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Prediction of Cardiovascular Events by 
Pulse Waveform Parameters: Analysis of 
CARTaGENE
Louis-Charles Desbiens, MD, MSc; Catherine Fortier , PhD; Annie-Claire Nadeau-Fredette, MD, MSc; 
François Madore, MD; Bernhard Hametner , DrSci; Siegfried Wassertheurer, DrSci; Mohsen Agharazii, MD; 
Rémi Goupil , MD, MSc

BACKGROUND: Waveform parameters provide approximate data about aortic wave reflection. However, their association with 
cardiovascular events remains controversial and their role in cardiovascular prediction is unknown.

METHODS AND RESULTS: We analyzed participants aged between 40 and 69 from the population-based CARTaGENE cohort. 
Baseline pulse wave analysis (central pulse pressure, augmentation index) and wave separation analysis (forward pressure, 
backward pressure, reflection magnitude) parameters were derived from radial artery tonometry. Associations between each 
parameter and major adverse atherosclerotic events (MACE; cardiovascular death, stroke, myocardial infarction) were obtained 
using adjusted Cox models. The incremental predictive value of each parameter compared with the 10-year atherosclerotic 
cardiovascular disease score alone was assessed using hazard ratios, c-index differences, continuous net reclassification 
indexes, and integrated discrimination indexes. From 17 561 eligible patients, 2315 patients had a MACE during a median 
follow-up of 10.1 years. Central pulse pressure, forward pressure, and backward pressure, but not augmentation index and 
reflection magnitude, were significantly associated with MACE after full adjustment. All parameters except forward pressure 
statistically improved MACE prediction compared with the atherosclerotic cardiovascular disease score alone. The greatest 
prediction improvement was seen with augmentation index and reflection magnitude but remained small in magnitude. These 
2 parameters enhanced predictive performance more strongly in patients with low baseline atherosclerotic cardiovascular 
disease scores. Up to 5.7% of individuals were reclassified into a different risk stratum by adding waveform parameters to 
atherosclerotic cardiovascular disease scores.

CONCLUSIONS: Some waveform parameters are independently associated with MACEs in a population-based cohort. 
Augmentation index and reflection magnitude slightly improve risk prediction, especially in patients at low cardiovascular risk.
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Hypertension is the world’s leading risk factor for 
global disease burden and is associated with sev-
eral unfavorable outcomes such as cardiovascu-

lar disease, kidney failure, and cognitive impairment.1–3 
Although brachial cuff measurement of blood pres-
sure (BP) has been used for more than a century, it is 
recognized as an imperfect marker of cardiovascular 

biomechanics. Indeed, brachial BP is an inaccurate and 
imprecise surrogate of intra-aortic BP,4 notably because 
of variability in reflected wave timing and pressure am-
plification. Furthermore, by focusing on the maximum 
(systolic) and minimum (diastolic) of the pulse waveform, 
it ignores the full extent of waveform characteristics and 
how it is differently affected by antihypertensive agents 
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than brachial BP.5 Despite all this, brachial-cuff derived 
BP remains the sole BP parameter used in several car-
diovascular prediction scores.6–8

Noninvasive devices now allow the measure-
ment of central waveform parameters derived from 
tonometry or cuff-based methods. In this regard, 
conventional time-domain pulse wave analysis yields 
parameters such as central pulse pressure (cPP) and 
augmentation index adjusted for 75 bpm (AIx@75; 
Figure 1). More recently, decomposition of the central 
waveform in a forward and backward component by 

wave separation analysis has allowed the derivation 
of additional markers of adverse aortic biomechanics 
(Figure 1).9,10 Although these parameters have been 
associated with surrogates of cardiac load and end-
organ damage,11–20 their epidemiological association 
with long-term cardiovascular outcomes remains 
controversial.11,12,21–27 Furthermore, several studies 
concerning these parameters were led in high-risk 
populations (such as patients with chronic kidney 
disease or coronary artery disease) and are thus 
not generalizable to the overall population. Finally, in 
contrast to the aortic pulse wave velocity,28 the in-
cremental predictive value of these parameters over 
clinical scores that use the brachial cuff systolic BP 
has not been evaluated thoroughly. Further data are 
thus needed to support the use of these parameters 
in clinical practice.

The objectives of our study were to use the 
population-based cohort CARTaGENE to (1) evalu-
ate the independent association of each waveform 
parameter with major adverse cardiovascular events 
(MACE); (2) assess the incremental predictive value 
of waveform parameters for MACEs over the athero-
sclerotic cardiovascular disease (ASCVD) prediction 
score; and (3) examine whether baseline cardiovas-
cular risk influences the predictive performance of 
waveform parameters.

METHODS
Data Availability
CARTaGENE data (https://carta​gene.qc.ca) were used 
under license. Restrictions apply to its availability to 
preserve patient confidentiality. The corresponding 
author will on request detail the restrictions and any 
conditions under which access to some data may be 
provided.

