, not all aMCI

patients are observed to convert to AD dementia. Therefore, developing a

predictive algorithm for the conversion of aMCI to AD dementia is important.

Parametric methods, such as logistic regression, have been developed;

however, it is difficult to reflect complex patterns, such as non-linear

relationships and interactions between variables. Therefore, this study aimed

to improve the predictive power of aMCI patients’ conversion to dementia by

using an interpretable machine learning (IML) algorithm and to identify the

factors that increase the risk of individual conversion to dementia in each

patient.

Methods: We prospectively recruited 705 patients with aMCI who had been

followed-up for at least 3 years after undergoing baseline neuropsychological

tests at the Samsung Medical Center between 2007 and 2019. We used

neuropsychological tests and apolipoprotein E (APOE) genotype data to

develop a predictive algorithm. The model-building and validation datasets

were composed of data of 565 and 140 patients, respectively. For global

interpretation, four algorithms (logistic regression, random forest, support

vector machine, and extreme gradient boosting) were compared. For local

interpretation, individual conditional expectations (ICE) and SHapley Additive

exPlanations (SHAP) were used to analyze individual patients.

Results: Among the four algorithms, the extreme gradient boost model

showed the best performance, with an area under the receiver operating

characteristic curve of 0.852 and an accuracy of 0.807. Variables, such as age,
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education, the scores of visuospatial and memory domains, the sum of boxes

of the Clinical Dementia Rating scale, Mini-Mental State Examination, and

APOE genotype were important features for creating the algorithm. Through

ICE and SHAP analyses, it was also possible to interpret which variables acted

as strong factors for each patient.

Conclusion: We were able to propose a predictive algorithm for each aMCI

individual’s conversion to dementia using the IML technique. This algorithm

is expected to be useful in clinical practice and the research field, as it can

suggest conversion with high accuracy and identify the degree of influence of

risk factors for each patient.

KEYWORDS

Alzheimer’s disease, amnestic mild cognitive impairment, prediction algorithm,
interpretable machine learning, artificial intelligence, clinical decision-support
system, SHapley Additive exPlanations (SHAP)

Introduction

Amnestic mild cognitive impairment (aMCI) refers to a
transitional state between normal aging and dementia (Flicker
et al., 1991; Petersen et al., 2001; Sarazin et al., 2007). Previous
studies showed that within 3 years, approximately 50% of aMCI
patients converted to dementia (Fischer et al., 2007; Espinosa
et al., 2013), with an annual conversion rate of 5–25% (Larrieu
et al., 2002; Mitchell and Shiri-Feshki, 2009; Alegret et al.,
2014). However, some aMCI patients maintain a stable state of
cognitive function or reverted to normal cognition (Busse et al.,
2006; Mitchell and Shiri-Feshki, 2009). Several factors, including
age, sex, neuropsychological test results, and apolipoprotein E
(APOE) genotype were found to affect the rate of conversion
to dementia (Petersen et al., 1995; Daly et al., 2000; DeCarli
et al., 2004; Yaffe et al., 2006). Thus, as the clinical outcomes of
aMCI patients are heterogeneous, it is important to consider the
risk factors of each patient individually while predicting their
conversion to dementia.

Several studies have been conducted to create algorithms
that predict the conversion of aMCI to dementia (Ravaglia et al.,
2006; Tabert et al., 2006; De Simone et al., 2019). Specifically,
Jang et al. developed a dementia risk prediction algorithm
by using traditional statistical methods, such as multivariate
logistic regression (LR) and the nomogram (Jang et al., 2017).
However, when the LR is applied to complex multivariate non-
linear relationships, it may have low robustness because of the
multicollinearity between the variables (Tu, 1996).

Machine learning (ML) techniques, a form of artificial
intelligence that is increasingly used in the medical research
field, have also been considered in developing prediction
algorithms for conversion to dementia (Chen and Herskovits,
2010; Mattila et al., 2012; Hall et al., 2015; So et al., 2017;
Zhu et al., 2020; Lian et al., 2021; Qiao et al., 2021). These
prediction algorithms are based on computer algorithms that

help ML to learn complex relationships with empirical data
and to make more accurate decisions (Bishop, 2006; Waljee
et al., 2014). Compared to the traditional statistical methods,
ML has a lower possibility of overlooking unexpected predictors
and potential interactions between variables (Waljee et al.,
2014). However, unlike nomograms, ML techniques are not
able to show which factors play a major role in the conversion.
Thus, interpretable ML (IML) was developed to provide
understandable explanations for learning complex outputs
with predictive accuracy, descriptive accuracy, and relevancy
(Murdoch et al., 2019).

