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Chemodynamic therapy (CDT), a newly developed approach for cancer

treatment, can convert hydrogen peroxide (H2O2) into toxic hydroxyl

radicals (•OH) by using Fenton/Fenton-like reaction to kill tumor cells.

However, due to the complexity of the intracellular environment of tumor

cells, the therapeutic efficacy of CDT was severely restricted. Recently,

combination therapy strategies have become popular approaches for tumor

treatment, and there are numerous studies have demonstrated that the CDT-

based combination strategies can significantly improve the anti-tumor

efficiency of CDT. In this review, we outline some of the recent progress in

cancer chemodynamic therapy from 2020, and discuss the progress in the

design of nanosystems for CDT synergistic combination therapies.
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Introduction

Currently, malignant tumor has become a major threat to human health, considerable

attention has been paid to explore more effective therapeutic strategies for cancer

treatment (Cao M. et al., 2020; Ferlay et al., 2021; Sung et al., 2021). With the

development of nanoscience and nanobiotechnology, significant progress has been

achieved in cancer therapy in the last decades (Wicki et al., 2015; Lin et al., 2022).

However, effective treatment for cancer still presents significant challenges, for example,

multidrug resistance is one of the difficult issues in current clinical chemotherapy

treatment. Therefore, it is particularly necessary to develop new therapeutic agents

and approaches for the more satisfactory cancer treatment (Rasool et al., 2022). In

recent years, chemodynamic therapy (CDT) has attracted extensive attention in the field

of tumor therapy.

CDT is inherently oxidative stress-induced cell killing process, it was first proposed in

2016 (Zhang et al., 2016). Briefly, by using the transition metal ions (Fe2+, Cu+, Mn2+, and

so on), intracellular hydrogen peroxide (H2O2) is catalyzed to generate high reactivity

hydroxyl radical (•OH), which would induce oxidative stress and further the death of

cancer cells (Zhang X. et al., 2020; Chen et al., 2020; Zhang H. et al., 2021) (Figure 1).
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Generally, in order to improve the specificity and therapeutic

efficacy of CDT, those CDT agents are usually designed as

nanosystems. In this review, recent advancements of

nanosystems for enhancing the CDT application and

efficiency are reviewed. The major obstacles for the clinical

applications of CDT are introduced, and those CDT enhanced

strategies that CDT in combination with other therapies are

focused and emphasized, such as combined with photothermal

therapy, immunotherapy, sonodynamic therapy, and so on. The

present review aims to provide better understanding of how to

design effective chemodynamic agents, thus to broaden the

application of CDT and maximize the CDT therapeutic

effectiveness.

Chemodynamic therapy

It is well known that the tumor microenvironment (TME)

exhibits unique physiological features compare with the normal

tissues, including acidic pH, hypoxia, overproduced H2O2, the

alteration of specific enzyme activities and elevated level of

glutathione (GSH) (Roma-Rodrigues et al., 2019; Zhang Y.

et al., 2022). On one side, these features of TME play crucial

roles in tumor initiation, progression, metastasis, and even

resistance to therapy. On the other side, the unique

physiological conditions of TME can also be used as the

stimuli to trigger the antitumor drug release at tumor sites to

improve antitumor efficacy, which are known as the TME

stimuli-responsive drug delivery systems (Wu and Dai, 2017;

Li et al., 2021).

Considering the acidic and H2O2 overexpressed conditions

in TME, the concept of CDT was proposed as a therapeutic

strategy that using Fenton or Fenton-like reaction to generate

hydroxyl radical in tumor site. In the first report of CDT,

ferrous ions (Fe2+) was released from iron-based

nanomaterials, which could catalyze endogenous H2O2

decomposition into •OH under acidic conditions of TME

(Fe2+ + H2O2 → Fe3+ + •OH + OH−, known as Fenton

reaction). The over produced •OH, one type of cytotoxic

reactive oxygen species (ROS), had strong oxidative activity

and caused severe oxidative damage to induce tumor apoptosis

by phospholipid peroxidation, mitochondrial dysfunctions,

and DNA damage (Khan et al., 2012; Srinivas et al., 2019).

