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Abstract

Increasingly, highly multiplexed tissue imaging methods are used to profile protein

expression at the single-cell level. However, a critical limitation is the lack of robust

cell segmentation tools for tissue sections. We present Multiplexed Image Res-

egmentation of Internal Aberrant Membranes (MIRIAM) that combines (a) a pipeline

for cell segmentation and quantification that incorporates machine learning-based

pixel classification to define cellular compartments, (b) a novel method for extending

incomplete cell membranes, and (c) a deep learning-based cell shape descriptor. Using

human colonic adenomas as an example, we show that MIRIAM is superior to widely

utilized segmentation methods and provides a pipeline that is broadly applicable to

different imaging platforms and tissue types.
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1 | INTRODUCTION

Single-cell analytical methods capable of interrogating cellular hetero-

geneity are now widely available. These methods allow multiple

markers to be measured over a large number of cells and can be

achieved by disaggregation of tissue into suspension or in situ analy-

sis. Suspension methods, such as single-cell RNA-seq [1], multi-

channel flow cytometry [2], and mass cytometry [3], require single-cell

dissociation that results in inherent loss of spatial context. In situ

methods such as isotope-based imaging [4,5] or the various multi-

plexed fluorescence imaging methods [6–8] retain spatial information

but require cell identification after data collection.

Robust image segmentation methods are available in vitro [9–11],

but are not generally applicable in tissue due to irregular cell shapes,

high cellular density, membrane polarity, and uneven membrane

marker coverage. Typical cell segmentation in tissue includes dilation
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from nuclei [12] or Voronoi tessellation [7]. While adequate for

segmenting stereotypically shaped immune cell populations, these

methods are often insufficient for segmenting columnar epithelial cells

with elongated and irregular morphologies. Segmentation of intestinal

epithelial cells proves to be more challenging than their neoplastic

counterparts. Loss of apico-basolateral polarity and cell rounding in

tumors frequently result in symmetrically shaped cells that alleviate

many segmentation problems encountered in the normal gut. Multiple

membrane markers have been used to better define cell borders for

seed-based watershed segmentation [13] as well as other methods

[14–17] including deep learning [18–20]. However, these methods

often fail due to improper or incomplete membrane identification and

cell segmentation in tissue remains a significant challenge.

Here, we present multiplexed image resegmentation of internal

aberrant membranes (MIRIAM), a pipeline for cell segmentation and

quantification on tissue. We apply MIRIAM on multiplexed

immunofluorescence-derived images [6] of precancerous colorectal

adenomas [21] and a multiplexed ion beam imaging (MIBI) breast car-

cinoma data set. Initial pixel classification by random forest-based

machine learning provides an input to a novel method to identify and

separate cells with internal membranes. Following cell identification,

each marker is then quantified by image intensity over the entire cell

as well as in the nucleus, membrane, and cytoplasm. Finally, cell

shapes are characterized using an autoencoder neural network.

2 | MATERIALS AND METHODS

2.1 | Human subjects

The Tennessee Colon Polyp Study (TCPS) [21] was approved by the

Vanderbilt University Medical Center (VUMC) and Veterans Affairs

Tennessee Valley Health System (VA) institutional review boards and

the VA Research and Development Committee. All participants pro-

vided written informed consent.

2.2 | Tissue processing, antibody staining, and
multiplexed immunofluorescence imaging

A de-identified human colonic adenoma tissue microarray (TMA)

derived from the TCPS patient cohort was obtained. The TMA was

sectioned (5 μm) prior to deparaffinization, rehydration and antigen

retrieval using pH 6.0 citrate buffer (DAKO) at 105�C for 20 min

followed by 10 min at room temperature. The slide was incubated in

3% hydrogen peroxide for 10 min to reduce endogenous background

signal and subsequently blocked in 3% BSA/10% donkey serum in

PBS for 30 min. Multiplexed Immunofluorescence imaging was com-

pleted by sequential antibody staining and dye inactivation as

described [6]. Briefly, imaging was performed on 124 TMA cores

(1 mm diameter) using a Cytell Slide Imaging System (GE Healthcare)

at 20� magnification. Images of each core were 5435 � 4473 pixels

with a pixel resolution of 0.325 μm. Exposure times were optimized

for each antibody stain. Antibody reagents are described in Table S1.