Therefore, in the present study, we aimed to develop an
IML algorithm with a higher predictive power than that of LR,
which predicts conversion to dementia in aMCI participants
in an accurate manner. We used clinical demographics, APOE
genotype, and neuropsychological results as features that are
easily accessible in clinical practice. We also attempted to
develop a graphic-based interpretable method to show which
risk factors influence conversion to dementia, and to what
extent, in individual aMCI participants.

Materials and methods

Participants

We conducted a cohort study among participants with
aMCI who visited the Samsung Medical Center (SMC) in
South Korea from June 2007 to December 2019 and were
followed-up for at least 3 years after baseline neuropsychological
tests. In total, 705 participants with aMCI were enrolled in
this study. All aMCI subjects met the following criteria for
aMCI (Albert et al., 2011): (1) subjective memory complaints
by participants or caregivers; (2) objective memory decline
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below –1.0, standard deviation (SD) on either verbal or visual
memory tests; (3) normal activities of daily living (ADL), as
judged clinically; and (4) not demented.

All the subjects underwent neurological examination,
laboratory tests, including APOE genotype, and
neuropsychological tests. We excluded participants with
secondary causes of cognitive impairment through laboratory
tests, such as vitamin B12/folate determination, syphilis
serology, and thyroid function tests. In addition, participants
with structural lesions, such as territorial infarction,
intracranial hemorrhage, brain tumor, traumatic brain injury,
hydrocephalus, or severe white matter hyperintensities on brain
magnetic resonance imaging (MRI), were excluded.

The study was approved by the Institutional Review
Board of SMC, and informed consent was obtained from all
participants and caregivers.

TABLE 1 Demographics of the study.

Feature Training set (N = 565) Validation set (N = 140)

Mean SD (%) Mean SD (%)

Conversion to
dementia

204 (36.1%) 50 (35.7%)

Age (years) 71.6 7.8 72.2 7.6

Sex – Women 348 (61.6%) 84 (60.0%)

Education
(years)

11.1 5.2 11.1 4.8

APOE ε4 carrier 214 (37.9%) 45 (32.1%)

APOE ε2 carrier 46 (8.1%) 9 (6.4%)

K-BNT 39.9 10.1 39.6 10.3

Ideomotor
praxis

4.2 1.2 4.2 1.2

Calculation total
score

10.9 2.0 10.6 2.1

RCFT copy score 29.7 6.3 29.7 5.7

RCFT copy time
(seconds)

258.5 124.3 273.5 139.4

SVLT delayed
recall

2.6 2.5 2.5 2.4

SVLT
recognition
score

18.3 2.8 18.4 2.4

RCFT delayed
recall

6.9 5.4 6.8 4.8

RCFT
recognition
score

18.2 2.3 18.3 2.3

Contrasting
program

19.1 2.8 19.0 2.9

Go/no-go 16.9 5.0 16.8 4.9

COWAT animal 12.5 4.2 12.6 4.3

K-MMSE 25.9 3.2 25.6 3.2

CDR-SOB 1.5 0.9 1.5 0.9

The numbers are mean and standard deviation (or percentage in parenthesis) of the
training and validation sets.
APOE, apolipoprotein E; K-BNT, Korean version of the Boston Naming Test; RCFT,
Rey–Osterrieth Complex Figure Test; SVLT, Seoul Verbal Learning Test; COWAT,
Controlled Oral Word Association; K-MMSE, Korean version of the Mini-Mental State
Examination; SD, standard deviation; CDR-SOB, clinical dementia rating-sum of boxes.

TABLE 2 Performance of classifiers on validation set.

