
 International Journal of 

Molecular Sciences

Review

Structural Determinants of the Prion Protein
N-Terminus and Its Adducts with Copper Ions

Carolina Sánchez-López 1,†, Giulia Rossetti 2,3,4 , Liliana Quintanar 1,* and
Paolo Carloni 2,5,6,*

1 Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), 07360 Mexico City,
Mexico; magdacarolina29@hotmail.com

2 Institute of Neuroscience and Medicine (INM-9) and Institute for Advanced Simulation (IAS-5),
Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52425 Jülich, Germany; g.rossetti@fz-juelich.de

3 Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52428 Jülich, Germany
4 Department of Oncology, Hematology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen

University, Pauwelsstraße 30, 52074 Aachen, Germany
5 Department of Physics and Department of Neurobiology, RWTH Aachen University, 52078 Aachen,

Germany
6 Institute for Neuroscience and Medicine (INM)-11, Forschungszentrum Jülich, 52428 Jülich, Germany
* Correspondence: lilianaq@cinvestav.mx (L.Q.); p.carloni@fz-juelich.de (P.C.)
† Current Address: Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Ocampo y

Esmeralda, 2000 Rosario, Argentina.

Received: 3 December 2018; Accepted: 18 December 2018; Published: 20 December 2018
����������
�������

Abstract: The N-terminus of the prion protein is a large intrinsically disordered region encompassing
approximately 125 amino acids. In this paper, we review its structural and functional properties,
with a particular emphasis on its binding to copper ions. The latter is exploited by the region’s
conformational flexibility to yield a variety of biological functions. Disease-linked mutations and
proteolytic processing of the protein can impact its copper-binding properties, with important
structural and functional implications, both in health and disease progression.
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1. Introduction

Prion diseases or transmissible spongiform encephalopathies (TSEs) are rare neurodegenerative
diseases exhibiting symptoms of both cognitive and motor dysfunction, vacuolation of the grey matter
in the human central nervous system, neuronal loss, and astrogliosis [1]. A crucial event for the
diseases’ development is the misfolding of the extracellular, membrane-anchored human prion protein
(HuPrPC) into the fibril-forming isoform called “scrapie” (HuPrPSc), the major or only component of
the infectious particle [2]. This eventually leads to protofibril and fibrillar structures. Accordingly,
with the “Protein only hypothesis” by Nobel Laureate Prusiner [3], the feature to undergo induced or
spontaneous misfolding depends basically on intrinsic features of the protein. These include the amino
acid sequence [4,5] as well as secondary structure elements [6–8], the highly flexible amino terminal
region of the protein [9], and posttranslational modification elements [10]. The propensity to form
the scrapie form is modulated by a variety of external factors. These include pH [11–13], cofactors
like metal ions [14,15], or the presence of proteins [16,17]. Pathogenic mutations (PM) in HuPrPC are
linked to the spontaneous generation of prion diseases [18–21].

HuPrPC is ubiquitously expressed throughout the body. It is mostly found in the central nervous
system. After being synthesized in the rough endoplasmic reticulum, it transits through the Golgi
compartment, and it is released to the cell surface where it resides in lipid membrane domains [22].
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Though its physiological role is still not clear, HuPrPC might be involved in neuronal development,
cell adhesion, apoptotic events, and cell signaling in the central nervous system. Moreover, HuPrPC

can interact with different neuronal proteins or proteins of the extracellular matrix, as well as with
other binders including glycosaminoglycans, nucleic acids, and copper ions [23]. Hence, HuPrPC has
been also proposed as a copper sensing or transport protein [24].