Dye inactivation was accomplished with an alkaline peroxide solution,

and background images were collected after each round of staining to

ensure fluorophore inactivation. Following acquisition, images were

processed as described [6,13]. Briefly, DAPI images for each round

were registered to a common baseline, and autofluorescence in

staining rounds was removed by subtracting the previous background

image for each position. Images were then tiled for each TMA core.

2.3 | MIBI data set

MIBI imaging from a breast carcinoma TMA was collected by Keren

et al. [22] from 41 patients using 36 protein markers. Images were

2048 � 2048 pixels at 0.5 μM resolution.

2.4 | Cell segmentation

The input to MIRIAM is any type of multiplexed imaging data. All

scripts to complete the segmentation pipeline are available at https://

github.com/Coffey-Lab/MIRIAM including a step-by-step overview of

the process and example data. Cell segmentation on each TMA core

was conducted using a pipeline utilizing either Matlab (R2018b) or

Python (3.7) and Ilastik (1.3.2 or greater). Initialization of the wrapper

function generated a number of container folders for each step in the

segmentation process. A schematic of the process is shown in

Figure 1 and Figure S1.

To facilitate pixel classification machine learning, tiff image stacks

containing DAPI and autofluorescence removed images for all markers

were generated for each image position after which the script was ter-

minated. The tiff stacks were then manually annotated in Ilastik [23]

to generate epithelial/stroma, membrane/cytoplasm/nucleus, and

stromal nuclei probability masks using a random forest pixel classifica-

tion algorithm.

The Matlab or Python script was re-initialized and binary masks

for epithelium, nuclei, and membranes were generated. A watershed

was used with nuclei as seed points and learned membranes as

boundaries to generate an initial segmentation, which was masked by

the epithelial regions to only include epithelial cells.

Subsequently, cells were resegmented using a novel algorithm if

they contained greater than 10% internal membranes by area. This

algorithm “connects the dots” by finding the endpoints of internal

membranes and extends them until they intersect with either the cell

border or another extension from a separate internal membrane

(Figure 1). The same method is also applied to cells expressing Mucin

2 in order to facilitate segmentation of goblet cells. A flowchart with

pseudocode of this algorithm is shown in Figure S2. Following re-seg-

mentation, cells were assigned unique IDs.

Cell compartments were then defined within each cell. The

nucleus was defined as the pixels contained within the cell object and

the nuclear mask. Membranes were defined as the pixels contained

within the cell object and within 5 pixels of the edge of the cell object

that were not already defined as nuclear. The cytoplasm was defined

as all other pixels in the cell object that were not already defined as
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nuclear or membranous. Each marker was then quantified over the

entire cell and in each compartment by taking the median image

intensity of the autofluorescence removed image. Additionally, the

cell centroid coordinates and areas of the entire cell object and

subcompartmens were generated. These data were stored in comma-

separated value (CSV) files.

For stromal cell segmentation, a watershed was used with stromal

nuclei, defined from the machine learning pixel classification as seed

points, was applied. This was then multiplied by a mask created from

a 3 pixel dilation of the stromal nuclei mask to define the individual

stromal cells. Marker quantification was then performed by calculating

the median image intensity for each marker over the entire cell object.

Cell location and area were also determined. These data were stored

in CSV files.

