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Abstract

Retinal tissue is exceptional because it shows a high level of energy metabolism. Glycogen content represents the only
energy reserve in retina, but its levels are limited. Therefore, elucidation of the mechanisms controlling glycogen content in
retina will allow us to understand retina response under local energy demands that can occur under normal and
pathological conditions. Thus, we studied retina glycogen levels under different experimental conditions and correlated
them with glucose-6-phosphate (G-6-P) content and glycogen synthase (GS) activity.

Glycogen and G-6-P content were studied in ex vivo retinas from normal, fasted, streptozotocin-treated, and insulin-
induced hypoglycemic rats. Expression levels of GS and its phosphorylated form were also analyzed. Ex vivo retina from
normal rats showed low G-6-P (1462 pmol/mg protein) and glycogen levels (4363 nmol glycosyl residues/mg protein),
which were increased 6 and 3 times, respectively, in streptozotocin diabetic rats. While no changes in phosphorylated GS
levels were observed in any condition tested, a positive correlation was found between G-6-P levels with GS activity and
glycogen content. The results indicated that in vivo, retina glycogen may act as an immediately accessible energy reserve
and that its content was controlled primarily by G-6-P allosteric activation of GS. Therefore, under hypoglycemic situations
retina energy supply is strongly compromised and could lead to the alterations observed in type 1 diabetes.
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Introduction

Glucose is the main substrate for energy metabolism in nervous

tissue, including retina. Indeed, retina exhibits a high level of

energy metabolism requiring constant supply of blood glucose to

sustain function [1]. Glucose is phosphorylated to glucose-6-

phosphate (G-6-P), which is an important regulatory molecule that

enters glycolysis to provide energy via fermentation and

subsequent oxidation; after transformation into UDP-glucose, G-

6-P can be converted to glycogen. Although the function of

glycogen in the nervous system is unknown, there is evidence

which suggests that it may act as an energy source during periods

of energy deprivation [1]. In the retina, glycogen content

fluctuates as the levels of glucose change in the medium [2]. In

peripheral organs, glycogen levels are determined by the balance

between glycogen synthase (GS) and glycogen phosphorylase (GP),

which are the key enzymes for glycogen synthesis and degradation,

respectively. GS is regulated by covalent phosphorylation which

inhibits the enzyme [3], [4], and by the allosteric activator G-6-P

[5], [6], although the relative contribution of these two events in

the activation of GS is not well understood. Insulin is thought to

promote the dephosphorylation and activation of GS leading to

the stimulation of glycogen synthesis [3], [4]. However, in the

retina from streptozotocin-diabetic rats, glycogen content and GS

activity increased [7]. In diabetes, the retina is exposed to

fluctuations in blood glucose concentrations, which may be

accompanied by changes in oxygen availability and additional

metabolic disturbances. Therefore, we designed in vivo experi-

ments to investigate whether glycogen content in retina is

regulated by the GS-allosteric activator G-6-P, or if it might also

be regulated by insulin.

Materials and Methods

Animals
Adult Long Evans rats (170–200 g) were used in this study.

Animals were maintained under standard laboratory conditions

(21uC61, 12 h light dark cycle) and were allowed food and

water ad libitum. All experiments were conducted between 9:30 and

12:00 am.

All procedures were conducted in accordance with the Mexican

Institutes of Health Research (DOF. NOM-062-Z00-1999), the

National Institutes of Health Guide for the Care and Use of

Laboratory Animals (NIH publication No. 80-23, revised 1996), as

well as the Association Research in Vision and Ophthalmology

Statement on the Use of Animals in Ophthalmic and Vision

Research. The experimental protocol was approved by the

Committee on the Ethics of Animal Experiments of our

Institution. All efforts were made to minimize animal suffering,

and to reduce the number of rats used.

Diabetes was induced by intraperitoneal administration of

streptozotocin (65 mg/kg) in 0.05 M citrate buffer, pH 4.5 [8].