Design, Data Sources, and Population
This study was conducted using data from the 
population-based survey CARTaGENE (https://carta​
gene.qc.ca), created to evaluate determinants of 
chronic diseases. Requests to access data used 
in this study from qualified researchers trained in 
human subject confidentiality protocols may be sent 
to CARTaGENE. Complete details concerning its re-
cruitment and data collection processes have been 
previously published.29,30 It formed a representative 
sample of the Quebec province by recruiting 19 996 
individuals aged between 40 and 69 years in 2009 
and 2010. Individuals in nursing homes, jails, or native 
reserves were excluded. For this substudy, all partici-
pants of CARTaGENE were included unless they had 
missing outcome, brachial BP, or radial tonometry 
data. Health questionnaires, physical measurements, 

CLINICAL PERSPECTIVE

What Is New?
•	 We conducted the largest study to date that 

evaluated the association of noninvasive pulse 
waveform parameters with cardiovascular 
events in a population-based cohort.

•	 Three waveform parameters (central pulse pres-
sure, forward pressure, backward pressure) 
were independently associated with the inci-
dence of major adverse cardiovascular events 
during a median follow-up of 10 years.

•	 The addition of 2 waveform parameters (aug-
mentation index and areflection magnitude) to 
the atherosclerotic cardiovascular disease score 
improved cardiovascular prediction (especially 
in patients at low baseline risk) and reclassified 
up to 5.7% of patients in another atherosclerotic 
cardiovascular disease risk category.

What Are the Clinical Implications?
•	 Cardiovascular prediction tools may be im-

proved by the addition of noninvasive waveform 
parameters.

•	 These parameters might be used to identify pa-
tients at increased cardiovascular risk among 
low-risk populations.

Nonstandard Abbreviations and Acronyms

AIx@75	 augmentation index at 75 beats per 
minute

cNRI	 continuous net reclassification index
cPP	 central pulse pressure
IDI	 integrated discrimination index
MACE	 major adverse cardiovascular events
Pb	 backward pressure
Pf	 forward pressure
RM	 reflection magnitude

https://cartagene.qc.ca
https://cartagene.qc.ca
https://cartagene.qc.ca
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medication usage, and blood samples were col-
lected during a recruitment visit by a nurse. Consent 
for the CARTaGENE study and for follow-up using 
medico-administrative databases was obtained at re-
cruitment. The study was authorized by the local in-
stitutional review committee and all authors adhered 
to the Helsinki Declaration.

Data Collection
Demographics, medical history, and medication use 
were collected at recruitment with standardized ques-
tionnaires. Physical parameters (height, weight, body 
mass index [BMI]) were measured at baseline. Blood 
samples were drawn during this visit and were used 
to compute the lipid panel and estimated glomerular 
filtration rate (eGFR, using the Chronic Kidney Disease 
Epidemiology Collaboration formula from isotope di-
lution mass spectroscopy-calibrated creatinine).31 
Diabetes was diagnosed when any of the following 
were present: a glycosylated hemoglobin A1c ≥6.5%, 
a fasting glucose ≥7.0 mmol/L, a nonfasting glucose 
≥11.1 mmol/L, or use of hypoglycemic medication.32 
Prior cardiovascular disease was defined as prior 
stroke, acute coronary syndrome, heart failure in self-
reported questionnaire data or in administrative data-
bases from 1998 to recruitment. The 10-year ASCVD 
score was computed using the previously described 
variables (age, sex, race, total cholesterol, high-
density-lipoprotein levels, brachial systolic BP [SBP], 
antihypertensive treatment, smoking status, diabe-
tes).8 Notably, this score includes brachial SBP as a 
continuous term and an interaction term between SBP 
and antihypertensive use. ASCVD was further catego-
rized as low (<5% over 10 years), intermediate (5% to 
20%) and high (>20%) in accordance to the American 
Heart Association guidelines.8

BP measurements were taken during the recruit-
ment visit. Brachial BP was measured with the Omron 
907L device (Omron, Lake Forest, IL) in a seated po-
sition after 10 minutes of rest. The average of 3 mea-
surements automatically taken at 2-minute intervals 
was used. Central BP measurements were taken im-
mediately afterwards using the radial applanation to-
nometry device SphygmoCor (AtCor Medical, Lisle, 
IL). This device records all radial waveforms over a 
10-second time frame and uses a generalized transfer 
function (calibrated with brachial SBP and diastolic BP; 
type I calibration) to generate a central waveform from 
each radial waveform.33,34 All central waveforms are 
then overlaid to produce an averaged central wave-
form from which the SphygmoCor derives central BP 
and pulse wave analysis parameters (Figure 1): central 
pulse pressure (cPP: central SBP – central diastolic 
BP); and AIx@75 (AIx@75=[cPP–incident pressure 
wave height]÷cPP×100). Because wave separation 
analysis parameters are not automatically computed 
by the SphygmoCor, we used a custom MATLAB (The 
MathWorks Inc., Natick, MA) algorithm to extract and 
isolate central waveforms as shown in the SphygmoCor 
software output images and hence obtain machine 
readable (comma-separated values format) pressure 
waveforms. These extracted central waveforms were 
then used to derive the forward (Pf) and backward 
(Pb) components of the pulse wave (Figure  1) and 
to compute reflection magnitude (RM=Pb÷Pf×100), 
based on a Windkessel model and as previously de-
scribed.9,10,12,35–38 This methodology has been vali-
dated against traditional measurement of Pf and Pb 
by echo-Doppler derived flow curves from the left ven-
tricular outflow tract and using data from the Asklepios 
cohort,37,39 and from computational models.35 We have 
previously used it in a population of patients with end-
stage renal disease.36