2.5 | Cell shape analysis

An autoencoder neural network was then used to classify cell shapes

from the segmented data. Similar methods have been developed to

cluster biological [24] and non-biological data [25]. For each imaging

position, all segmented cells were binarized and re-sized to a

128 � 128 pixel matrix and aligned such that the major axes were all

in the same orientation. For autoencoder training, a random subset

(20% default) of all cells were chosen and a neural network was run in

Matlab using the Deep Learning Toolbox or the Keras library in

Python using 256 hidden layers. Following training, all cells were

encoded and the latent vectors for all cells were saved for subsequent

processing.

2.6 | Comparison of segmentation results

Voronoi segmentation [26] was completed using the nuclei derived

from pixel-wise machine learning. Mesmer [20], a deep learning seg-

mentation method, was applied to the colon polyp TMA using DAPI

as the nuclear channel and NaKATPase as the membrane channel.

Cell membranes were manually annotated on the entirety of three

TMA cores. Cell borders were extracted from the final segmentations

derived from MIRIAM, Mesmer, Voronoi, and the manual membranes,

F IGURE 1 Graphical overview of segmentation pipeline. Key steps in the MIRIAM pipeline are shown pictorially. A cartoon of cell re-
segmentation by connecting internal membranes is highlighted in blue in the middle panel
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and dilated using a 5 pixel square kernel. The Dice similarity coeffi-

cient (DSC) [27], and Jaccard similarity coefficient (JSC) [28] were cal-

culated to assess segmentation agreement with manually annotated

membranes in two ways. First, the cell border images of the three

TMA cores with manual annotation were tiled into 512 � 512 pixel

sub-images and the similarity indices were computed within each

sub-image. Sub-images with no tissue were excluded from analysis.

Second, individual cells were extracted and cropped to the bounding

box of each cell. The membranes of each cell were then compared to

the manually annotated membranes in the same area. To test how

varying marker combinations affect MIRIAM segmentation, single

markers were excluded or subsets of markers chosen from the entire

set of markers. Pixel classification was re-trained for each permuta-

tion using the same annotations for each marker combination and

MIRIAM segmentation performed. DSC and JSC were calculated

between the final segmentations from each marker subset and the

manually annotated cell borders in 512 � 512 pixel sub-images for

each core.

2.7 | Data analysis

Data analysis was performed in R. t-Stochastic Neighbor Embedding

was conducted using the Rtsne package [29] and all plots were gener-

ated using the ggplot2 package [30].

3 | RESULTS

Example raw images, probability masks, and final segmentation are

shown in Figure 2. All staining rounds, including NaKATPase

(Figure 2A) and DAPI (Figure 2B), were used to derive the epithelial

(Figure 2C) and membrane/nucleus (Figure 2D) probability maps. A

final cell segmentation mask (Figure 2E) and sub-cellular segmentation

(Figure 2F) shows the spatial extent of each cell border (white),

nucleus (blue), cell membrane (red), and cytoplasm (green). Segmenta-

tion results (Figure 2G) show generally high correspondence between

MIRIAM and Mesmer segmentation in epithelial cells. Voronoi agrees

F IGURE 2 MIRIAM results. Representative (A) NaKATPase and (B) DAPI staining are shown as part of the 16 channel image stack that was
used to create probability maps for (C) epithelial (red) and stromal (green) regions, and (D) cellular membrane (red), nucleus (green), and cytoplasm
(blue). Final MIRIAM-derived (E) whole cell and (F) subcellular segmentation are shown. Segmentation results (G) are shown with cell borders in
white and blue nuclear masks over an entire tissue microarray core (scale bar: 200 μm) and a zoomed region (scale bar: 50 μm) for MIRIAM,
Mesmer, and Voronoi. Comparison of MIRIAM to Mesmer and Voronoi are shown with the nuclear mask and membrane marker NaKATPase.
Rain cloud plots show dice similarity coefficient (DSC) and Jaccard similarity coefficient (JSC) comparing segmentation methods to manually
annotated cell border images at an image level (H) and in individual cells (I)

524 MCKINLEY ET AL.



with MIRIAM segmentation in areas where cells are densely packed.