Animals were considered diabetic if blood glucose levels were

higher than 250 mg/dl (14 mM). Diabetic animals along with
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age-matched control rats were used after 20 days of streptozotocin

administration.

Insulin administration
Insulin (5 U/Kg; Humulin NPH, Lilly) was administered with a

single subcutaneous injection. Blood glucose levels were measured

prior to injection of saline (0.9% sodium chloride) or insulin, as

well as at 30, 60, 90, and 120 min post injection. At different time

points, rats were sacrificed; the eyes were quickly dissected over

ice, equatorially hemisected, and for biochemical determinations

the retina was peeled away from the optic-cup using fine forceps.

Glucose administration
Normal rats were fasted overnight for 18 h. Blood glucose levels

were measured before and after 30, 60, 90, 120, and 150 min of

intraperitoneal administration of glucose (1 g/Kg) or the same

volume of saline. Rats were sacrificed approximately 2 h after

glucose administration, when blood glucose levels were twice the

initial values; retinas were isolated as above for biochemical

determinations.

Biochemical assays
For determination of glucose-6-phosphate, tissues were rapidly

homogenized in cold 6% (w/v) perchloric acid. Protein was

removed by centrifugation and G-6-P was enzymatically quanti-

fied according to Michal, 1984 [9]. The amount of NADPH

produced was determined by the absorbance at 340 nm using an

extinction coefficient of 6.3.

For glycogen determination, tissues were quickly homogenized

with 0.4 ml of ice cold 100 mM NaOH and assayed as described

previously [10]. GS and GP activities were measured in tissue

homogenates (10% w/v) according to Dringen, 1982 [11]. GS

activity was measured in the presence of 6.2 mM of glucose-6-

phosphate. Total GP activity was determined by incubating the

tissues in the presence of 1 mM AMP [10].

Western blot analysis
Western blot analyses were performed as previously described

[7]. Equal amounts of sample were resolved on a 10% SDS

polyacrilamide gel. The proteins were transferred into PVDF

Immobilon membranes (Millipore Corp, Billerica, MA). After

being blocked with 5% nonfat milk, the membranes were probed

with rabbit anti-glycogen synthase 15B1 (1:500, Cell Signaling

Technology, Danvers, MA), or rabbit anti-phospho glycogen

synthase (Ser641) (1:100, Cell Signaling Technology, Danvers,

MA), followed by horseradish-peroxidase-conjugated secondary

antibody (1:4000, Amersham Biosciences Piscataway, NJ). Protein

loading was normalized to actin using a monoclonal primary

antibody (1:25000, Chemicon, Temecula, CA). The signal was

detected by enhanced chemioluminiscence using Chemioluminis-

cent HRP Substrate (Millipore Corp, Billerica, MA). Densitometry

was performed with an Alpha DigiDoc RT (Alpha Innotech, San

Leandro, CA) and analysed using a densitometry program

(AlphaEase FC Stand Alone; Alpha Innotech, San Leandro, CA).

Protein content was determined using a commercial assay kit

(BioRad Lab. Hercules, CA). Blood glucose concentration was

determined with a blood glucose monitor (Accu-check, Roche,

Indianapolis, IN).

Statistical analysis
All results are presented as the standard error of the mean 6

SEM of at least five separate experiments. Significance was

determined by analysis of the variance (ANOVA) using Tukey’s

post hoc test or Student’s t –test, where p,0.05 was taken to

indicate statistical significance.

Results

Previous results indicated that glycogen content in retina

fluctuated as the level of glucose changed in the incubation

medium [2]. Thus, in order to gain insight into the regulation of

glycogen content in vivo, we studied glycogen levels and those of the

GS- allosteric- activator G-6-P under different conditions.