The protein features two signal peptides (1–22 and 232–235, Figure 1), a folded globular domain
(GD, residues 125–231), and a naturally unfolded N-terminal tail (N-term_HuPrPC, hereafter, residues
23–124), which is the focus of this review. The GD consists of two β-sheets (S1 and S2), three α-helices
(H1, H2, and H3), one disulfide bond (SS) between cysteine residues 179 and 214, and two potential
sites for N-linked glycosylation (green forks in Figure 1) at residues 181 and 197 [25]. H2 and H3 helices
linked by the SS-bond constitute the H2 + H3 domain. A glycosylphosphatidylinositol anchor (GPI, in
blue in Figure 1) is attached to the C-terminus, which is located on the outside cellular membrane.
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depicted amyloidogenic intermediate is the parallel, in-register β-structure model for the core of 
recombinant PrP90–231 amyloid fibrils formed in vitro [27], one of the models among others [28–

Figure 1. (A) Schematic and (B) tridimensional view of HuPrPC. (C) Qualitative scheme illustrating the
Gibbs free energy change in the conversion from HuPrPC (left) to HuPrPSc (right) [26]. The depicted
amyloidogenic intermediate is the parallel, in-register β-structure model for the core of recombinant
PrP90–231 amyloid fibrils formed in vitro [27], one of the models among others [28–30], whereas the
native globular domain (GD) of the HuPrPC is the nuclear magnetic resonance (NMR) structure by
Zahn et al. [25]. Adapted from [31,32].
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The HuPrPC→HuPrPSc interconversion involves mostly the GD. It may entail increasingly
β-stranded intermediate structures [33] (Figure 1C), leading to small aggregates, protofibrils, and
finally ordered rigid fibrils [34–38]. Experimental structural information for these is lacking [34–38].

While the structure of the GD of HuPrPC has been resolved experimentally, the intrinsically
disordered nature of the N-term_HuPrPC has represented a challenge for structural studies. In this
paper, the structural properties of the N-term_HuPrPC are discussed, with a focus on recent insights
obtained from computational approaches and on the functional and disease-related implications of
copper–N-term_HuPrPC interactions.

2. The N-Term: Function and Structural Determinants

This naturally unfolded domain contains the major part of the so-called transmembrane domain
(termed TM1, comprising roughly residues 112–135) and the preceding “stop transfer effector” (STE,
a hydrophilic region containing roughly residues 104–111) [39,40] (Figure 1B). STE and TM1 act in
concert to control the co-translational translocation at the endoplasmic reticulum (ER) during the
biosynthesis of the protein [41,42].

N-term_HuPrPC functions as a broad-spectrum molecular sensor [43]. Along with the highly
homologous protein from mouse (N-term_MoPrPC, 93% sequence identity), it interacts with copper
ions (see below) and sulphated glycosaminoglycans [44]. In addition, N-term_MoPrPC interacts
with vitronectin [45], the stress-inducible protein 1 (STI1) [46], amyloid-β (Aβ) multimers [47–49],
lipoprotein receptor-related protein 1 (LRP1) [50], and the neural cell adhesion molecule (NCAM) [51].

Because experimental structural information on the full-length N-term_HuPrPC is currently
lacking, one has to resort to biocomputing-based predictions. Recently, some of us have used a
combination of bioinformatics along with replica-exchange-based Monte Carlo simulation at room
temperature, based on a simplified force field, to predict the conformational ensemble on the full-length
N-term_MoPrPC [31,52].

This is expected to be quite similar to that from Homo sapiens, given the extremely high sequence
identity (93%) with N-term_HuPrPC [31,52]. Monte Carlo simulations suggest that the N-term_MoPrPC

consists of several regions characterized by different secondary structure elements, consistently with
biophysical data [53–57]. Specifically, it contains 19 ± 8% α-helix, 8 ± 5% β-sheet, 7 ± 3% β-bridge,
27 ± 5% β-turn, 12± 4% bend, 4± 3% 310-helix, and 1± 1% π-helix. The secondary structure elements
are distributed among the N-term in a highly heterogeneous manner (Figure 2A): residues 23-30
are mainly coil/β-turn/bend; residues 31-50 are mainly β-turn/coil/bend/β-bridge; and residues
59-90 form four sequential octarepeat (OR) peptides, with sequence PHGGGWGQ, and are mainly
β-turn/coil/bend/β-sheet conformations. In particular, the loop/β-turn conformations in the OR
region resemble (backbone RMSD < 2.5 Å) those identified by NMR [57]; residues 89-98 are mainly
coil/β-turn/bend/β-sheet; residues 99-117 feature the highest content α-helix of N-term_MoPrPC