However, Voronoi undersegments cells towards the lumen as it does

not take into account cell membranes.

On an image level, 240 sub-images were analyzed across the three

manually annotated TMA cores (Figure 2H). For MIRIAM, DSC was

0.65 ± 0.08 (mean ± SD) and JSC was 0.48 ± 0.08. In comparison, Mes-

mer had a DSC of 0.59 ± 0.10 and JSC of 0.42 ± 0.08, while Voronoi

had a DSC of 0.32 ± 0.11 and JSC of 0.20 ± 0.07. Similarly, when com-

paring individual cells, MIRIAM exhibited higher similarity than

Vornonoi (Figure 2I). MIRIAM had a DSC of DSC of 0.67 ± 0.14 and

JSC of 0.52 ± 0.15, Mesmer a DSC of 0.61 ± 0.19 and JSC of 0.46

± 0.18, and Voronoi a DSC of 0.47 ± 0.21 and JSC of 0.33 ± 0.18.

MIRIAM was robust to the composition of markers used for train-

ing the pixel classification algorithms. Compared to the full 15 marker

data set and DAPI, leaving out a single marker led to minimal change

in DSC or DSC when the resulting segmentation was compared to the

manually annotated cell borders (Figure S3). Using a subset of only

membrane markers (β-catenin, E-cadherin, NaKATPase, Pan-cadherin,

and Pan-cytokeratin) and DAPI similarly showed a small increase in

similarity. However, leaving out the membrane markers and DAPI or

only using NaKATPase and DAPI resulted in decreased similarity to

the manually annotated cell borders.

The quantified segmentation results can be used for downstream

data analysis such as defining cellular populations [31] or interrogating

cell-state transition trajectories [32]. Figure 3A shows the results of t-

stochastic neighbor embedding (t-SNE) using only the intensities for

each marker in the data set. Cells with similar protein expression pat-

terns group together in two-dimensional data space derived from the

high dimensional data (Figure S4). For example, cells with p-ERK

staining intensity form a discrete cluster that overlaps with p-EGFR,

PCNA, and Ki67, all of which are features of proliferative cells. When

only the encoded latent vectors for cell shape, excluding those used

to train the autoencoder, are used as an input to t-SNE analysis

(Figure 3B), cells with similar geometries are near each other in t-SNE

space (Figure 3C). However, our t-SNE shape analysis did not reveal

any discernible cellular populations or clear patterns in marker expres-

sion (Figure S5). While cells of different shapes (e.g., columnar, circu-

lar, triangular) can be identified, and nearest neighbors confirm the

shape groupings, cell shape does not appear to correspond to marker

signal intensity, at least in this setting.

F IGURE 3 Cell shape similarity. t-SNE plots using (A) only marker intensity and (B) cell shape latent vectors are shown with p-ERK staining
intensities. (C) The shapes of four selected cells are compared to their 10 nearest neighbors in t-SNE space
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Results of MIRIAM using Matlab or Python implementations

show largely similar results (Figure S6). Image correlation between

both methods is high for cell membranes over 120 TMA cores with a

DSC of 0.84 ± 0.06 and JSC of 0.74 ± 0.09.

MIRIAM performed well on a breast carcinoma MIBI dataset, rep-

resentative results are demonstrated in Figure S7.

4 | DISCUSSION

Cell segmentation represents a difficult task in tissue sections and

robust and accurate methods are needed to leverage the rapidly

expanding number of highly multiplexed imaging platforms. Significant

advances here include a novel algorithm to close missing cell mem-

branes and a method to determine cell shape in tissue.