As shown in Table 1, ex vivo retinas from normal rats exhibited

low G-6-P (1462 pmol/mg protein), values that were considerably

reduced in the retina from fasted rats (1.860.5 pmol/mg protein)

(Table 1). In contrast, G-6-P content increased 6 times the control

value in the retina from streptozotocin-diabetic rats as well as in

fasting rats after glucose administration (Table 1). Confirming a

previous report [7], we found glycogen content in retina of

diabetic rats increased about 3 times over control levels (Table 1).

However, glycogen levels in fasting rats or in fasting rats injected

with glucose were similar to those observed in normal rat retina

(Table 1).

Because net content of glycogen is regulated simultaneously by

both synthesis and breakdown, we determined the activity of GS

and GP in the retina of normal and of diabetic rats. The activity

of GS was found to be increased (60%) in the retina from

streptozotocin-diabetic rats, while no significant changes were

observed in the activity of GP (Table 2) [7]. Since GS activity is

known to be stimulated by dephosphorylation [3], [4], we

determined levels of phosphorylated- GS form (p-GS) under the

different conditions tested. The expression levels of total GS

(Fig. 1 A) and the p-GS (Fig. 1 B) were significantly increased in

the retina of normal fasted rats; however, a similar ratio of p-

GS/GS was observed between those of normal and fasted

animals.

The effect of insulin-induced hypoglycemia to induce changes in

glycogen levels in retina was also examined. A single subcutaneous

administration of insulin (5 U/kg) to normal or to diabetic rats

rapidly reduced blood glucose levels. After 1–2 h of insulin

administration to normal rats, blood glucose levels diminished

about 40% to 50%; they increased reaching normal values about

5 h later (Fig. 2). Similarly, insulin administration to diabetic rats

reduced blood glucose levels rapidly, reaching normoglycemic

values in 1–2 h, then values declined to 7066 mg/dl (after 3 h).

Table 1. Glucose-6-phosphate and glycogen content in the
retina of rats under different conditions.

Glucose-6-P Glycogen Blood glucose

Normal (N) 1462 4364 11464

Fasted (F) 1.860.5* 4768 8465

F+glucose 82619* 4865 223610*

N+insulin 2.560.1* 4864 5566*

Diabetic 9568** 142611* 478615*

D+insulin 3.760.1** 2863* 6065*

Normal and 20 day diabetic rats were treated as described in Methods. Normal
(N), normal-fasted rats (F) and normal-fasted rats plus glucose administration
(F+glucose) were sacrificed 2 h after saline or glucose administration. Normal
(N) or diabetic (D) rats were killed after 3 h insulin or saline injection. Glycogen,
nmol glycosyl residues/mg protein; glucose-6-P, pmol/mg protein; glucose, mg/
dl. *p,0.01; **p,0.001 with respect to normal rats.
doi:10.1371/journal.pone.0030822.t001
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Afterwards, blood glucose levels increased gradually, and levels of

circulating glucose returned to the hyperglycemic state about 12 h

later (Fig. 2).

Following insulin administration, glycogen levels in the retina of

normal rats first decreased (30%), then increased rapidly, reaching

the normal values 2 h after insulin administration, even though

hypoglycemic conditions persisted (55 mg blood glucose/dl) and

G-6-P retina content decreased significantly (Fig. 3). In the retina

of diabetic rats, glycogen content was 80% reduced after 1 h of

insulin injection and remained low 3 h later, time in which

considerable low G-6-P levels were observed (Fig. 3). After 24 h

insulin administration, glycogen content (86612 nmol glycosyl

residues/mg protein) was significantly lower than that found

before insulin administration (142611 nmol glycosyl residues/mg

protein). Moreover, the GS activity was similar to that from

normal rats (Table 2).