regions; and residues 118-125 display a comparable percentage of α-helix and β-turn. Residues 105-125,
the “amyloidogenic region”, feature transient helical structures (the last eight residues also have a
comparable content of beta turn). This is consistent with circular dichroism (CD), nuclear magnetic
resonance (NMR), and Fourier transform infrared (FTIR) studies on HuPrPC fragments [54–56]
(Figure 2). The same simulation procedure can be carried out for the known disease-linked mutations
(Figure 2).
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Figure 2. Selected conformations of (A) WT N-term_MoPrPC and (B) one PM (N-term_MoPrPC_Q52P)
emerging from molecular simulation [31,52]. These contain transient α-helix (in violet), β-sheet (yellow),
β-bridge (orange), β-turn (cyan), 310-helix (blue), and p-helix (red) elements. (C) Superimposition
of our conformational ensemble (orange) with available fragments of N-term deposited structures.
Readapted from [31,52].

While many PMs in the GD are known to modify significantly the folded structure and to increase
its flexibility [58–61], our Monte Carlo calculations suggest that those in the N-term do not impact
significantly the global structural properties of the N-term. This finding is consistent with experimental
findings showing that PMs in N-term_HuPrPC do not affect the thermostability or misfolding kinetics
of the protein [58,62–64]. On the contrary, our Monte Carlo simulations show that the PMs at the
N-term modify local features at the binding sites for known cellular partners, as well as of interdomain
interactions. This points to an interference of the PMs with the related physiological functions.

The major differences in the presence of the PMs were observed in the residues binding Cu2+

and sulphated GAG (i.e., the OR region and the H110 Cu2+-binding site mouse sequence, H111 in the
human sequence). In addition, the PMs affect the SS and the flexibility and increase the hydrophobicity
of STE/TM1. The latter contains the putative binding sites for in vivo binding partner proteins such as
vitronectin [45] and STI1 [46]. This might affect the biological function of these interactions, which
involves the signaling for axonal growth [45] and that for neuroprotection [46], respectively.

The PM Q52P in the OR region, interestingly, affects the flexibility of STE/TM1, while the other
six PMs in STE/TM1 also alter the intra-molecular contacts in the OR region suggesting a role played
by PMs in altering transient interdomain interactions between the OR region and STE/TM1. Recent
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studies suggest that N-Term and GD interactions might also serve to regulate the activity and/or
toxicity of the PrPC N-term [65]. Unfortunately, in the reported Monte Carlo study [52], the GD was
not taken into account.

The altered local features in STE/TM1 might also impact the interactions of the protein with
trans-acting factors in the cytosol and in the ER membrane [66]. This result is consistent with the
in vitro data that PMs P101L, P104L, and A116V increase the interactions between MoPrPC STE/TM1
and a membrane mimetic at pH 7 [67].

