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In this study, four Gaussian process regression (GPR) approaches by various kernel functions have been proposed for the
estimation of biodiesel density as the functions of pressure, temperature, molecular weight, and the normal melting point of
fatty acid esters. Comparing the actual values with GPR outputs shows that these approaches have good accuracy, but the
performance of the rational quadratic GPR model is better than others. In this GPR model, RMSE =0.47, MSE =0.22,
MRE =0.04, R =1, and STD is equal to 0.3. In addition, for the first time, this study shows that the effective parameters
affect the biodiesel density. According to this analysis, it was shown that among the input parameters, pressure has the greatest
effect on the target values with a relevancy factor of 0.59. This study can be used as a suitable and valuable work/tool for

chemical and petroleum engineers who attempt environment protection and recovery improvement.

1. Introduction

Recently, in various countries, the issue of energy is deep and
complex [1-3]. The greenhouse gas concentration in the
atmosphere has been increased because the consumption of
fossil fuels increased, and in that case, the earth’s temperature
increased too [4, 5]. For the solution to these problems, sev-
eral agreements have been signed to reduce greenhouse gas
emissions [6]. There are so many reasons but the main rea-
sons for blooming the renewable energy resources are the
aim of controlling the emission of pollutants and the imple-
mentation and credibility of these agreements [7, 8]. The
two things that mainly can form biodiesel are the oils that
come from vegetables and the fat of an animal’s body [9].
Biodiesel is a combination of fatty acid alkyl esters [10]. Eth-
anol and methanol are some of the alcohols that the oils that
come from vegetables and the fat of animal’s body are trans-
esterification catalytically by them [10]. Biodiesel is a clean
fuel to burn, and it is not a toxic fuel because of low concen-
trations of sulfur. In that case, this fuel has the minimum bad
effect on the emission of greenhouse gas changes, and also

unlike fossil fuels, the biodiesel fuel has a less negative effect
on our environment too [11, 12]. Additionally, in diesel
engines, we can use biodiesel fuels lonely or use this fuel with
fossil diesel because it improves engine life [13], although this
fuel costs more than petroleum-based diesel and has higher
viscosity too. Some other disadvantages of this fuel are lower
oxidation stability, higher cloud point, and lower energy con-
tent in comparison with petroleum-based diesel [14]. The
observational and modeling studies for the establishment of
these properties become important because the concentra-
tion on usages of the biofuels and their properties have been
grown [15, 16]. For example, the density of biodiesel is the
important property that has a significant matter in the ther-
mophysical process. One of the important topics in diesel
fuels is the investigation of density because diesel fuels have
so many technical and economic parts for the usage of the
fuel and also the environmental effects [17-19].

For estimating the properties of fossil fuels, lots of inves-
tigations have been carried out in the literature and also there
are different advancements in this study, such as a new way
for guessing many properties of fuels consisting of surface
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TaBLE 1: Obtained statistical parameters to evaluate the performance of the models.
Model Phase R? MRE (%) MSE RMSE STD
Train 1.000 0.01 0.01 0.11 0.10
GPR (exponential) Test 1.000 0.05 0.38 0.61 0.45
Total 1.000 0.02 0.10 0.61 0.29
Train 1.000 0.04 0.18 0.42 0.27
GPR (Matern) Test 1.000 0.04 0.25 0.50 0.33
Total 1.000 0.04 0.19 0.50 0.28
Train 1.000 0.04 0.21 0.46 0.30
GPR (squared exponential) Test 1.000 0.04 0.23 0.48 0.32
Total 1.000 0.04 0.22 0.48 0.30
Train 1.000 0.04 0.22 0.47 0.30
GPR (rational quadratic) Test 1.000 0.04 0.22 0.47 0.30
Total 1.000 0.04 0.22 0.47 0.30

tension and viscosity has been proposed by Queimada and
his colleagues [20]. Barati-Harooni and his colleagues esti-
mate interfacial tension between oil and brine with developed
least-squares support vector machine in terms of pressure,
salinity, and temperature [21]. Rostami and his colleagues
correlate interfacial tension of hydrocarbon and water using
genetic programming (GP) with an R-squared of 0.910
[22]. The Kay’s model is a model that can determine the den-
sity of biodiesels that was estimated by Pratas and his col-
leagues [17]. The alkane density with an average absolute
relative deviation of 60% was predicted by Gahk and his col-
leagues [23]. Miraboutalebi with the help of his coworkers
estimate cetane numbers with a root mean squared error
(RMSE) of 2.530 and R-squared of 0.950 by implementing
an artificial neural network (ANN) [24]. On the other hand,
the cetane number in terms of fatty acid methyl ester
(FAME) was predicted by Mostafaei with developing the
adaptive neuro-fuzzy inference system [25].