Besides Fenton reaction, Fenton-like reactions are also

employed for CDT application. Not restricted to iron, other

reactive metal components, such as Cu+, Mn2+, Mo6+, are used in

Fenton-like reaction to catalyze the generation of •OH from

H2O2 (Cao et al., 2019, Cao et al., 2020 S.; Liang et al., 2021, 2022;

Lin et al., 2021). It should be noted that Fenton reaction highly

relies on the overexpression of H2O2 and acidic condition of

TME, which makes CDT strategy much safer to the normal

tissues, since the Fenton reaction was suppressed under the

neutral and insufficient H2O2 conditions in the healthy cell

microenvironment.

Challenges and limitations of CDT

As a type of ROS-mediated cancer treatment modality, there

is considerable development of understanding and in CDT

during the last years. However, there are still challenges and

limitations that hinder its further application in clinical. First, the

acidic environment of solid tumor site is insufficient to trigger the

efficient Fenton/Fenton-like reaction; second, the endogenous

H2O2 level in tumor cells is not enough to generate adequate

•OH to induce apoptosis of tumor cells; third, the high

concentration of reduced glutathione and redox homeostasis

of tumor cells could eliminate the free radical and weaken the

CDT effect.

From the perspective of chemical kinetic, hydroxyl radicals

could be catalyzed via Fenton/Fenton-like reaction over a wide

range of pH conditions (between acidic and neutral pH) (Zhu

et al., 2019). However, the efficiency and reactivity of Fenton

reaction strongly depend on the pH condition, the reactivity is

obviously increased in the acidic pH range (pH 2–4), and

strongly reduced (even lost) in alkaline media. Considered the

TME is slightly acidic pH condition (pH 6.5–6.8), at one side, the

limited reactivity of Fenton/Fenton-like reaction in healthy

tissues (pH 7.2–7.4) could avoid the damage on healthy

tissues and cells, which makes CDT might selectively kill

tumor cells; on the other side, the weakly acidic TME limits

FIGURE 1
CDT and CDT-based combined therapy strategies, including
combination with chemotherapy, photothermal therapy,
sonodynamic therapy, and immunotherapy.
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the efficiency of Fenton/Fenton-like reactions, which

significantly reduce the generation of •OH.

To address the problem of insufficient acidity, attempts

have been made to reconstitute the tumor microenvironment

via in situ H+ generation strategy. For example, several studies

have integrated glucose oxidase (GOx) into CDT agents, since

GOx can oxidize glucose to gluconic acid to further increases

acidity at TME, thus could enhance Fenton/Fenton-like

reaction efficiency (Cheng et al., 2020; Zhang X. et al.,

2021). It should be noted that the tumor cells employ

various mechanisms to maintain cellular homeostasis

during tumorigenesis and metastasis, this property makes

the in situ acidization of intracellular strategy couldn’t

support a long-term change. Therefore, the design and

development of pH-independent CDT nanotherapeutics

and/or combinational therapies with CDT are viable

approaches to overcome pH limitations of CDT.

Besides the pH condition, Fenton/Fenton-like systems are

also H2O2 dependent. Compared to normal cells (extremely low

H2O2 level), the tumor cells produce and accumulate a large

amount of H2O2 (100 μM–1 mM). However, the initial

endogenous H2O2 level in tumor cells was still not enough to

generate sufficient •OH to achieve satisfactory antitumor

therapeutic effect. In addition, there are endogenous reducing

substances that are involved in maintaining cellular redox

homeostasis in the tumor cells. These reductive substances, for

example reduced glutathione, could mitigate oxidative stress and

repair the oxidative damage. Therefore, increasing H2O2

concentration and reducing GSH level in tumor cells are

potential approaches to enhance the efficacy of CDT. To

overcome the limited-H2O2-level obstacle, tremendous H2O2

self-supplying systems are designed to enhance the efficiency

of Fenton/Fenton-like reactions to achieve satisfactory CDT

effect. From the reported studies, there are two important

design roles for constructing these H2O2 self-supplying

systems: 1) delivery of exogenous H2O2 to tumors (Gao et al.,

2019; Han et al., 2020; Zhao et al., 2022); 2) promote the ability of

endogenous H2O2 production (Liu et al., 2020; Sang et al., 2020;

Jiang et al., 2022).