Figure 1.  Pulse wave and wave separation analysis.
AIx indicates augmentation index; AP, augmented pressure; cPP, central pulse pressure; cDBP, central diastolic blood pressure; cSBP, 
central systolic blood pressure; DBP, diastolic blood pressure; Pb, backward pressure; Pf, forward pressure; PP, pulse pressure; RM, 
reflection magnitude; and SBP, systolic blood pressure.
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Outcomes
MACE were defined as the composite of myocardial 
infarction (fatal or nonfatal), stroke (ischemic or hem-
orrhagic), or cardiovascular death, in accordance with 
the ASCVD score definition.8 The incidence of MACE 
was assessed from recruitment until July 31, 2020, 
using data from provincial medico-administrative da-
tabases (Régie de l’assurance maladie du Québec, 
Institut de la Statistique du Québec). Previously vali-
dated International Classification of Diseases, Tenth 
Revision (ICD-10) diagnostic codes were employed.40,41 
These codes have been previously used by our team 
in this cohort.42,43 MACE data were judged complete 
because the Quebec government is the sole provider 
of health care in the province and because emigration 
out of the province is low (<0.5%).44

Statistical Analysis
Analyses were conducted with R Software 4.1.0 (The 
R Project for Statistical Computing). P values under 
0.05 were considered significant. Adjustments for 
multiple comparisons were made using the Benjamini-
Hochberg procedure. Missing confounder data (BMI 
[0.9% missing], smoking status [0.6%], eGFR [2.4%], 
and lipid parameters [2.4%]) was assumed to be miss-
ing at random and was addressed using multiple im-
putation with the aregImpute function. Briefly, this 
function builds flexible additive models from boot-
strapped samples of the population to predict each 
missing value. It then uses predictive mean match-
ing to replace each missing value with an observed 
value drawn from a multinomial distribution in which 
each individual with a nonmissing value is weighed 
by the distance of its predicted value with the target 
predicted value. The imputation models included the 
outcome (MACEs), each pulse wave parameter, all ad-
justment covariates, and auxiliary variables. Three run-
in iterations were first conducted and then 10 imputed 
data sets were generated. Rubin’s rules were used to 
combine the results of analyses conducted in each 
imputed data set.45,46 ASCVD scores were computed 
separately in each imputed data set.

Independent associations between each wave-
form parameter and MACEs were assessed with 
Cox proportional hazard models censored for mor-
tality or the end of follow-up. Proportional hazards 
were verified using Schoenfeld residuals. Unadjusted, 
demographics-adjusted (age, sex, race) and fully ad-
justed models (age, sex, race, height, weight, smok-
ing, eGFR, diabetes, total cholesterol, high-density 
lipoprotein levels, heart rate, statin use, brachial cuff 
SBP, prior cardiac disease, antihypertensive drug use) 
were used. Predictors of interest were assessed both 
linearly and nonlinearly (restricted cubic splines with 3 
knots at standard locations).45 Separate models were 

built for each parameter. All continuous confounders 
were treated nonlinearly with restricted cubic splines. 
Sensitivity analyses were conducted by (1) using dia-
stolic BP instead of SBP in adjusted models; (2) exclud-
ing patients with a heart rate below 60 bpm (waveform 
images were extracted from a 1-second pressure 
curve, therefore any with heart rate below 60 bpm had 
missing waveform data); (3) restricting analyses to pa-
tients without prior cardiovascular disease; and (4) only 
treating with splines the confounders that had a signif-
icant or near-significant (P<0.10) nonlinear term in the 
fully adjusted model of any multiply imputed data set. 
Finally, an unadjusted model including all pulse wave-
form parameters was attempted but not interpretable 
due to multicollinearity.