Classifier Accuracy AUC

Logistic regression 0.743 0.813

Random forest 0.771 0.834

Support vector machine 0.800 0.830

Artificial neural network 0.757 0.841

Extreme gradient boost 0.807 0.852

Each classifier’s accuracy, area under the receiver operating characteristic curve, and
optimized hyperparameters as presented.
AUC, area under the receiver operating characteristic curve.

Neuropsychological assessments

All the participants underwent the Seoul
Neuropsychological Screening Battery (SNSB), a standardized
neuropsychological battery widely used in South Korea
(Kang and Na, 2003; Kang et al., 2016). Four major cognitive
domains were evaluated: memory, language, visuospatial, and
frontal/executive function. If the z-score of SNSB was below
−1.0 SD of age and education, it was considered impaired.

The scorable tests are comprised of the Korean version of
the Boston Naming Test (Kim and Na, 1999), Rey-Osterrieth
Complex Figure Test (RCFT) (Kang and Na, 2003), which
involves copying, immediate and 20-min delayed recall, and
recognition, the Seoul Verbal Learning Test (SVLT) (Kang and
Na, 2003), which includes three learning-free recall trials of
12 words, a 20-min delayed recall trial of these 12 items, and
a recognition test, the contrasting program (instructing the
patient to raise the second and third fingers when the examiner
raises the second finger, and to raise the second finger when
the examiner raises the second and third fingers), go/no-go test
(changing the initial rule as follows: instructing the patient to
make a fist in respond to examiner’s raising the second and
third fingers) (Dubois et al., 2000), and phonemic and semantic
Controlled Oral Word Association Tests (COWAT) (Kang et al.,
2000). In addition, the ideomotor praxis and the total calculation
score were evaluated. The Korean version of the Mini-Mental
State Examination (K-MMSE) and clinical dementia rating-sum
of boxes (CDR-SOB) of all the participants were investigated
(Kang et al., 2016).

Follow-up

All the participants underwent two or more SNSB during a
follow-up period of at least 3 years. Dementia was diagnosed on
the basis of the criteria of the fourth edition of the Diagnostic
and Statistical Manual of Mental Disorders and required
evidence of cognitive deficits (confirmed by neuropsychological
testing) and social and/or occupational dysfunction (confirmed
by ADL impairment). The criteria of the National Institute of
Neurological and Communicative Disorders and Stroke and
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the Alzheimer’s Disease and Related Disorders Association
were used for the diagnosis of probable AD (McKhann et al.,
2011). A consensus panel and an experienced neurologist
reviewed the interview records and neuropsychological results
of each aMCI patient and confirmed the conversion to dementia
in the SMC cohort.

The primary outcome was defined as conversion to
dementia within 3 years of the baseline neuropsychological test.
The predictive algorithm used variables, such as age, gender,
years of education, neuropsychological features, APOE ε2, and
APOE ε4 status as the potential predictors.

Feature selection

Three major steps were performed to select variables:
First, domain knowledge was used to remove the unnecessary
variables from the results of neuropsychological tests; second,
the remaining variables were used to confirm the significance
of the variables through LR analysis for a single variable
and remove the insignificant variables; and third, one of
the variables suspected of multicollinearity was removed or
integrated through the correlation coefficient. We specified
the primary outcome as 3-year dementia conversion and
included features, such as demographics, APOE genotypes, and
neuropsychological features (including K-MMSE and CDR-
SOB) selected using the above process. The selected features
were used as inputs for predictive model building, and as
potential predictors for model interpretation.

Algorithm constructions

Eighty percent of the total data was randomly selected by the
matching class imbalance and used it to develop the predictive

algorithm, and the remaining 20% was used for the algorithm
test. Stratified 5-fold cross-validation was repeated five times
by random dataset splitting, and Bayesian optimization was
used for hyperparameter tuning. Five types of ML models were
developed: multivariable LR, random forest (RF), support vector
machine (SVM), artificial neural network (ANN) and extreme
gradient boost (XGB).

Statistical analyses

The performance of the model was compared by using areas
under the receiver operating characteristic curve (AUCs) with
DeLong test (P-value < 0.05 indicated statistical significance)
(DeLong et al., 1988). Statistical analyses were performed using
the Daim (v1.1.0) package in R 4.1.2 (R Core Team, 2021).