Nanosystems for CDT based
combination therapy strategies

With the rapid expansion of chemistry and materials science,

nanotechnology shows great potential to overcome the

limitations of conventional tumor therapy, and nanosystems

(or nanotherapeutics) are regarded as one of the most

promising strategies for better tumor treatment (Zhang P.

et al., 2022). The recent reports have revealed that the

combination therapy strategies with CDT nanosystems can

optimize the therapy effects and minimize the toxicity and

adverse effects of treatment (He et al., 2021; Yang et al., 2021;

Liu Y. et al., 2022; Hao et al., 2022).

CDT-chemotherapy combination therapy

Although there is tremendous progress in cancer therapy

during last years, chemotherapy is still main therapeutic

modality in clinic treatment of tumor. However, the low

targeting activity, multidrug resistance problems, and

associated serious adverse-effects (for example

myelosuppression) are still the major challenges and

limitation in the development of effective chemotherapeutic

agents (Holohan et al., 2013; Javarappa et al., 2018). Therefore,

the combinational therapy strategy has become the potential

cancer treatment. For example, the synergistic anti-tumor

strategy of CDT combined with chemotherapy shows

excellent prospects for tumor treatment since the

chemotherapy can decrease GSH level in tumor cells.

Furthermore, specifically activated by the stimuli (such as

pH) in TME, CDT-chemotherapy combination therapy

could solve the drug-resistance problem and significantly

enhance the anti-tumor efficacy (Tan et al., 2020; Xiao

et al., 2021; Yao et al., 2021).

Doxorubicin (DOX), a commonly used chemotherapy

drug, has been demonstrated that has the ability to regulate

the generation of intracellular H2O2 and GSH. Recent studies

have revealed that the synergistic enhanced therapy by

combining CDT with DOX. Mu reported a nanosystem

prepared from epigallocatechin gallate (EGCG) and Fe3+ to

simultaneously deliver DOX and iron ions to tumor sites.

DOX/Fe3+/EGCG nanoparticles exhibit good stability, and

response to the high level of glutathione and acidic

conditions in TME to achieve efficient release of DOX and

Fe3+ after internalization. After Fe3+ was reduced to Fe2+ by

EGCG, Fenton reaction was induced to produce •OH, which

further induced tumor death to amplify the therapeutic effect

of DOX. In vitro and in vivo studies have also shown the

promising tumor treatment results by this CDT-

chemotherapy combined system (Mu et al., 2020). Huang’s

group constructed a biodegradable multifunctional copper-

doped calcium phosphate nanocomposite system to

incorporate DOX. Due to the glucose oxidase, this

nanocomposite catalyzed glucose to produce gluconic acid

and hydrogen peroxide, and Cu2+ was reduced to Cu+ by

endogenous GSH. This strategy could consume GSH and

enhance H2O2 at the same time, thus to amplify CDT

effect. Within tumor cells, Cu2+/Cu+ induced the Fenton-

like reaction to increase •OH level, enhancing the

chemotherapy results. In addition, the DOX in this system

can not only be used for chemotherapy, but also for

fluorescence imaging to monitor of tumor targeting and
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drug release in real-time due to its inherent fluorescence

property (Fu L. H. et al., 2021).

CDT-immunotherapy combination
therapy

Immunotherapy is an emerging field in tumor treatment.

Accumulating evidence indicates that the engagement of CD8+

T lymphocytes and nature killer cells in TME is the critical

process for successful immunotherapy (Wang et al., 2019).