To assess the incremental predictive value of each 
waveform parameter over the ASCVD score, a trans-
formation of ASCVD probabilities was initially required 
to obtain comparable linear predictors to include into 
Cox models (since original equations for ASCVD 
probabilities were sex and race stratified). A log trans-
formation (using as a base the weighted S0 at 10 years 
across sex and race strata) was first applied to the 
expected survival (1–ASCVD probabilities) of each 
individual and a natural logarithmic transformation 
was applied afterwards. These transformed ASCVD 
probabilities were then used to assess prediction im-
provement using 4 distinct statistical modalities.47,48 
First, ASCVD score-adjusted hazard ratios (HRs; and 
their associated likelihood ratio tests) between each 
parameter and MACEs were computed from Cox 
models to establish whether each parameter led or 
not to improved statistical prediction.45,49 Second, 
the C-index difference associated with the addition 
of each parameter to the ASCVD score in Cox mod-
els was computed using the CompareC package.50 
Third and fourth, the continuous net reclassification 
index (cNRI) and integrated discrimination index (IDI) 
associated with the addition of each parameter to the 
ASCVD score were computed using the improveProb 
function from the Hmisc package.51 These 3 modal-
ities were used to quantify the extent of prediction 
improvement brought by each pulse wave parameter. 
For this purpose, CIs and statistical significance tests 
for these 3 modalities were not computed in accor-
dance with expert recommendations.49,52,53 Similar 
analyses were conducted for traditional clinical risk 
factors (BMI, eGFR) not included in the ASCVD score, 
for comparison purposes. The performance of an 
optimal combination of parameters (selected using 
least absolute shrinkage and selection operator) was 
assessed similarly.54 A sensitivity analysis was con-
ducted by using crude ASCVD probabilities (treated 
with restricted cubic splines to account for nonlin-
earity) rather than twice log transformed ASCVD 
probabilities.
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We also evaluated the predictive performance 
of waveform parameters according to the baseline 
ASCVD risk. First, a linear interaction term between 
each parameter and the ASCVD score was added to 
Cox models to generate an interaction P value and 
HRs at various levels of baseline risk. These effects 
were also displayed graphically. Then, HRs, C-indexes, 
cNRIs, and IDIs were computed separately for each 
stratum of baseline cardiovascular risk (low: 0% to 5%; 
intermediate: 5% to 20%; high: ≥20%).55 Finally, the 
impact of adding waveform parameters was illustrated 
using reclassification tables according to baseline 
ASCVD strata.

RESULTS
Population Characteristics
From the 19 996 patients recruited by CARTaGENE, 
167 patients had missing follow-up data and 2268 
patients had missing brachial BP or waveform data. 

Thus, 17 561 patients (49% men) were included in this 
study with a median age of 53 years (interquartile range 
48 to 61). During a median follow-up of 10.1 years, 2315 
patients had at least 1 MACE (first event: 1728 [74.6%] 
myocardial infarction, 510 [22.0%] stroke, 77 [3.3%] 
cardiovascular death). Complete population character-
istics by MACE status are shown in Table  1. During 
follow-up, 394 (2.2%) patients died from any cause. 
Table 1 also displays mean values for waveform param-
eters by MACE status. At baseline, patients with MACE 
during the follow-up had significantly higher cPP (dif-
ference of 3.7 mm Hg [95% CI, 3.2, 4.2]), AIx@75 (0.9% 
[0.4, 1.3]), Pf (2.1 mm Hg [1.9, 2.4]), and Pb (1.6 mm Hg 
[1.3, 1.8]).

Association of Waveform Parameters With 
MACE Incidence
We first assessed the independent associations of 
waveform parameters using Cox models with various 
levels of adjustment. When parameters were treated 

Table 1.  Population Characteristics

Overall (n=17 561) MACE (n=2315) No MACE (n=15 246) P value

Demographics

Age, y 53 [48–61] 59 [52–65] 53 [47–60] <0.001

Sex (male) 8599 (49.0) 1420 (61.3) 7179 (47.1) <0.001

Black race 358 (2.0) 37 (1.6) 321 (2.1) 0.126

Clinical

Body mass index, kg/m2 27.5±5.3 28.5±5.4 27.4±5.2 <0.001

Height, m 1.67±0.09 1.68±0.09 1.67±0.09 0.016

Weight, kg 78±17 81±17 77±17 <0.001

Smoking 3276 (18.7) 559 (24.1) 2717 (17.8) <0.001

Estimated glomerular filtration rate, mL/min per 1.73 m2 88.0±14.7 84.5±15.8 88.5±14.4 <0.001

Diabetes 1560 (8.9) 421 (18.2) 1139 (7.5) <0.001

Total cholesterol, mmol/L 5.1±1.0 4.9±1.1 5.1±1.0 <0.001

High-density lipoprotein cholesterol, mmol/L 1.2±0.4 1.1±0.4 1.3±0.4 <0.001

Statin use 3239 (18.4) 807 (34.9) 2432 (16.0) <0.001

Antihypertensive drug use 3934 (22.4) 987 (42.6) 2947 (19.3) <0.001

Heart rate, bpm 70±11 70±12 70±11 0.699

Prior cardiovascular disease 2448 (13.9) 847 (36.6) 1601 (10.5) <0.001

Brachial BP

Brachial systolic BP, mm Hg 124±16 128±16 124±15.3 <0.001

Brachial diastolic BP, mm Hg 74±10 74±11 74±10 0.670

Pulse wave analysis parameters

Central pulse pressure, mm Hg 39±10 43±11 39±10 <0.001

Augmentation index at 75 bpm (%) 24±10 25±10 24±11 <0.001

Wave separation analysis parameters

Forward pressure, mm Hg 24±6 26±7 24±5 <0.001

Backward pressure, mm Hg 17±5 18±6 16±5 <0.001

Reflection magnitude (%) 68.5 [60.3–75.4] 68.7 [60.7–75.8] 68.4 [60.2–75.4] 0.137