For biodiesel properties, there are some investigational
searches in the literature. For example, the density of biodie-
sels was measured by Paratas et al. at atmospheric pressure
with ten individual samples in temperatures between
278.150 and 373.170K [17]. The viscosities and densities of
three individual mixtures of methylcyclohexane and fatty
acid methyl esters were obtained by Li and his colleagues in
the atmosphere in temperatures between 293.150 and
324.150K [26]. The density of soybean oil biodiesel was
experimentally determined by Aitbelale and his colleagues
at temperatures between 298.150 and 393.150K and pres-
sures up to 140.0 MPa [27]. The surface tension values were
measured by Aitbelale et al. for three different biodiesels in
temperature and pressure of 473.0K and 7.0 MPa [27].

The lack of sufficient accuracy and difficulties of compu-
tations cause more attention in the aforementioned litera-
ture. On the other hand, much attention has been paid to
artificial intelligence methods to a precise solution in order
to model different processes [28-33]. One of the things that
are crucial for the process design and the same operation is
the accuracy of thermophysical properties. The development
of a precise and low-cost advancement towards the estima-

tion of biodiesel properties is worthy because of the necessity
of these properties most importantly in the clean energy
resource topics. For this job, the density of biodiesel fuels
has been researched thoroughly. The development of the
GPR algorithm model is the main purpose of this research
for the estimation of biodiesel density. This algorithm is bet-
ter for the estimation of individual properties compared to
other models because of the independence of this algorithm
from the outliers. In the process of development of this
model, the reliability and accuracy of the collected dataset
are important so for the first time for the identification of sus-
pected data points of biodiesel density, a throughout analysis
has been carried out. On the other hand, the effects of input
variables on the output have been researched statistically as
an important part of this work.

2. Material and Methods

2.1. Gaussian Process Regression. In recent years, the trend of
neural networks, which is a branch of artificial intelligence,
has made significant progress in solving problems related to
the engineering field. The main disadvantage of this method
is overfitting, which of course can be improved by adjusting
the weight [34, 35].

Of course, setting these parameters is also complex and
difficult, and to solve this problem, a conventional mathe-
matical method called Bayesian network is used. It should
be noted that this method is probabilistic and uses Bayesian
interference to calculate the probability [36]. This network
plots each variable graphically, and these variables are con-
nected by an arc, and each variable shows its knowledge con-
tent as a distribution of probabilities. It should be noted that
the potential specificity of BNs is of great importance for
assessing uncertainty. High distribution leads to more uncer-
tainty. One of the factors influencing the increase of complex
prior distribution on functions in the Bayesian method to
neural networks is the prior overweight [37].

Gaussian process regression is a developed method for
the abovementioned problem. It should be noted that this
method is nonparametric. The advantages of the GPR
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F1GURE 1: The performance of the values predicted against their corresponding actual values using different kernel functions including (a)
exponential, (b) Matern, (c) squared exponential, and (d) rational quadratic.

algorithm include measuring uncertainty for predictions and
working well on small data. It is worth noting that the GPR
method has important advantages over Bayesian, including
simplicity, nonlinearity, easy generalization, and has several
dimensions. The model parameters are determined using
the sample training information in the GPR method.

The GP model is obtained by linking previous knowledge
to the current process of modeling and integrating real labo-
ratory data.

One of the salient and important differences between the
old methods of machine learning and GPR is not finding the
best approximation with experimental points and is a com-
plete BN core. GPR works periodically by obtaining posterior
distributions on models. In the following, we will explain
how to create GP regression [38].

Randomly selected points T ={x;;,y,;} and L= {x;,
Yriti=1,2,3,---, n, which are test and learning data from
a particular distribution, are assumed as follows [39]:

T={xppypipL={xrpyp;}»i=12,-n (1)

As an important point, we remind that the model param-
eters are adjusted based on the learning data [40].