Recent studies have shown that reactive oxygen species play a

vital role in inducing the immunogenic death of tumor cells

and facilitating antitumor immune responses. Immunogenic

cell death induced by ROS oxidative stress could increase the

release of inflammatory cytokines, such as tumor necrosis

factor α (TNFα), which could further activate the immune

response in vivo to inhibit and eliminate both primary tumor

cells and distant sites tumor (or secondary cancer cells) (Fu L.

et al., 2021; Huang et al., 2021).

Li and Rong reported a novel nanosystem by loading ultra-

small CaO2 and Fe3O4 nanoparticles into dendritic mesoporous

silica which coated with a pH-responsive membrane. This

nanocomposite realized the synergism of CDT and

immunotherapy for effective cancer therapy. After intravenous

administration of this nanocomposite, acidic condition of TME

triggered CaO2 to generate abundant H2O2, which was catalyzed

to produce •OH through Fenton reaction mediated by Fe3O4. By

inducing tumor cells death and the release of tumor-associated

antigens, the tumor immunogenic microenvironment was

altered and immune responsibility was enhanced by increasing

the rates of CD8+ Treg cells and M1/M2 macrophage. This study

provides a feasible strategy to achieve highly effective cancer

treatment through the synergistic effect of CDT-immunotherapy

(Li and Rong, 2020).

CDT-photothermal combination therapy

Photothermal therapy (PTT) is a unique cancer

therapeutic strategy, it employs photo-absorbing agents to

convert the light energy into thermal energy, and the heat

generated through photo-thermal reaction is utilized to

directly destroy tumor tissues (Doughty et al., 2019; Zhao

et al., 2021). However, PTT usually relies on a high-energy

light source for long term treatment, and it is difficult to

achieve satisfactory therapeutic effect with only PTT one

single modal therapy.

By hybridizing Fenton agents, PTT systems can be designed

to combine with chemodynamic therapy. In the combination

system, the heat generated by photo-thermal reaction can not

only effectively kill tumor cells, but also increase the rate of ROS

production, which ultimately enhanced the effect of

chemodynamic therapy (Zhang M. et al., 2020; Jiang et al.,

2020; Shi et al., 2022). Li et al. designed a biomimetic

nanosystem for self-enhanced photothermal/chemodynamic

synergistic therapy. In this study, a nanoplatform was

constructed by loading glucose oxidase (GOD) and Ag2S

quantum dots into MnO2 nanosheets and then coated with

the 4T1 cell membrane, inducing successfully escape immune

clearance. This nanoplatform exhibited good tumor targeting

ability and biocompatibility. In addition to the photothermal

treatment effect, glucose oxidase (GOD) can oxidize excess

glucose to H2O2, and at the same time, the released Mn2+ can

catalyze H2O2 to generate abundant •OH through Fenton-like

reaction. Therefore, photothermal enhanced chemodynamic

therapy can be achieved under near-infrared light irradiation

(Li et al., 2022).

CDT-sonodynamic combination therapy

Sonodynamic therapy (SDT) has been developed as a

promising noninvasive approach for tumor treatment in

recent decades. The antitumor mechanism of SDT is ROS-

based process, briefly, a sonosensitizer is activated by

ultrasound energy to generate ROS that destroy the tumor

cells (Gong and Dai, 2021; Geng et al., 2022; Sun et al., 2022).

However, SDT also has some problems, such as low ROS

yield, limited delivery efficiency and short/long-term safety

concerns of sonosensitizers. There is a two-dimensional

nanosonosensitizer/nanocatalyst combined nanosystem

reported by Tang’s group. In this nanosystem, integrated

Cu2O could promote the in situ generation of H2O2 in the

acidic tumor microenvironment, and the generated H2O2

further oxidized Ti3C2 to TiO2, which was the

nanosonosensitizer and reacted with water and oxygen

into the cells to generate ROS. In addition, ultrasound also

enhances the Cu-induced Fenton-like reaction during the

sonodynamic process to generate more ROS to achieve

sonodynamic/chemodynamic improved synergistic tumor

therapy. This study also confirmed that the antitumor

mechanism of synergistic chemodynamic and sonodynamic

therapies are associated with the upregulation of oxidative

phosphorylation and ROS generation (Zhang M. et al., 2022).