Furthermore, the expression levels of GS and p-GS were

decreased in the retina from normal rats after 2 h insulin

Figure 1. Total and phosphorylated GS in retina. Western blot analysis of representative experiments, top panels. (A–D) Graphic
representation of the relative levels of total GS (A, C) and phospho (Ser 641)-GS (B, D). N, normal rat; F, fasted rat; F+G, fasted rat with glucose
administration; N+I, normal rat plus insulin administration; D, 20 day streptozotocin-diabetic rat; D+I, diabetic rat plus insulin injection. Values are the
mean 6 SEM of four experiments. * p,0.05; ** p,0.02.
doi:10.1371/journal.pone.0030822.g001

Table 2. Activity of glycogen synthase and glycogen
phosphorylase in rat retina.

Glycogen synthase Glycogen phosphorylase

Normal 1.0860.06 9.560.9

Diabetic 1.660.12* 10.461.5

Diabetic+insulin 0.960.14 13.663.8

Retina from normal, diabetic, and insulin-treated diabetic animals
(diabetic+insulin) were processed as described in Methods. Activity of glycogen
synthase was measured in the presence of 6.2 mM glucose-6-phosphate.
Activity of glycogen phosphorylase was measured in the presence of 1 mM
AMP. Activities are expressed as nmol/mg protein/min. Values are the means 6

SEM from 5 to 8 rats. *p,0.01 with respect to the normal rats.
doi:10.1371/journal.pone.0030822.t002
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administration (Fig. 1 C and D). However, no significant

differences between GS or p-GS were observed in the diabetic

retina after insulin administration. Moreover, no differences in p-

GS/GS ratio were observed between normal or diabetic rat

retinas (Fig.1).

From the present results and the data of an earlier study [7], a

significant correlation (r2 = 0.5, p = 0.0019) was proved between

the G-6-P content and the activity of GS as well as glycogen levels

in retina (Fig. 4). Similarly, in agreement with previous results [6],

a significant correlation (r2 = 0.68, p = 0.0001) was observed

between G-6-P and GS activity in liver.

Discussion

The mammalian retina is a very metabolically active tissue

whose energy demands are normally met through the uptake of

glucose and oxygen [12], [13]. Glycogen is the only significant

energy reservoir in nervous tissue; in retina, glycogen and GP are

localized mainly in Muller glial cells [14]. The metabolism of

glucose is intimately linked with glycogen levels. Indeed, glycogen

content in normal retina was seen to fluctuate with the levels of

glucose in the medium [2]. Glycogen content depends on synthesis

and degradation. The regulation of GS activity is known to be

complex [15], [16], [17]. In peripheral tissues, GS activity is

regulated by phosphorylation catalyzed by glycogen synthase

kinase-3 (GSK-3) [3], [4], [15]. In addition, G-6-P concentrations

allosterically activate GS activity [16], but the relative role of these

two events in the regulation of GS activity in vivo is largely

unknown. In brain, glycogen content is influenced by several

neurotransmitters and neuropeptides, including insulin and

norepinephrin [18]. In retina, an increase was observed in

glycogen content as well as in GS activity in ex vivo retinas from

streptozotocin-diabetic rats [7]. Therefore, we focused on

evaluating the possible mechanisms by which glycogen content

in retina is controlled; for this purpose we determined glycogen

and G-6-P in the retina of rats under different experimental

conditions.

Ex vivo retinas from normal rats showed low content of G-6-P

which was even lower in rats under fasting conditions or insulin

administration. These low levels could indicate a high turnover

rate, suggesting G-6-P was rapidly metabolized. In contrast, about

6 times higher levels of G-6-P were found in fasted rats injected

with glucose and in hyperglycemic-diabetic rats, suggesting a

relationship with the high blood glucose levels found in these

animals. Retina glycogen levels were slightly reduced in normal

rats treated with insulin, but they were rapidly recovered although

hypoglycemic conditions remained. These results imply that

glycogen serves as a substantial source of glycosyl units during

insulin-induced hypoglycemia and therefore may be neuroprotec-

tive [19]. In normal retina, in spite of the remarkable changes

observed in G-6-P levels under different experimental conditions,

glycogen content remained almost constant, indicating that

glucose uptake and hexokinase activity were not limiting.