As the input and goal data, respectively, x and y have
been assumed that noise has affected them.

The general formula of the GPR described as follows [41]:

Yri=f(x) +eppn=1,23,-n 2)

In the abovementioned equation, X; and Y, denote
independent and objective variables of the training data,
and subsequently, the & N(0,02.],) denotes for the

observation noise with the independent Gaussian distribu-

2

“oise the variance of noise

tion that I, symbolizes and o
and unit array [42].

Note: GP assumes the output f(x) is random. So the fol-
lowing equation is obtained:

Yri=f(oer) ter;i=1,2,3,,n. (3)
In the above equation, y, and x; represent the goals
and independent variables and the f(x) represents a Gauss-

. . . . !
ifan process with covariance function k(x,x ) and mean
function m(x).

Flon) ~ Gp(m(x), k(x.x’)). (4)

But in practice, the exact determination of m(x) can be
complicated, so the value of m(x) is taken to be zero to
make the calculations easier, so we have the following [43]:

fxy;)~GP (0, k(x.x’)). (5)

From Egs. (2) and (5), we can conclude the following
equation:

y~ N(O, k(x.x/) + aﬁoiseln) . (6)

A better representation of the variables mentioned in
the text above can be provided as follows [44]:

fi ~N<O’ lk(xL.xo
f_T) k(xp.xp)
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The following Gaussian function is obtained by adding

the sum of Egs. (7) and (8):
)TL> ~Nlo k(xL'xL) + O'floiseln k(xL'xT)
ﬁ , k(xT'xL) k(xT'xT) + Gioiseln
(9)

Therefore, the previous distribution of Y is obtained
from Gaussian conditions as below:

(y_T>|y_L)) NN(MT’ 2T+0ioiseln>' (10)
And values X and p are assumed as follows:

ZT = k(xT'xT) = k(xT'xT) + Ufmiseln

— k(xp.xp). (k(xL.xL + aﬁoiseln)flk(xL.xT),

Hr= m(ﬁ) = k(xT'xL)' <k<xL'xL + O-rzloiseln)_ly_T)' (11)

In GPR modeling, the following theoretical concept is
obtained by predicting the output of experimental data
through independent variables and training data. From
the above equations, it can be concluded that the covari-
ance and the mean function of both together with the
Gaussian distribution represent a GP.

To better predict the goals of the developed GPR model,
the selection of the core function in the training phase is of

great importance. Therefore, in this research, to find the best
kernel function, we use four different and conventional ker-
nel functions, of course, with changes.

These functions are described as follows [45]:

(i) Rational quadratic covariance function

In rational quadratic covariance function equation o2, 1,
a>0 represents the variance, length, and weight scale
changes.

(ii) Squared exponential covariance function

ksE(x.x'> =’ (—x_llez) (13)

(iii) Exponential covariance function

kE(x.x') = 0% exp <_x—lx'>. (14)

(iv) Matern covariance function
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kM<x.x/> =021%(—1}; (\/ﬂ#) K, <\/55x_lx )
(15)

The symbol represents the gamma function and x, y are
positive parameters, and the adjusted K, is the Bessel func-
tion [46].

In the Matern equation, exponential covariance and
quadratic are important functions. The Matern function
is an exponential when the value of V=0.5 and also
when the exponential is a square when V is inclined
to infinity. Since the Matern equation has a greater
degree of freedom, it also performs better than the
other two [47].

Since the GPR method is nonparametric, the learning
stage tries a lot to modify the parameters of the above
equations.

2.2. Data Collection. The dataset containing 2117 real density
points has been collected from different resources. References
to this data have been reported elsewhere [48]. These points
are in the pressure range of 0.1-129.78 MPa, melting point
of 238.15-304.15K, molecular weight of 186.291-310.514
g/mol, and temperature range of 278.36-413.15K. The den-
sity values are different between 769.4 and 951.3kg/m’ in
terms of these conditions.