In addition to the above-mentioned combination therapy

strategies, CDT can be also applied with other therapy to achieve

the synergistic effects and enhanced therapeutic effects. Lin et al.

constructed a hyaluronic acid-modified bimetallic peroxide

CaO2-CuO2@HA nano-system, which was effectively

accumulated at the tumor site through the EPR effect, and the

modified hyaluronic acid could recognize CD44 on the surface of

tumor cells, which achieved active targeted property.

Subsequently, the nanocomposites are able to generate a large

number of Ca2+, Cu2+, and hydrogen peroxide in the acidic and

hyaluronidase-overexpressing tumor microenvironment.
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Accompanied with glutathione depletion, Cu2+ and H2O2

induced Fenton-like reaction to generate more •OH. In

addition, the excess Ca2+ released from the nanosystem leaded

to the mitochondrial damage, which further enhanced oxidative

stress in tumor cells. In addition, the imbalance of calcium

transport channels caused by oxidative stress further

promoted the calcification, inducing the necrosis of tumor

cells (also named as ion interference therapy). Therefore,

during ROS generation process, the Fenton-like reaction

generated by Cu2+ is synergistic with the mitochondrial

dysfunction induced by Ca2+ (Liu B. et al., 2022).

Conclusion and prospects

Although it has been proven that CDT is an ideal therapeutic

approach for tumor therapy, the intrinsic barrier of TME is the

main obstacle to hinder the further development and clinical

translation of CDT. Fortunately, with the rapid expansion of

nanoscience and nanobiotechnology, there are more

nanosystems have been designed and studied that have

potential to overcome those challenges of CDT. However,

there are still some problems need to be solved before further

clinical applications:

(1) Biosafety issues. At the cellular level, CDT-based

nanosystems can enter cells in a variety of approaches,

which may lead to changes or even loss of normal cellular

functions, resulting in unnecessary toxic side effects.

Especially, the current reported CDT-based nanosystems

are mainly inorganic or hybrid nanomaterials, which are

liable to elicit in vivo immune response. Thus, the biosafety

issue of CDT-based nanosystems has raised intense concerns

in the clinical applications.

(2) Complexity of CDT-based nanosystems. In the present

studies, CDT-based nanosystems are designed overly

complicated but hardly used in clinical practice. On one

side, complicated nanosystems usually are associated to

biological toxicity since the chemical compositions are too

complex to precisely predict the biocompatibility. On the

other side, the synthesis of CDT-based nanosystems is only

reported in the lab level, but for practical applications, the

reproducibility is too low for industrial scale. Therefore, how

to design and construct CDT-based nanosystems with

simple structure, stable compositions, and efficient

responsibility to endogenous and/or exogenous stimuli has

attracted much attention.

(3) The synergistic mechanism of CDT-based combined

strategies. CDT and CDT-based combined strategies are

ROS-mediated process, however, the mechanism for •OH

production by Fenton/Fenton-like reactions in vivo need

be deeply investigated, especially the CDT-based

combined strategies. A successful combined therapy can

overcome the shortcomings of monotherapy, however,

synergistic therapy may provide new therapeutic

mechanism and opportunities for tumor therapy. To

further broaden the application of CDT and CDT-based

combined therapy, ROS synergistic mechanism in vivo

should be deeply investigated to provide more effective

therapeutic options.

In the future, research efforts should shift to practical trials of

using CDT and CDT-based combined therapy strategies in

disease treatment. There is still a long way to go before

achieving clinical application, we expect more nanosystems for

CDT therapy are designed and more cancer patients will benefit

from this treatment.
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