Interpretation methods

The interpretation of the developed ML models was based
on both global and local perspectives. IML analysis was carried
out using R 4.1.2 (R Core Team, 2021), the caret (v6.0-
90), the iml (v0.10.1), the vip (v0.3.2), the pdp (v0.7.0), the
breakDown (v0.2.1), SHAPforxgboost (v0.1.1), the caret (v6.0-
90), the DALEX (v2.3.0), and the modelStudio (v3.0.0) packages.

Global interpretation
The global analysis method was used to evaluate the overall

performance of the developed model, which we evaluated
through the model performance, feature importance (Breiman,
2001; Fisher et al., 2019), and partial dependence (Friedman,
2001). The ML model performance of the four groups divided
by gender and age was measured by accuracy and AUC. The
feature importance is to observe a lowered performance change

FIGURE 1

Receiver operation characteristic (ROC) curves of the classifiers. (A) ROC curves of five developed classifiers; (B) ROC curves of the extreme
gradient boost classifier tested with validation set divided by age (threshold of 70 years old) and gender. LR, logistic regression; RF, random
forest; SVM, support vector machine; ANN, artificial neural network; XGB, extreme gradient boost.

Frontiers in Aging Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnagi.2022.898940
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-898940 August 1, 2022 Time: 15:10 # 5

Chun et al. 10.3389/fnagi.2022.898940

FIGURE 2

Feature importance of the extreme gradient boost model. The bars indicate the feature importance, while the interval bands indicate difference
due to random permutations. From the model, clinical neuropsychological features of RCFT delayed recall, clinical dementia rating-sum of
boxes, and age were noted as important factors to the global performance. XGB, extreme gradient boost; RCFT, Rey–Osterrieth Complex Figure
Test; CDR-SOB, clinical dementia rating-sum of boxes; K-MMSE, Korean version of the Mini-Mental State Examination; COWAT, Controlled Oral
Word Association; SVLT, Seoul Verbal Learning Test; APOE, apolipoprotein E; K-BNT, Korean version of the Boston Naming Test; AUC, area
under the receiver operating characteristic curve.

by randomly mixing a specific feature. The partial dependence
plot (PDP) is a global interpretation method in the ML model
that shows the marginal effect of one or two features on the
prediction result (Friedman, 2001).

Local interpretation
The local analysis method interpreted the prediction results

for individual participants. In this study, we implemented
Individual Conditional Expectations (ICE) (Goldstein et al.,
2015), Break-down (Robnik-Šikonja and Kononenko, 2008),
and SHapley Additive exPlanations (SHAP) (Lundberg and
Lee, 2017). First, ICE (or Ceteris-paribus) plots display one
line per individual that shows how the individual’s prediction
changes when a feature changes (Goldstein et al., 2015). Other
feature values are fixed with the individual’s data. Second, Break-
down plots show feature attributions; that is, the prediction
is decomposed into contributions that can be attributed to
different interpretive features (Robnik-Šikonja and Kononenko,
2008). A plot can be drawn by adding or subtracting each feature
contribution one by one on the basis of the average predicted
value for all datasets. Finally, SHAP explains individual

predictions by computing the contribution of each feature to
the prediction. This is based on the game theoretically optimal
Shapley values (Lundberg and Lee, 2017). Unlike break-down
plots, the order of adding features is calculated by numerous
trials; therefore, the mean and SD is estimated.

We plotted three local interpretations above with the XGB
model using six exemplary patients. Supplementary Table 1
shows demographic and dementia conversion information.
Also, we collected all IML results and developed dashboards
with a graphical view of each patient’s analysis results.

Results

Demographics and clinical
characteristics

Table 1 shows the patient demographics and clinical
characteristics. The model-building and validation datasets were
composed of 565 and 140 participants, respectively. Among the
aMCI participants of the development set, 36.1% (204/565) of
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FIGURE 3

Partial dependence plot of six features. The extreme gradient boost (blue) model and logistic regression (green) model are presented. LR,
logistic regression; XGB, extreme gradient boost; COWAT, Controlled Oral Word Association; K-MMSE, Korean version of the Mini-Mental State
Examination; RCFT, Rey–Osterrieth Complex Figure Test; CDR-SOB, clinical dementia rating-sum of boxes; SVLT, Seoul Verbal Learning Test.

the participants were observed to convert to dementia within
3 years. In the validation set, 50 out of 140 participants (35.7%)
converted to dementia, which is similar to the conversion rate
in the development set. Among participants who converted
to dementia, 90.2% (n = 229) progressed to clinical AD–type
dementia by meeting the core clinical criteria for probable
AD (McKhann et al., 2011), and 9.8% to other types of
dementia including subcortical vascular dementia (n = 12,
4.7%), frontotemporal dementia (n = 2, 0.8%), dementia with
Lewy bodies (n = 2, 0.8%), and others (n = 9, 3.5%).