3. Copper Binding

Copper ions bind to the N-term of HuPrPC in vivo [24]. Since the protein is anchored to
the neuronal membrane, facing the extracellular space, it is exposed to fluctuations in Cu2+ ion
concentrations, that can reach 100 µM during synaptic transmission [68]. This represents orders
of magnitude larger than the experimentally measured range of binding affinities for Cu(II) ions
at the N-term (nM to µM) [69]. Thus, it is plausible that the protein responds to Cu(II) ion
concentration changes at the synapse. On the other hand, upon endocytosis, HuPrPC is exposed
to the intracellular reducing environment, where the interaction of its N-term with Cu+ ions
would also be relevant. Two main functions of copper binding to the N-term have been proposed
so far: (i) stimulation of HuPrPC endocytosis [70–73] and (ii) copper sensing associated to cell
signaling. Copper-induced endocytosis of HuPrPC requires its N-term terminus, specifically the
octarepeat region, and it might involve conformational alterations of the N-term with the subsequent
delivery of copper ions to endosomes. This has led to a proposed role for HuPrPC in copper
transport. However, it is unlikely that HuPrPC delivers copper efficiently into the cytosol, since
high concentrations are needed for copper-induced endocytosis (150–300 µM) [71,73]. On the
other hand, HuPrPC can interact with the human N-methyl-D-aspartate receptors (HuNMDAR)
and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (HuAMPAR) involved in
synaptic transmission, while both receptors are regulated by Cu ions [74–76]. In the case of HuNMDAR
activity, copper binding to HuPrPC is necessary to regulate the activity of this receptor [75]. Indeed,
HuPrPC and Cu2+ are required to inhibit HuNMDAR activity through a mechanism that involves
post-translational S-nitrosylation of cysteine residues in HuNMDAR [77]. Overall, these important
findings underscore a role for Cu-HuPrPC interactions in neuroprotective mechanisms, which could
be disrupted by other Cu-binding proteins or peptides at the synapse. For instance, human amyloid-β
(Aβ) neurotoxicity has recently been linked to its ability to compete for Cu2+ ions with HuPrPC, thereby
interfering with the modulation of HuNMDAR activity [75].

The N-term region of HuPrPC contains six His residues that may serve as anchoring sites for
Cu2+ ions [78]. The ion binds to different sites within the protein [79–82], which are conserved in
mammalian species [83], a fact that underscores its physiological relevance. Four of them are located
in the OR region, spanning residues 60-91 with four repeats of the highly conserved octapeptide
PHGGGWGQ (Figure 3). Beyond the OR region, two additional His residues, 96 and 111, also act as
copper-binding sites in the 92-115 region. Studies on synthetic peptide fragments have suggested that
metal coordination modes depend on copper concentration [69], as well as the relative copper:protein
ratio and proton concentration [79,80]. At physiological pH, three distinct Cu2+ coordination modes
have been identified by electron paramagnetic resonance (EPR) [84]. At low Cu:protein ratios, three or
four His residues can chelate one metal ion, leading to a multiple histidine Cu-binding mode, named
Component 3 (Figure 3). At higher Cu:protein ratios, a species with two His ligands forming a 2N2O
equatorial coordination mode is observed (Component 2 in Figure 3). When enough Cu2+ is provided
to reach a 1:1 ratio for each octapeptide fragment, a species with a 3N1O equatorial coordination mode
is formed, named Component 1, where the coordinating residues are as follows: one His imidazole
ligand, two deprotonated backbone amide groups, and a carbonyl group from the glycine residues
that follow the anchoring His in the sequence (Figure 3) [78,85]. X-ray crystallographic studies of the
Cu2+ complex with one octapeptide PHGGGWGQ fragment also revealed the participation of a water
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molecule as an axial ligand, stabilized by hydrogen bonding to the Trp residue [86]. This is the only
Cu-binding site fragment that has been characterized so far by X-ray crystallography.
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Figure 3. Cu coordination properties of the N-terminal region of human HuPrPC. The six His residues
that act as anchoring sites for Cu ions are highlighted: His61, His69, His77, and His85 in the OR region,
and His96 and His111 in the non-OR region. The models for the different Cu2+ coordination modes
identified at each site at physiological pH are drawn. The impact of α-cleavage processing on the
His111 binding site is also shown.