Characteristics are presented as counts (percentage) for categorical parameters and either as means±SD (for normally distributed data) or as medians 
(interquartile range) (for nonnormally distributed data). P values for MACE vs no-MACE groups were computed using either X2, Student t test or Mann–Whitney 
tests. BP indicates blood pressure; bpm, beats per minute; and MACE, major adverse cardiovascular event.
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linearly (Table 2), higher cPP, Pf, and Pb were signifi-
cantly associated with increases in MACE incidence, 
even after full adjustment for potential confounders 
(age, sex, race, height, weight, smoking, eGFR, dia-
betes, total cholesterol, high-density lipoprotein levels, 
heart rate, statin use, SBP, prior cardiac disease, an-
tihypertensive drug use). AIx@75 was associated with 
MACE incidence in unadjusted and demographics-
adjusted models but not with full adjustment. RM was 
not associated with MACEs in any model. Similar re-
sults were obtained in sensitivity analyses (Table S1) in 
which (1) SBP was substituted for diastolic BP, (2) pa-
tients with heart rates <60 were excluded, (3) patients 
with prior cardiovascular disease were excluded, or (4) 
spline treatment of confounders was reduced. Potential 
nonlinear relationships of waveform parameters with 
MACEs were evaluated using restricted cubic splines. 
As shown in Figure 2, cPP, Pf, and Pb displayed linear 
associations with MACE incidence whereas AIx@75 
and RM were not associated with MACEs.

Incremental Value of Waveform 
Parameters for MACE Prediction
We then used a predictive approach to evaluate the in-
cremental value of waveform parameters over a com-
monly used clinical prediction score (the ASCVD score). 
Four statistical modalities were used for this purpose. 
As displayed in Table 3, all parameters except Pf led to 
significant ASCVD-score adjusted HRs and likelihood 
ratio tests. In the 3 other modalities, AIx@75 and RM 
led to the largest improvement in prediction improve-
ment, but the improvement nevertheless remained 
small in magnitude (maximal ΔC-index: 0.19%, cNRI: 
0.066 and IDI: 0.11%). A least absolute shrinkage and 
selection operator-derived combination of parameters 
(including cPP, AIx@75, Pb, and RM) led to a perfor-
mance similar to AIx@75. Traditional cardiovascular 
risk factors not included in the ASCVD also displayed 
a performance similar to waveform parameters. As 

sensitivity analysis (Table  S2), replacing transformed 
ASCVD probabilities with a direct inclusion into models 
using restricted cubic splines yielded results similar to 
the principal ones.

Incremental Value of Waveform 
Parameters by Baseline ASCVD Risk
We also explored whether baseline ASCVD risk influ-
enced the predictive performance of waveform param-
eters. As displayed in Table S3, there were significant 
interactions between baseline ASCVD and 3 waveform 
parameters (AIx@75, Pf, RM). AIx@75 and RM were 
more predictive of MACEs at lower baseline ASCVD 
values whereas Pf was more predictive at higher 
ASCVD values. Although interactions between cPP, 
Pb, and ASCVD values did not reach significance, HRs 
for these 2 parameters were greater at higher ASCVD 
values. These relations are graphically displayed in 
Figure 3, which represents the observed MACE prob-
ability for a given baseline ASCVD score according to 
3 levels of each waveform parameters. Three graphi-
cal patterns hence emerged. First, cPP and Pb dis-
criminated risk only at higher baseline ASCVD values. 
Second, AIx@75 and RM discriminated risk at all 
ASCVD values but more strongly at lower ones. Finally, 
Pf displayed inverse risk discrimination according to 
baseline risk. When predictive performance was strati-
fied by categorical level of baseline risk (Table S4; low 
risk=9374 patients; intermediate risk=7087 patients; 
high risk=1100 patients), AIx@75 and RM statistically 
improved prediction in the lower risk strata but not in 
other risk categories. The magnitude of this prediction 
improvement was more pronounced in the lower risk 
strata (for AIx@75, ΔC-index: 1.12, cNRI: 0.155, and IDI: 
0.17).

Finally, we evaluated the absolute effect of waveform 
parameters on risk reclassification (Tables S5 through 
S9). For example, adding AIx@75 to the ASCVD score 
reclassified 1001 individuals (5.7% of the cohort) to a 

Table 2.  Independent Association of Waveform Parameters With MACEs

Parameter Unadjusted HR
Demographics 
adjusted HR

Fully adjusted 
HR

Crude  
P value

Corrected  
P value

Pulse wave analysis parameters

Central pulse pressure 1.35 (1.31, 1.40) 1.13 (1.08, 1.17) 1.17 (1.08, 1.26) <0.001 <0.001

Augmentation index at 75 beats per minute 1.08 (1.04, 1.13) 1.14 (1.08, 1.19) 1.05 (1.00, 1.11) 0.061 0.076