The following 19 features were used for model building:
age, gender, education, APOE ε2, APOE ε4, K-BNT, ideomotor
apraxia, calculation total score, RCFT copy score, RCFT copy
time, SVLT delayed recall, SVLT recognition score, RCFT
delayed recall, RCFT recognition score, contrasting program,
go/no-go test, COWAT animal, K-MMSE, and CDR-SOB.

Global interpretation

The global interpretation results on the three methods are as
follows:

Algorithm performance
The performance of the developed classifiers on validation

set and the optimized hyperparameters is shown in Table 2.
The XGB model showed the highest performance (accuracy
0.807, AUC 0.852) compared to the other models. Figure 1A
shows the receiver operating characteristic curve of the
developed classifiers. Statistical tests showed that the AUCs
of the XGB and the LR models were significantly different
(P-value < 0.05). The hyperparameters of best performed
XGB model was as follows: booster = gbtree, eta = 0.1,
max_depth = 6, min_child_weight = 17, subsample = 0.81,
colsample_bytree = 0.66. The hyperparameters of other models
were as follows: mtry = 4 for RF, sigma = 0.020 and C = 0.849
for SVM, and size = 4 and decay = 0.32 for ANN. We
determined the XGB to be the best-performing classifer and
proceeded with the model interpretation. Also, we divided
test set into 4 groups by gender and age: (1) age < 70
and male (n = 20), (2) age < 70 and female (n = 29), (3)
age ≥ 70 and male (n = 36), (4) age ≥ 70 and female
(n = 55). The prediction result from XGB model of each
group was (1) 0.902, (2) 0.838, (3) 0.865, and (4) 0.828,
respectively (Figure 1B).
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FIGURE 4

Individual conditional expectation on eight features when predicted with the extreme gradient boost model. The results of a total of six patients
are plotted in different line colors. XGB, extreme gradient boost; COWAT, Controlled Oral Word Association; K-MMSE, Korean version of the
Mini-Mental State Examination; RCFT, Rey–Osterrieth Complex Figure Test; CDR-SOB, clinical dementia rating-sum of boxes; SVLT, Seoul
Verbal Learning Test.

FIGURE 5

Break-down plot on six patients when predicted with the extreme gradient boost model. XGB, extreme gradient boost; CDR-SOB, clinical
dementia rating-sum of boxes; RCFT, Rey–Osterrieth Complex Figure Test; K-MMSE, Korean version of the Mini-Mental State Examination;
COWAT, Controlled Oral Word Association; SVLT, Seoul Verbal Learning Test; APOE, apolipoprotein E.
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FIGURE 6

Shapley values plot of six patients when predicted with the extreme gradient boost model. XGB, extreme gradient boost; CDR-SOB, clinical
dementia rating-sum of boxes; RCFT, Rey–Osterrieth Complex Figure Test; K-MMSE, Korean version of the Mini-Mental State Examination;
COWAT, Controlled Oral Word Association; SVLT, Seoul Verbal Learning Test; APOE, apolipoprotein E.

Feature importance
Figure 2 shows feature importance of XGB, where the bars

indicate feature importance, and the interval bands indicate
difference due to random permutations. According to the result,
clinical neuropsychological features of RCFT, CDR-SOB, as well
as age were important factors to the global performance.

Partial independence
In Figure 3, the PDP of six features is shown with the XGB

and LR models. It can be explained that under the condition that
other features are fixed, the possibility of dementia conversion
increases with age, while it decreases when the RCFT delayed
recall score increases. The slope patterns of the XGB and
LR were similar.

Local interpretation

The local interpretation results on three
methods are as follows.