The Kd for the low occupancy multiple-His coordination mode (Component 3) is 0.12 nM, whereas
it ranges from 7 to 10 µM for the high-occupancy 3N1O mode (Component 1) [69]. Hence, Cu binding to
the OR region displays a negative cooperativity. This is consistent with the formation of intermediate
species such as Component 2. Electrochemical studies have determined that the high-occupancy
Component 1 species is capable of reducing dioxygen to produce low levels of hydrogen peroxide
that may be relevant for cell signaling, whereas the low-occupancy multiple-His mode cannot activate
dioxygen at all [87,88].

Outside the OR region, His 96 and 111 act as anchoring sites for Cu2+ ions, constituting the
closest Cu-binding sites to the amyloidogenic region of HuPrPC [81,89,90]. An X-ray absorption
spectroscopy (XAS) study of a HuPrP (90–231) construct of the protein showed that at low pH Cu
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ions can coordinate to both His residues in the non-OR region, while at physiological pH only the
His111 site is populated [91]. The peptide fragments mostly used to characterize the individual
non-OR Cu-binding sites are HuPrP (92-96) and HuPrP (106-115) with sequences GGGTH and
KTNMKHMAGA, respectively [85,92]. EPR and other spectroscopic studies have determined that
Cu2+ coordination is highly pH-dependent in these sites, yielding two different equatorial coordination
modes at physiological pH, 3N1O and 4N, related by a pKa value near 7.5 (7.8 for the His 96 site and
7.5 for the His 111 site) [93–96]. In both sites, Cu2+ coordination in the 3N1O mode involves the His
imidazole group, two deprotonated amide nitrogens, and a carbonyl group from the backbone amide
bonds that precede the His residue in the sequence, while a third deprotonated amide group replaces
the carbonyl moiety in the 4N equatorial mode (Figure 3). Although the equatorial coordination modes
of Cu2+ bound to these sites are identical, the presence of two Met residues in the His 111 site provides
it with distinct properties, particularly in terms of relative binding affinity, and redox properties. The
thioether groups of Met 109 and Met 112 can participate in Cu1+ coordination to the PrP(106-115)
fragment, as demonstrated by XAS studies, yielding coordination modes where the His111 imidazole
ring, the two Met residues, and a backbone carbonyl group stabilize a tetra-coordinated Cu1+ species
at physiological pH, where Met109 plays a more important role in metal coordination, as compared
to Met112 [97]. Anchoring of Cu1+ ions by Met residues persists even at low pH values (<5), as
those found in endosomes. Thus, the MKHM motif and Cu coordination features of the His111 site
assure that the metal ion would still be bound to the protein, even under decreased pH and reducing
conditions, such as those encountered upon endocytosis. Additionally, the capability of the His111
site to stabilize both Cu2+ and Cu1+ makes it a unique site in the N-term region of HuPrPC that may
support redox activity to activate dioxygen.

The relative binding affinity of Cu2+ for the non-OR sites has also been studied [98–102]. While
a slight preference for Cu2+ binding to His111 over His96 has been observed spectroscopically and
ascribed to the Met residues nearby, the two sites get loaded simultaneously with Kd values in the
range of 0.4 to 0.7 µM at physiological pH [102]. Given the Cu-binding affinity features of the OR
region, this implies that upon increasing Cu2+ levels, the multiple His species (Component 3) would
first form, followed by the population of the non-octarepeat His96/His111 sites, before the OR region
is fully loaded to yield the high occupancy mode (Component 1). Overall, the Cu(II) coordination and
binding features of the N-term region provide HuPrPC with the ability to respond to a wide range of
Cu concentrations, adopting different metal coordination modes, which in turn may impose different
conformations to this unstructured region of the protein.