Wave separation analysis parameters

Forward pressure 1.36 (1.31, 1.41) 1.12 (1.08, 1.17) 1.12 (1.04, 1.20) 0.002 0.004

Backward pressure 1.30 (1.26, 1.35) 1.11 (1.06, 1.15) 1.11 (1.03, 1.19) 0.003 0.005

Reflection magnitude 1.03 (0.99, 1.07) 1.03 (0.98, 1.07) 1.03 (0.97, 1.08) 0.339 0.339

Associations are presented as hazard ratios (95% CI) for 1 SD increase. Crude P values were computed from the fully adjusted model. Corrected P values 
were obtained after a Benjamini-Hochberg procedure using the P values from the fully adjusted model. The demographics adjusted model includes age, sex, 
and race. The fully adjusted model includes age, sex, race, height, weight, smoking, diabetes, total cholesterol, high-density-lipoprotein levels, estimated 
glomerular filtration rate, heart rate, statin use, prior cardiovascular disease, antihypertensive drug use, and systolic blood pressure. The fully adjusted model 
for body mass index omitted height and weight. HR indicates hazard ratio; and MACE, major adverse cardiovascular event.
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different risk category. Notably, 300 low-risk individu-
als (3.2% of the low-risk group) were classified to in-
termediate risk by adding AIx@75. Similar results were 
obtained for other parameters.

DISCUSSION
In this study of a large population-based cohort, 3 
waveform parameters (cPP, Pf, Pb) were independently 
associated with MACEs during a follow-up of 10 years. 
In contrast, AIx@75 and RM improved risk prediction 
across the full spectrum of baseline risk, especially in 
participants with low baseline cardiovascular risk.

Over the past decades, the concept of pulse wave 
reflection has gained traction as a determinant of ad-
verse arterial biomechanics. With each cardiac beat, 
the left ventricle generates a forward wave that trav-
els in major arteries and encounters sites of reflection 
such as diameter reductions, changes in stiffness, and 
bifurcations. These sites generate multiple reflected 
waves that summate into 1 backward wave that travels 
into the proximal aorta and adds itself to the forward 

wave to form the central SBP.13 Several studies have 
shown that an increased degree of reflection adversely 
affects the left ventricle structure and coronary per-
fusion.14,16,56,57 Traditional analysis of the central pulse 
wave provides a first way to clinically assess wave re-
flection. Central pulse pressures and the augmentation 
index indeed does illustrate wave reflection at some 
degree but are influenced by clinical factors such as 
height and heart rate. For example, although arterial 
stiffness increases with age, the AIx@75 reaches a ceil-
ing at ≈60 years old, especially in women.58–61 To over-
come these limitations, wave separation analysis was 
recently adapted to directly estimate the forward and 
backward waves and their ratios from radial waveforms 
transformed using a generalized transfer function.12

A first finding of our study is the linear association 
between 3 pulse wave parameters (cPP, Pf, and Pb) 
and MACEs after full adjustment and correction for 
multiple comparisons. Among these, cPP was evalu-
ated in 2 past meta-analyses that reported similar HRs 
for cardiovascular events than ours (1.14 and 1.12 per 
10 mm Hg versus 1.16 per 10 mm Hg in our study).22,23 

Figure 2.  Nonlinear association of waveform parameters with MACE incidence.
Hazard ratios are displayed after full adjustment for age, sex, race, weight, height, smoking, diabetes, total cholesterol, high-density-
lipoprotein levels, estimated glomerular filtration rate, heart rate, statin use, prior cardiovascular disease, antihypertensive drug use, 
and systolic blood pressure. Shaded areas indicate the 95% CI. Vertical lines at the bottom of each plot represent the distribution 
of each parameter. AIx@75 indicates augmentation index at 75 beats per minute; cPP, central pulse pressure; MACE, major adverse 
cardiovascular event; Pb, backward pressure; Pf, forward pressure; and RM, reflection magnitude.
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These 2 meta-analyses also reported significant as-
sociations between AIx@75 and cardiovascular events 
(HRs of 1.32 and 1.18 per 10% increase), which we did 
not observe. Nevertheless, the inclusion of studies with 
less generalizable populations (notably patients with 
kidney disease or undergoing coronary angiography) 
and various outcome definitions in the meta-analyses 
may explain these discrepancies. Similarly, some stud-
ies in these meta-analyses used a more restricted set 
of adjustment parameters that better correspond to 
our demographics-adjusted model in which we did 
observe a significant associated between AIx@75 and 
MACEs. In contrast, Weber et al. evaluated the 5 pa-
rameters we studied, but in a smaller study (725 pa-
tients). Interestingly, they observed that Pb and cPP 
were usually more strongly associated with MACEs 
than AIx@75 and RM, especially in the subset of pa-
tients with normal or slightly impaired systolic function.12 
Nevertheless, their study differs from ours regarding 
the population (patients undergoing coronary angiogra-
phy) and outcome (including coronary, cerebrovascular, 
and peripheral revascularization). Similar discrepancies 
in sample sizes, populations, adjustment factors, and 
outcomes may also explain the slightly larger but often 
nonsignificant associations observed by other previous 
studies concerning AIx@75, Pb, Pf, and RM.11,25,26 Taken 
together with previous studies, our results reinforce the 
hypothesis that some waveform parameters are asso-
ciated with MACEs. Furthermore, our findings highlight 
the need for large and generalizable population-based 
cohorts in the evaluation of potential cardiovascular risk 
factors.