While deep learning methods have recently been applied to multi-

plexed image segmentation tasks [20], they may not be suitable for a

specific use case without additional training. Machine learning pixel

classification, as reported here and elsewhere [33,34], provides a mid-

dle ground between deep learning methods and simpler, yet less time

consuming, methods like additive membrane intensities [13]. Using

the entire set of markers to define intracellular structures with

machine learning resulted in more complete membranes compared to

relying on defined membrane or nuclear markers, While not

implemented here, the addition of deep learning methods for nuclei

detection [11,18] may help improve initial seeds compared to pixel-

based machine learning.

Despite improved membrane definition, gaps remain in the

learned membranes leading to under-segmentation of cell objects.

Oftentimes, the cross section may exclude the nucleus, which can

result in under-segmentation, or a combined cell with no nucleus to

one in which a nucleus is detected. To solve this issue, we developed

an algorithm that detects objects in the initial watershed segmenta-

tion that have internal membranes. For those cells, the algorithm com-

putes the angle of membrane segments within the cell and extends

them until another membrane is encountered. This procedure

improves segmentation quality in cases where no nucleus is detected

in a neighboring cell and is superior to Voronoi in this context both

qualitatively (Figure 2G) and quantitatively (Figure 2H, I).

MIRIAM segmentation also outperformed Mesmer deep learning

segmentation [20], demonstrating higher similarity to the manually

annotated data in this use case (Figure 2H,I). However, while Mesmer

was trained on imaging data we provided of normal mouse small

intestine, as well normal human colon and colorectal cancer; it was

not trained on colorectal adenomas. We expect that segmentation

performance gains for Mesmer could potentially be realized if addi-

tional training data is included.

The quality of MIRIAM-derived segmentation is minimally

affected by changes in marker composition (Figure S3). Dropping indi-

vidual membrane markers from the training data, even DAPI, results in

small changes in similarity scores compared to the use of all markers.

Similar results were shown using a combination of membrane markers

and DAPI. Large decreases in performance were observed when all

membrane markers were excluded or only NaKATPase was used in

conjunction with DAPI. Additionally, MIRIAM performed well in

segmenting a breast cancer MIBI data set (Figure S7) composed of a

different marker set and lower image quality than the colorectal ade-

noma data set. Overall, MIRIAM is robust to changes in marker com-

position and modality of image collection.

Finally, we introduce a deep learning method for classifying cell

shape. We chose an autoencoder as other methods that use defined

shape descriptors [35], such as circularity and concavity, may not cap-

ture the relevant characteristics that a neural network can. In princi-

ple, cell shape should provide added information about cell

characteristics, for example, crypt base columnar cells have an elon-

gated wedge shape and mucus-producing goblet cells have their char-

acteristic cup shape. Indeed, cells of similar shape are clustered

together (Figure 3C). However, as cells in a tissue section can be

bisected in any direction, this is not always the case. As our results in

human colonic adenomas show, 2-dimensional cell shape may not cor-

relate with cell type or protein expression as might be expected if the

full 3-dimensional cell morphology was characterized. While this is

the case in our system, cell shape may be more informative in other

tissue contexts or when limited to already defined cell types.

Together, these improvements to cell segmentation and quantifi-

cation present a step forward for single-cell analysis of highly multi-

plexed imaging data. Importantly, MIRIAM is tissue-type and

acquisition method agnostic, highly modifiable, and has been previ-

ously applied to a large multiplexed immunofluorescence dataset [36].

With implementations in Matlab and Python, we envision this pipeline

can be broadly adopted for analysis of multiplexed image data.

ACKNOWLEDGMENTS

Special thanks to Benoit Pimpaud for inspiring the shape characteriza-

tion algorithms and Martha Shrubshole and Tim Su for the TMA used

in this study. Research reported in this publication was supported by

the National Institutes of Health (NIH) under awards R35CA197570,

P50CA236733, and U2CCA233291 to Robert J. Coffey,

R01DK103831 to Ken S. Lau, and F31DK127687 to Paige N. Vega.

The content is solely the responsibility of the authors and does not

necessarily represent the official views of the NIH.