Certainly, the retina shows a high capacity to transport exogenous

glucose, since the Glut1 transporter is widely distributed in this

tissue [20], [21], [22]. These findings may suggest an important

flux of G-6-P to glycogen, suggestive of an insulin role in

Figure 2. Blood glucose levels following insulin administration.
Insulin (5 U/kg) was administered subcutaneously to normal (#) and
diabetic rats ($). Values are the means 6 SEM of at least five different
animals. Standard error in normal rats was less than 5%.
doi:10.1371/journal.pone.0030822.g002

Figure 3. Glucose-6-phosphate lowering patterns and glyco-
gen content in retina following insulin administration. Insulin
(5 U/kg) was administered subcutaneously to normal and 20 day
diabetic rats. (A) G-6-P levels (pmol/mg protein). (B) Glycogen content
(nmol glycosyl residues/mg protein) in retina. Open symbols, diabetic
rats; solid symbols, normal animals. Values are the means 6 SEM of at
least three different animals.
doi:10.1371/journal.pone.0030822.g003
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controlling glycogen content. Although the role of insulin in retina

is unknown, this hormone and its receptors have been reported in

this tissue [23], [24], [25].

In contrast, high G-6-P and glycogen levels were found in the ex

vivo retina from diabetic rats. Notably, G-6-P and glycogen levels

in diabetic retina were dramatically diminished upon insulin

administration and could not be recovered, as occurs in normal

rat. These findings suggest differences in G-6-P metabolism

between normal and diabetic retina. In reference to this, an

interesting finding is that a high lactate retinal content has been

reported in diabetic rats [8]; the increase in lactate could result in

acidosis which may have deleterious effects.

Besides, in spite of the significant changes observed in glycogen

content under the diverse conditions studied, no differences in p-

GS levels were found, which suggests that dephosporylation of GS

was not an involved mechanism. Consistent with this interpreta-

tion, we found a significant correlation of G-6-P levels with GS

activity as well as with glycogen content in retina (Fig. 4).

Therefore, our results indicated that in retina G-6-P caused

allosteric activation of GS, as has been reported in other tissues

[16], [26], and that GS activation in turn led to the elevated

glycogen content observed in diabetic retina. Thus, we conclude

that retina glycogen content served as a glucose reservoir during

periods of hypoglycemia and that its levels were regulated by G-6-

P concentrations. The high levels of glycogen observed in the

streptozotocin–treated rat retina were the result of the hypergly-

cemia, given that circulating glucose levels are the result of glucose

release from liver and its removal from circulation by transport

into muscle. The slow recovery of glycogen content in the retina

from insulin-treated diabetic rats most likely represent a result of

the chronic liver and muscle alterations of glucose disposal

reported in type 1 diabetes [27], [28], [29]. Therefore, since retina

glycogen serves as an energy reservoir, under the hypoglycemia

observed clinically in patients with type-1 diabetes, retinal

neuronal function must be seriously compromised. Supporting

this statement, glycemic control is a major concern in diabetic

patients, particularly those having type 1, who undergo frequent

hypoglycemic episodes [30]. Under these conditions, the glycogen

content in retina would be about 50% of the normal values and

glucose production from glycogen would further support retinal

function only for a short time through glycolytic metabolism.

Indeed, rabbit and rat retinas incubated in the absence of glucose

lead to decline in glycogen [2] and ATP content, and loss of light-

induced electrical signals within 30 min [1]. Although it is clear

that further studies will be needed to decipher the mechanisms,

our results suggest that under the hypoglycemic conditions

observed in diabetes, retinal neuronal survival could be compro-

mised. In this respect, it is remarkable that decrease in retinal

function was found in chronic hypoglycemia produced in an

animal model [31]. Moreover, during the revision of this

manuscript, acute hypoglycemia was reported to induce retinal

cells death in mouse [32] and significant reduction of central

retinal function in humans [33].
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