A novel result of our study is the improvement in 
MACE prediction seen with some waveform parameters. 

Indeed, all parameters except Pf statistically improved 
prediction as ascertained by the significance of their 
HRs and likelihood ratio tests. Further graphical evalu-
ation also revealed that AIx@75 and RM discriminated 
risk across the spectrum of baseline ASCVD risk (al-
beit more strongly at lower values), in contrast to other 
parameters. Nevertheless, whether this statistical in-
crease in prediction performance has a magnitude of 
clinical relevance is not certain. For this purpose, we 
used 3 other statistical modalities (ΔC-indexes, cNRIs, 
and IDIs) to quantify the extent of prediction improve-
ment brought by each pulse wave parameter. Although 
the largest values of these 3 modalities were generally 
observed for AIx@75 and RM across all baseline risk 
strata, they remained smaller than the ones observed 
in a previous meta-analysis concerning the predictive 
value of aortic pulse wave velocity28 and were equiva-
lent or slightly smaller than the ones observed for cen-
tral SBP in the same CARTaGENE cohort.43 As such, 
based on previous calculations, our values of cNRIs, 
IDIs, and ΔC-indexes translate into a Cohen effect size 
<0.2, corresponding to a weak effect.47 Although the 
predictive value of waveform parameters may be small 
in magnitude, their addition to the ASCVD score did re-
classify a clinically significant proportion of individuals. 
For example, adding AIx@75 reclassified more than 5% 
of individuals into another risk category, which could 
have a nonnegligible impact on clinical practice. Thus, 
although the individual role of waveform parameters on 
prediction might be small, its populational impact may 
be larger.

Another finding of our study is the contrast be-
tween traditional (independent associations) and pre-
dictive analyses; a subject that has been discussed 

Table 3.  Predictive Value of Waveform Parameters for MACEs

Parameters

ASCVD-adjusted

Δ C-index (%) Continuous NRI IDI (%)HR (95% CI) LR Test

Pulse wave analysis parameters

cPP 1.06 (1.02, 1.08) 0.003 0.03 0.006 0.10

AIx@75 1.10 (1.06, 1.15) <0.001 0.19 0.066 0.11

Wave separation analysis parameters

Forward pressure 1.04 (1.00, 1.08) 0.072 −0.08 −0.029 0.05

Pb 1.07 (1.03, 1.11) <0.001 0.05 0.016 0.10

RM 1.08 (1.03, 1.12) <0.001 0.12 0.053 0.07

Combined* 1.11 (1.06, 1.15) <0.001 0.19 0.066 0.14

Clinical

Body mass index 1.07 (1.02, 1.11) 0.003 0.09 0.085 0.08

Estimated glomerular filtration rate 0.91 (0.87, 0.95) <0.001 0.15 0.025 0.18

Hazard ratios are presented for 1 SD increase. Likelihood ratio tests are presented as the maximal P value observed across the 10 multiply imputed data 
sets. AIx@75 indicates augmentation index at 75 beats per minute; ASCVD, atherosclerotic cardiovascular disease; cPP, central pulse pressure; HR, hazard 
ratio; IDI, integrated discrimination index; LR, likelihood ratio; MACE, major adverse cardiovascular event; NRI, net reclassification index; Pb, bpressure; and 
RM, reflection magnitude.

*Combined performance of waveform parameters was derived using a least absolute shrinkage and selection operator procedure that selected cPP, AIx@75, 
Pb, and RM.
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extensively in the past years.62–64 Indeed, the 3 pa-
rameters independently associated with MACEs 
underperformed in predictive analyses. This phe-
nomenon has been previously observed with BMI, a 
universally recognized causal determinant of cardio-
vascular disease65–67 that did not improve risk predic-
tion in a previous large meta-analysis.68 It has been 
hypothesized that the effect of BMI on cardiovascular 
health is reflected by other variables already included 
in the ASCVD score, hence decreasing its predictive 
value.69 Inversely, AIx@75 and RM led to the great-
est predictive improvement in our study but lacked a 
strong independent relationship in the adjusted mod-
els. To explain this finding, we hypothesize that these 
2 biomarkers encompass the cardiovascular effects 
of several parameters included in our adjusted model 
but not fully accounted for by the routinely used 
ASCVD score. These findings thus highlight the need 
for a formal predictive assessment of risk biomarkers 
in addition to routinely used prediction scores rather 
than fully adjusted models that are not well represen-
tative of the clinical practice.