The conformational flexibility of the N-term_HuPrPC and the presence of several His residues
as Cu anchoring sites provide a platform to accommodate different Cu2+ coordination modes as
a function of relative metal:protein concentrations. Unlike the static (entatic) Cu active sites of
cuproenzymes, where the protein structure imposes restrictions on the metal coordination and
geometry, the preferred coordination modes at each Cu-binding site in the flexible N-term domain of
HuPrPC are dictated by the geometric and electronic preferences of the metal ion, which can actually
impose metal-induced conformations with potentially different functional implications or a propensity
to aggregate. For example, the participation of deprotonated backbone amides in Cu2+ coordination,
as in the high-occupancy (Component 1) mode of the OR region, inevitably imposes a certain turn in
the backbone chain, which is known to yield more compact conformations [81]. Indeed, full loading
of Cu2+ ions into the OR region yields a conformation where the average Cu–Cu distance is 4 to 7 Å,
as determined by EPR [84]. Given the relatively high Cu concentrations needed for endocytosis of
HuPrPC and the Cu-binding affinity features of the OR region, this high-occupancy conformation of
the OR region is likely involved in the mechanism of endocytosis.

Recent studies have revealed metal-induced interactions between the N-term and C-term regions
of MoPrPC [103–105]. An NMR study suggested interactions of the region 90-120, containing His96
and His111 Cu-binding sites, with residues in the vicinity of helix-1 (specifically 144-147), while the
Cu-loaded OR region may also interact with helix-2, involving residues 174-185 [105]. The latter
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was confirmed by an elegant NMR and site-directed spin labeling EPR study that provided detailed
structural information on how Cu binding at the low occupancy multiple His site (Component 3)
in the OR region promotes electrostatic interactions with a highly conserved negatively charged
region at helices 2 and 3 of the globular protein [103]. The C-term region of the protein engaged in
the interaction with Cu-loaded OR overlaps with the region where neurotoxic PrP antibodies bind,
and it also involves acidic residues associated with disease-related mutations, such as E200K. These
observations underscore the important role of Cu2+ loading into the low-occupancy multiple-His
coordination mode in promoting electrostatic interactions between the Cu-bound N-terminal region
and the helical C-terminal domain, a stabilizing interaction that is considered to be regulatory for
prion conversion [103,105].

On the other hand, in the non-OR region, the two His coordination modes identified at
low pH for the PrP(90-231) construct were also found to induce stabilizing interactions with the
globular C-terminal domain, whereas Cu2+ binding solely to the His111 site induced local beta-sheet
structure [91]. Consistently, copper binding to the non-OR sites in the amyloidogenic fragment 90-126
induces a β-sheet-like transition [106]. These observations underscore the important role that Cu
binding to the non-OR region may play in amyloid aggregation and prion conversion.

Cu2+-PrPC interactions and their perturbation by disease-related mutations have been suggested
to play a role for Hu/Mo PrPC aggregation and prion disease progression [107]. Specifically, the
GSS-linked Q211P PM [60] (Q212P in Hu numbering) in the HuPrPC GD can influence the Cu2+

binding coordination at H96 and H111 [108], implicating a role of abnormal Cu2+ binding in the
pathology of PMs in HuPrPC. As discussed above, the multiple His Cu-binding modes induce
stabilizing interactions of the N-term_HuPrPC with the globular C-terminal domain, whereas Cu2+

binding solely to the His111 site induces local beta-sheet structure [91,103,105]. Thus, any perturbation
of the local conformation around the Cu-binding sites may have an impact on the stability of the
protein. Consistently, structural analysis by molecular simulations of the N-term_HuPrPC indicates
that some disease-linked mutations may affect the local conformation and intramolecular interactions
around the Cu2+ binding sites, including His111 [31,32], providing a molecular basis to understand
their impact on disease progression. Although further studies are needed to understand how Cu
binding impacts the folding and conformation of the flexible N-term_HuPrPC, it is clear that the
different Cu2+ coordination modes formed at the His anchoring sites can favor distinct metal-induced
conformations, while disease-related mutations may also impact the conformation of the N-term
region, its Cu-binding properties, and its interactions with the C-terminal globular region of HuPrPC.