Individual conditional expectations
Figure 4 shows the ICE plot, which presents eight features

for six individuals. To explain the result on patient number 3
(green line), the probability of dementia conversion increases

between the ages of 70 and 75 years. The age of this patient
is 75 years as seen in a blue dot on the green line, the
interpretation plot shows the prediction value (y-axis), that
is, the conversion probability, indicating approximately 0.5
within 3 years. Likewise, regarding RCFT delayed recall, this
subject scored 5; therefore, the conversion possibility was
approximately 0.5. If the patient had performed the test
better and obtained a higher score, the conversion probability
would be reduced.

Break-down plots
Figure 5 shows the break-down plots in six individuals, with

the XGB model. In patient number 1, the most upper left plot,
the subject had a sum of box value of 3, which attributes as
much as 0.127 to the baseline mean prediction value of 0.36. In
the same way, the RCFT delayed recall value of 0 contributes as
much as 0.127 to the prediction.

SHapley Additive exPlanations
Figure 6 shows Shapley values plot of six individuals. In

patient number 1 (the most upper left plot), the feature that
contributed the most to predicting dementia conversion is the
CDR-SOB. In patient number 5 (lower middle plot), RCFT
delayed recall contributed most to the conversion.
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FIGURE 7

Dashboard for a patient’s interpretation for predicting dementia conversion. XGB, extreme gradient boost; CDR-SOB, clinical dementia
rating-sum of boxes; RCFT, Rey–Osterrieth Complex Figure Test; K-MMSE, Korean version of the Mini-Mental State Examination; SVLT, Seoul
Verbal Learning Test; APOE, apolipoprotein E; COWAT, Controlled Oral Word Association.

Graphic-based overall interpretation
on individuals

Figure 7 shows the dashboard displaying the global and the
local interpretation of patient 1. We collected all the IML results
above and developed a dashboard that provides a graphical view
of each patient’s analysis results by displaying them on a screen
(Figure 7). It not only provides the probability of aMCI to
dementia conversion, but also presents quantitative information
on the risk factors attributed to the conversion.

Discussion

In the present study, using the clinical and
neuropsychological features of carefully phenotyped aMCI
patients, we developed an algorithm to predict conversion to
dementia by applying the IML technique. Our major findings
are as follows. First, among the ML techniques, the XGB
model showed the best accuracy, which was superior to that
of LR. Second, variables, such as visual memory delayed recall,
CDR-SOB, age, K-MMSE score, frontal executive function,

education, verbal memory delayed recall, visuospatial function,
and APOE genotype were important features for creating the
algorithm. Finally, ICE and SHAP analyses allowed for the
interpretation of variables acted as important factors in the
conversion to dementia of each aMCI patient. Taken together,
our findings suggest that an algorithm using the IML technique
enables us to individually predict the conversion of patients
with aMCI to dementia within 3 years in clinical practice and
the research field. Using our newly developed IML algorithm,
we predict that, with the aid of visualized graphs, patients will be
able to more easily understand the neuropsychological factors
that are at risk, which would become a further step toward
precision medicine.

In the present study, when compared with other algorithms
including LR, the XGB model showed the best performance
with an AUC of 0.852 and an accuracy of 0.807. Thus, these
findings suggest that our newly developed algorithm with the
XGB model overcomes this limitation and results in better AUC
and accuracy than LR. If the predictive algorithm is applied to
the electronic medical record system, the conversion rate would
be readily calculated in clinical practice with more accuracy.

The second major finding was that RCFT delayed recall,
CDR-SOB, age, K-MMSE, COWAT-animal, education, SVLT
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delayed recall, RCFT copy time, and APOE genotype were the
important factors in the IML algorithm, which is consistent with
previous studies. Consistent with our findings, MMSE (Hou
et al., 2019), CDR-SOB (Daly et al., 2000; Dickerson et al., 2007;
Montano et al., 2013; Woolf et al., 2016), and frontal/executive
dysfunction, which can be examined by the COWAT-animal
test (Lezak et al., 2004), were found to be the predictors of
conversion to dementia in other studies (Tabert et al., 2006; Jung
et al., 2020). The APOE ε4 genotype was also found to play
an important role in conversion to dementia, which was again
consistent with previous studies (Petersen et al., 1995; Mosconi
et al., 2004; Elias-Sonnenschein et al., 2011).