AUTHOR CONTRIBUTIONS

Eliot McKinley: Conceptualization (equal); data curation (equal); for-

mal analysis (equal); investigation (equal); methodology (equal); soft-

ware (equal); validation (equal); visualization (equal); writing – original

draft (equal); writing – review and editing (equal). Justin Shao: Soft-

ware (equal). Samuel T Ellis: Investigation (equal); validation (equal).

Cody N Heiser: Software (equal); validation (equal). Joseph T Roland:

Investigation (equal); software (equal); validation (equal); writing –

review and editing (equal). Mary Catherine Macedonia: Software

(equal); validation (equal). Paige Vega: Methodology (equal); validation

(equal). Susie Shin: Investigation (equal); validation (equal). Robert J

Coffey: Conceptualization (equal); funding acquisition (equal); project

administration (equal); writing – original draft (equal); writing – review

and editing (equal). Ken Lau: Conceptualization (equal); funding

526 MCKINLEY ET AL.



acquisition (equal); methodology (equal); software (equal); supervision

(equal); writing – original draft (equal); writing – review and editing

(equal).

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

PEER REVIEW

The peer review history for this article is available at https://publons.

com/publon/10.1002/cyto.a.24541.

ORCID

Eliot T. McKinley https://orcid.org/0000-0003-4802-3933

REFERENCES

1. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-

Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;

6:377–82.
2. Bradford JA, Buller G, Suter M, Ignatius M, Beechem JM. Fluores-

cence-intensity multiplexing: simultaneous seven-marker, two-color

immunophenotyping using flow cytometry. Cytometry A. 2004;61:

142–52.
3. Bendall SC, Simonds EF, Qiu P, Amir E-AD, Krutzik PO, Finck R, et al.

Single-cell mass cytometry of differential immune and drug responses

across a human hematopoietic continuum. Science. 2011;332:687–96.
4. Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A,

Hattendorf B, et al. Highly multiplexed imaging of tumor tissues with

subcellular resolution by mass cytometry. Nat Methods. 2014;11:

417–22.
5. Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky AD,

et al. Multiplexed ion beam imaging of human breast tumors. Nat

Med. 2014;20:436–42.
6. Gerdes MJ, Sevinsky CJ, Sood A, Adak S, Bello MO, Bordwell A, et al.

Highly multiplexed single-cell analysis of formalin-fixed, paraffin-

embedded cancer tissue. Proc Natl Acad Sci. 2013;110:11982–7.
7. Lin J-R, Izar B, Wang S, Yapp C, Mei S, Shah PM, et al. Highly multi-

plexed immunofluorescence imaging of human tissues and tumors

using t-CyCIF and conventional optical microscopes. Elife. 2018;7:

e31657.

8. Goltsev Y, Samusik N, Kennedy-Darling J, Bhate S, Hale M,

Vazquez G, et al. Deep profiling of mouse splenic architecture with

CODEX multiplexed imaging. Cell. 2018;174:968–81.
9. Yin Z, Bise R, Chen M, Kanade T. Cell segmentation in microscopy

imagery using a bag of local Bayesian classifiers. 2010 IEEE interna-

tional symposium on biomedical imaging: from nano to macro.

Brooklyn, NY: IEEE; 2010. p. 125–8.
10. Zimmer C, Labruyère E, Meas-Yedid V, Guillén N, Olivo-Marin J-C.

Segmentation and tracking of migrating cells in videomicroscopy with

parametric active contours: a tool for cell-based drug testing. IEEE

Trans Med Imaging. 2002;21:1212–21.
11. Al-Kofahi Y, Zaltsman A, Graves R, Marshall W, Rusu M. A deep

learning-based algorithm for 2-D cell segmentation in microscopy

images. BMC Bioinform. 2018;19:365.