Copper binding may also be affected by a specific post-translational modification, namely the
proteolytic processing at specific sites of the N-term region [109]. This includes the following: (i) the
β-cleavage of the OR region, leading to the N2 (23-89) and C2 (90-231) fragments [109]. This is induced
by reactive oxygen species (ROS) produced in the presence of Cu2+ ions [110,111] (It can be also
catalyzed by calpain and ADAM8—a member of the A Disintegrin And Metalloproteinase (ADAM)
family of enzymes [112,113]). While the N2 fragment may be released, maintaining the Cu2+ binding
properties of the OR sites as described above, the C2 fragment may remain anchored to the membrane,
conserving the His96 and His111 sites, but with a free N-term group at residue 90 [109]. The free
NH2 moiety is expected to change significantly the Cu2+ coordination features of these non-OR sites.
(ii) The α-cleavage occurs at several sites in the region encompassing residues 109-120, and it is a
common feature in a wide range of cell lines [114]. The process, performed by members of the ADAM
enzymes [112], increases in the presence of Cu2+ ions [115]. This metal also may modulate the relative
amount of α-cleavage at each site, possibly by inducing local conformational changes that impact how
the protein docks into the protease active site [112,113]. The most described α-cleavage site is located
between Lys110 and His111 in the human sequence, producing two fragments N1 (23-110) and C1
(111-231) [109]. The released N1 fragment may still contain the OR region and the His96 site; however,
the His111 site may be significantly disturbed, as the cleavage occurs between residues that participate
in Cu2+ coordination, leaving a His111 with a free NH2 terminal group at the membrane bound C1
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fragment. A recent spectroscopic study determined the impact of α-cleavage processing on Cu2+

binding to His111, using a model peptide for the C1 fragment [116]. Indeed, in this fragment His111
and the free NH2 terminal group act as the main anchoring sites for Cu2+, resulting in coordination
modes that are highly dependent on proton and copper concentrations, and are quite different from
those characterized for the intact His111 site in the full protein (Figure 3). The Cu-binding affinity
features and redox activity of this perturbed His111 site remain to be investigated. It is interesting
to note that, while Cu ions can modulate the relative amount of α-cleavage at different sites of the
109-120 region of HuPrPC [112], the resulting membrane-bound C1 fragments and their Cu-binding
properties could in turn determine the metal-induced conformation of the N-term region and its ability
to interact with important receptors, such as the HuNMDAR and HuAMPAR [113,117].

4. Conclusions

Recent advances in computational biophysics [31,32,52] have led, for the first time, to a description
of the conformational ensemble on the full-length N-term MoPrPC, a fully disordered domain of 125
amino acids, with high similarity to the human domain. This has made it possible to probe the impact
of disease-related mutations on the structural properties of this flexible region of the protein.

N-term_HuPrPC binds copper ions in vivo [24]. It yields a diverse range of Cu coordination
modes, each with distinct redox properties and binding affinity features. The Cu-binding properties of
the N-term region provide HuPrPC with the ability to respond to the wide range of Cu concentrations
that the protein is exposed to at the synapse, adopting different metal-induced conformations, which
in turn may have distinct functional implications. On the other hand, Cu2+-PrPC interactions and
their perturbation by disease-related mutations may play a role in protein aggregation and prion
disease progression.

While the interplay between metal ion binding and conformational flexibility in the entire N-term
remains to be understood, it is well established that copper displays site-specific effects on its folding,
either by promoting stabilizing interactions or inducing conversion to beta-sheet folds. Conversely,
molecular simulations suggest that some disease-related mutations may affect the local conformation
around the Cu anchoring sites, thus affecting the Cu-binding properties of the N-term_HuPrPC and
the stability of the protein.

Combined computational and experimental studies on the structural impact of Cu2+ binding and
disease-related mutations at the N-term_HuPrPC, such as those on copper(II)-alpha-synuclein—an
intrinsically disordered protein undergoing fibril formation in Parkinson’s disease [118]—could
advance dramatically our understanding of the functional role of Cu2+-PrPC interactions in health
and disease.
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