In our previous studies (Ye et al., 2015; Jang et al., 2017),
the odds ratio of conversion to dementia was higher in Verbal-
aMCI patients than in Visual-aMCI patients. However, our
global interpretation results showed that the RCFT delayed
recall score (visual memory) had higher feature importance than
the SVLT delayed recall score (verbal memory), which is thought
to be due to differences in the classification of participants. The
previous studies defined Visual-aMCI as only visual memory
impairment, Verbal-aMCI as only verbal memory impairment,
and Both-aMCI as visual and verbal memory impairment,
and then analyzed the odds ratio compared to Visual-aMCI.
On the other hand, we analyzed the variables of the RCFT
delayed recall score and SVLT delayed recall score together
with other neuropsychological test scores of all participants
without classification.

There are also some debates on the educational effects in
participants with aMCI among studies. Specifically, a previous
study (Cooper et al., 2015) did not show that high educational
levels predict conversion to dementia in participants with aMCI.
However, another study from our group showed that highly
educated aMCI participants were at a higher risk of conversion
to AD dementia than less educated aMCI participants (Ye et al.,
2013). Furthermore, early stage aMCI participants with higher
levels of education showed a slower cognitive decline while late-
stage aMCI participants with higher levels of education showed
a more rapid cognitive decline. Thus, our present findings that
aMCI patients with higher education levels were more likely to
convert to dementia should be replicated in the future studies
with larger MCI participants.

Some studies have proposed an algorithm for differentiating
cognitive decline using ML methods, including the Disease State
Index, naïve Bayes, Bayesian network classifier with inverse
tree structure, decision tree, SVM, multiple-layer perceptrons,
Begging, RF, and rule-based classifier (Chen and Herskovits,
2010; Hall et al., 2015; So et al., 2017; Bansal et al., 2018;
Bhagyashree et al., 2018; Zhu et al., 2020). Beheshti et al.
also developed a predictive algorithm with feature ranking and
a genetic algorithm, which can predict the conversion rate
to dementia after 3 years (Beheshti et al., 2017). However,
compared to previous studies, the present study is meaningful
in that we predicted the conversion of aMCI to dementia with

IML, especially by presenting the attribution of each feature
to the prediction. Thus, the IML predictive algorithm used in
our study might be more useful in clinical practice because it is
composed of clinical data that are widely and commonly used
for evaluating cognition status.

Our final major finding was that our IML, which consisted
of the ICE and SHAP analyses, allowed for the interpretation
of variables that acted as important factors in the conversion
to dementia in each patient. Therefore, we suggest that our
IML is an improved predictive algorithm that has both the high
accuracy of ML and the advantage of the nomogram. Identifying
the specific factors that influence conversion to dementia for
each aMCI patient will be helpful for the development of
personalized intervention strategies in the future.

To our knowledge, our study is the first to develop an
IML algorithm to predict conversion to dementia within a
large sample size of well-phenotyped aMCI patients. Another
strength of this study is that the IML algorithm was based
on variables that are most commonly used in clinical practice,
specifically neuropsychological test results and APOE genotype.
However, this study has some limitations. First, MRI volumetry
and cortical thickness, which are highly correlated with
neurodegenerative dementia, were not used in this algorithm.
Future studies incorporating structural brain MRI information
are required to achieve higher predictive power. Second,
since we did not perform amyloid and tau positron emission
tomography in all participants, we could not determine the
biomarker guided diagnosis in our participants. Third, the
number of samples to train the model might not be large
enough because of the limited number of subjects of 3-year
followed-up. Finally, since this study was conducted only at
SMC, there is a limitation regarding the generalizability of
the outcomes. External validation in an independent cohort
should be conducted in the future. Nevertheless, our study is
noteworthy in demonstrating that the IML algorithm is able
to estimate the individual risk of conversion to dementia in
each aMCI patient.

Conclusion

This study was able to develop an IML algorithm to predict
conversion to dementia in aMCI patients. This IML algorithm is
expected to be useful in clinical practice and the research field
as it can identify the degree to which individual risk factors
influence each patient.
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