12. Schmitt O, Hasse M. Morphological multiscale decomposition of con-

nected regions with emphasis on cell clusters. Comput Vis Image

Underst. 2009;113:188–201.
13. McKinley ET, Sui Y, Al-Kofahi Y, Millis BA, Tyska MJ, Roland JT, et al.

Optimized multiplex immunofluorescence single-cell analysis reveals

tuft cell heterogeneity. JCI Insight. 2017;2:e93487.

14. Schüffler PJ, Schapiro D, Giesen C, Wang HAO, Bodenmiller B,

Buhmann JM. Automatic single cell segmentation on highly multi-

plexed tissue images. Cytometry A. 2015;87:936–42.
15. Baggett D, Nakaya M-A, McAuliffe M, Yamaguchi TP, Lockett S.

Whole cell segmentation in solid tissue sections. Cytometry A. 2005;

67:137–43.
16. Santamaria-Pang A, Rittscher J, Gerdes M, Padfield D. Cell segmenta-

tion and classification by hierarchical supervised shape ranking. 2015

IEEE 12th international symposium on biomedical imaging (ISBI).

Brooklyn, NY: IEEE; 2015. p. 1296–9.
17. Baars MJD, Sinha N, Amini M, Pieterman-Bos A, van Dam S,

Ganpat MMP, et al. MATISSE: a method for improved single cell seg-

mentation in imaging mass cytometry. BMC Biol. 2021;19:1–10.
18. Caicedo JC, Goodman A, Karhohs KW, Cimini BA, Ackerman J,

Haghighi M, et al. Nucleus segmentation across imaging experiments:

the 2018 data science bowl. Nat Methods. 2019;16:1247–53.
19. Moen E, Bannon D, Kudo T, Graf W, Covert M, Van Valen D. Deep

learning for cellular image analysis. Nat Methods. 2019;16:1233–46.
20. Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, et al.

Whole-cell segmentation of tissue images with human-level perfor-

mance using large-scale data annotation and deep learning. Nat Bio-

technol. 2021. https://doi.org/10.1038/s41587-021-01094-0

21. Shrubsole MJ, Wu H, Ness RM, Shyr Y, Smalley WE, Zheng W. Alco-

hol drinking, cigarette smoking, and risk of colorectal adenomatous

and hyperplastic polyps. Am J Epidemiol. 2008;167:1050–8.
22. Keren L, Bosse M, Marquez D, Angoshtari R, Jain S, Varma S, et al. A

structured tumor-immune microenvironment in triple negative breast

cancer revealed by multiplexed ion beam imaging. Cell. 2018;174:

1373–87.
23. Sommer C, Straehle C, Köthe U, Hamprecht FA. Ilastik: Interactive

learning and segmentation toolkit. 2011 IEEE international sympo-

sium on biomedical imaging: from nano to macro. Chicago, IL: IEEE;

2011. p. 230–3.
24. Ruan X, Murphy RF. Evaluation of methods for generative modeling

of cell and nuclear shape. Bioinformatics. 2019;35:2475–85.
25. Pimpaud B. After raw stats: exploring possession styles with data

embeddings. Medium 2019. Available at: https://towardsdatascience.

com/after-raw-stats-exploring-possession-styles-with-data-

embeddings-d3ebef718abf. Accessed October 1, 2019.

26. Kaliman S, Jayachandran C, Rehfeldt F, Smith A-S. Limits of applicabil-

ity of the Voronoi tessellation determined by centers of cell nuclei to

epithelium morphology. Front Physiol. 2016;7.

27. Zou KH, Warfield SK, Bharatha A, Tempany CMC, Kaus MR,

Haker SJ, et al. Statistical validation of image segmentation quality

based on a spatial overlap index: scientific reports. Acad Radiol. 2004;

11:178.

28. Kobayakawa M, Kinjo S, Hoshi M, Ohmori T, Yamamoto A. Fast com-

putation of similarity based on Jaccard coefficient for composition-

based image retrieval. Advances in multimedia information

processing. PCM. 2009;2009:949–55.
29. Krijthe JH. Rtsne: T-distributed stochastic neighbor embedding using

Barnes-Hut implementation. R package version 0. 13, https://github.

com/jkrijthe/Rtsne. 2015.

30. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer.

2016. https://ggplot2.tidyverse.org

31. Maaten L v d, Hinton G. Visualizing Data using t-SNE. J Mach Learn

Res. 2008;9:2579–605.
32. Herring CA, Banerjee A, McKinley ET, Simmons AJ, Ping J, Roland JT,

et al. Unsupervised trajectory analysis of single-cell RNA-Seq and

imaging data reveals alternative tuft cell origins in the gut. Cell Syst.

2018;6:37–51.
33. van Ineveld RL, Kleinnijenhuis M, Alieva M, de Blank S, Barrera

Roman M, van Vliet EJ, et al. Revealing the spatio-phenotypic

MCKINLEY ET AL. 527

https://publons.com/publon/10.1002/cyto.a.24541
https://publons.com/publon/10.1002/cyto.a.24541
https://orcid.org/0000-0003-4802-3933
https://orcid.org/0000-0003-4802-3933
https://doi.org/10.1038/s41587-021-01094-0
https://towardsdatascience.com/after-raw-stats-exploring-possession-styles-with-data-embeddings-d3ebef718abf
https://towardsdatascience.com/after-raw-stats-exploring-possession-styles-with-data-embeddings-d3ebef718abf
https://towardsdatascience.com/after-raw-stats-exploring-possession-styles-with-data-embeddings-d3ebef718abf
https://github.com/jkrijthe/Rtsne
https://github.com/jkrijthe/Rtsne
https://ggplot2.tidyverse.org


patterning of cells in healthy and tumor tissues with mLSR-3D and

STAPL-3D. Nat Biotechnol. 2021;39(10):1239–1245.
34. Schapiro D, Sokolov A, Yapp C, Muhlich JL, Hess J, Lin J-R, et al.

MCMICRO: a scalable, modular image-processing pipeline for multi-

plexed tissue imaging. Nat Methods. 2021. https://doi.org/10.1038/

s41592-021-01308-y

35. Möller B, Poeschl Y, Plötner R, Bürstenbinder K. PaCeQuant: a tool

for high-throughput quantification of pavement cell shape character-

istics. Plant Physiol. 2017;175:998–1017.
36. Chen B, Scurrah CR, ET MK, Simmons AJ, Ramirez-Solano MA, Zhu X,

et al. Differential pre-malignant programs and microenvironment

chart distinct paths to malignancy in human colorectal polyps. Cell.

2021;184(26):6262–6280.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version

of the article at the publisher's website.

How to cite this article: McKinley ET, Shao J, Ellis ST,

Heiser CN, Roland JT, Macedonia MC, et al. MIRIAM: A

machine and deep learning single-cell segmentation and

quantification pipeline for multi-dimensional tissue images.

Cytometry. 2022;101:521–8. https://doi.org/10.1002/cyto.a.

24541

528 MCKINLEY ET AL.

https://doi.org/10.1038/s41592-021-01308-y
https://doi.org/10.1038/s41592-021-01308-y
https://doi.org/10.1002/cyto.a.24541
https://doi.org/10.1002/cyto.a.24541

	MIRIAM: A machine and deep learning single-cell segmentation and quantification pipeline for multi-dimensional tissue images
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Human subjects
	2.2  Tissue processing, antibody staining, and multiplexed immunofluorescence imaging
	2.3  MIBI data set
	2.4  Cell segmentation
	2.5  Cell shape analysis
	2.6  Comparison of segmentation results
	2.7  Data analysis

	3  RESULTS
	4  DISCUSSION
	ACKNOWLEDGMENTS
	AUTHOR CONTRIBUTIONS
	CONFLICT OF INTEREST
	PEER REVIEW

	REFERENCES