3. Results and Discussion

As mentioned before, here, four various GPR algorithms
including kernel functions in Matern, rational quadratic,
exponential, and square exponential forms are used for esti-
mating the density of biodiesels. To evaluate the precision

of these algorithms, statistical analysis of parameters is deter-
mined as follows:

1& yexp i _ypredqi
MRE= -y L2 2P
n i=1 ypred.,i

1< 2
MSE = ;Z (yexpj _ypred.i> 4
i=1

1< 2
RMSE = vVMSE = ;Z (yexp_i _ypred.i) ,
i=1 (16)

n 2
STD = 1 Z yexp.i _ypred.i i
n-1 i=1 yexp.i
2
RR—1_ zizl (ypred.i _yexp.i)

5
Zi:l (ypredj - yexpj)

As you see in Table 1, R? values of rational quadratic,
Matern, exponential, and square exponential forms are equal
to 1. According to other statistical parameters, the rational
quadratic form depicts a better performance than the other
kernel functions. In this kernel function form, RMSE, MSE,
MRE, and STD are obtained 0.47, 0.22, 0.04, and 0.30, respec-
tively. These values exhibit the rational quadratic formability
in the forecast of density values.

Comparing the results of R* from this table with the
results published by Abooali et al. who used SGB and
GP models to predict biodiesel density, it was concluded
that the models presented by us have a higher ability to
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predict the target values because the R* values for these
two models were obtained 0.99988 and 0.99635, respec-
tively [48].

To make a better decision about all these models,
Figure 1 shows the experimental and estimated density
values, simultaneously. In this figure, there is a good
agreement between the real density values and GPR
outputs.

Also, the cross/regression plot of predicted and real den-
sity has been shown in Figure 2.

To express the quality of GPR outputs, we refer to the
density data located on bisector lines in the analysis. More-
over, Figure 3 shows the relative deviation between the real
density and GPR outputs.

The accuracy of these density point data affects the
validity of models. In this examination, too many data
points have been used. It is important to know that these
data may have errors due to measurements done in labo-
ratories. So, these types of data are separated from the
other data points. In this regard, some strongly developed
strategies are required to remove these data and enhance
the model accuracy. Here, the separation of these sus-
pected data is accomplished by the Leverage method. In
this method, after the determination of residual values, a
Hat matrix is created as follows [49]:

H=A(ATA) AT, (17)
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where A is an ixj dimensional matrix and i and j are
defined for the model parameters and training points,
respectively. Then, the critical leverage limit is computed
by i and j as follows:

- 2620 -

According to William’s plot, as shown in Figure 4, we
can separate the suspected data obtained as residuals from
Hat values. Here, the leverage limits in the green line and
two red lines are considered as residuals. So, the data
points located outside these lines are considered as sus-
pected data. As you see, for exponential, Matern, squared
exponential, and rational quadratic forms, 14, 1, 1, and 1
points are considered as the suspected data, respectively,
among 2217 points.

In this study, the suggested GPR algorithms create a rela-
tionship between density and inputs. So, sensitivity analysis
is utilized to show this relationship affects the output. In this
regard, to determine the most efficient variable for density,
the relevancy factor, r, in the range of -1 and 1, is used. If
the absolute value of 7 is large, it can affect the density further.
The less and more relation to density is shown by negative
and positive r values, respectively. The r is calculated as fol-
lows [50]:

_ Y (X = %) (Y- Y)
Vo= 50 (1~ 12

, (19)

where X, ; and Y, are inputs and outputs, respectively. The
X, and Y are the average of inputs and that of outputs,
respectively. Figure 5 shows that the higher temperature
and melting point lead to less density. Also, the temperature
is considered the most efficient parameter for density. In
addition, parameters such as pressure and molecular weight
have a direct relationship with this target.

4. Conclusion

In this work, four various kernel functions including Matern,
rational quadratic, exponential, and square exponential func-
tions have been used for GPR algorithms to compute the
density of biodiesels. To prepare and validate these algo-
rithms, a large database containing 2217 actual data is gath-
ered. It is concluded that the proposed models have highly
precise to predict real data. The rational quadratic GPR
model has shown greater performance compared with other
models. In this model, the calculations show that RMSE =
0.47, MSE =0.22, MRE =0.04, R* =1, and STD is equal to
0.3. Other analyses also confirmed the accuracy of this model,
which indicates that this attractive and simple model can be
used in biodiesel-related industries.

Data Availability

The data are stated in the article.
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