Another major finding of our study is the interaction 
between waveform parameters and baseline ASCVD 
scores. For AIx@75 and RM, this interaction led to 
higher predictive performance at lower baseline car-
diovascular risk, especially for ΔC-indexes and cNRIs. 
As such, the use of these 2 parameters could reveal 
patients at increased cardiovascular risk among the 
low ASCVD score population. They hence exemplify 
the concept of early vascular aging, which was recently 
demonstrated using aortic pulse wave velocity.70,71 We 
could theorize that in individuals at low cardiovascular 
risk, the first signs of cardiovascular adaptations may 
be visible only in the waveform and not in absolute BP 
values, which remain rather constant. As the cardio-
vascular risk increases, cardiovascular adaptations 
compensation mechanisms start to fail and as such, 
BP starts to increase. At this later stage, wave param-
eters may not be as useful as they approach their ceil-
ings, as it is described with AIx@75 after 60 years of 
age.59–61 Alternatively, we observed that some param-
eters had a greater performance in higher-risk patients 
or even had inverse relationships in each extreme 

Figure 3.  MACE risk according to baseline ASCVD score and waveform parameters.
The figure displays the relationship between baseline ASCVD score (in percentage) and observed cardiovascular risk (in percentage) 
according to 3 levels of each waveform parameter. For each parameter, the low value was defined as 2 SDs below mean; the average 
value as the mean; and the high value as 2 SDs above mean. AIx@75 indicates augmentation index at 75 beats per minute; ASCVD, 
atherosclerotic cardiovascular disease; cPP, central pulse pressure; MACE, major adverse cardiovascular event; Pb, backward 
pressure; Pf, forward pressure; PP, pulse pressure; and RM, reflection magnitude.
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of cardiovascular risk. Nevertheless, owing to the 
population-based nature of our cohort, few patients 
had high baseline cardiovascular risk. Thus, extrap-
olation of our findings in this population should await 
further confirmation. Globally, these results reveal that 
each pulse wave parameter performs differently at a 
given level of cardiovascular risk and highlight the need 
for a right predictive biomarker in each risk strata.

Our study has several strengths. To our knowledge, 
it is the largest study to evaluate the relationship of 5 
pulse wave parameters with incident cardiovascular 
events. Furthermore, it was conducted in a population-
based cohort representative of the Quebec population 
and is therefore easily generalizable. It is also the first 
to directly assess the predictive performance of these 
parameters and evaluate its interplay with baseline 
ASCVD risk. Other strengths of our study include (1) 
a robust statistical methodology including adjustment 
for several potential confounders, correction for multi-
ple comparisons, and numerous sensitivity analyses; 
(2) the use of restricted cubic splines to detect non-
linear relationships in predictors and confounders; (3) 
the evaluation of predictive performance with several 
modalities; (4) a largely recognized MACE definition 
(alike to the one used to derive the ASCVD score8) and 
its identification using validated medico-administrative 
codes with data from the single provider of health care 
in Quebec; and (5) the evaluation of pulse waveform 
parameters with algorithms easily incorporable into 
central BP devices.

Some limitations of this study are nevertheless 
worth considering. By its observational nature, causal-
ity cannot be proved for identified associations. Also, 
residual confounding cannot be excluded concerning 
association analyses. Self-reporting may have slightly 
biased the measurement of some clinical variables. 
Furthermore, the population-based nature of our co-
hort and its lower age range (40 – 69 years) yielded 
few patients at high cardiovascular risk; extrapolation 
of our results to this population should therefore be 
done cautiously. Participants with reduced left ven-
tricular function (known to be associated with reduced 
AIx@75) could not be discerned among patients with 
heart failure at baseline. The lack of gold standard 
measurement of arterial stiffness (carotid-femoral 
pulse wave velocity) has prevented us from compar-
ing its association and predictive value to our param-
eters of interest. The correlation between each pulse 
waveform parameter also prevented us from evaluat-
ing several parameters simultaneously into a statisti-
cal model. Finally, all analyzed waveform parameters 
were estimated from radial tonometry-derived central 
waveforms, instead of being directly derived from an 
invasive aortic waveform. Hence, they were subject to 
a calibration procedure, which may have influenced 
their accuracy.

CONCLUSIONS
In conclusion, using a large prospective population-
based study, we observed that 3 waveform parameters 
are independently associated with MACEs during a 10-
year follow-up. Although the addition of AIx@75 and 
RM to the ASCVD score had a slight statistical effect 
on MACE prediction, it allowed the reclassification of a 
nonnegligible proportion of individuals into a different 
risk category. Furthermore, the performance of these 2 
parameters was more pronounced in individuals at low 
cardiovasular risk. Hence, our findings suggest a role 
for parameters of wave reflection in the identification 
of higher-risk individuals among low-risk populations.
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TABLE S1. Independent association of waveform parameters with MACEs – Sensitivity analyses  

Parameter Main analysis 
Adjustment for 

DBP 

Without HR < 60 

(n= 14,897) 

Without prior 

cardiovascular disease 

(n= 15,113) 

With reduced spline 

use for confounder 

adjustment 

cPP 1.17 (1.08, 1.26) 1.13 (1.08, 1.18) 1.15 (1.05, 1.25) 1.15 (1.05, 1.27) 1.17 (1.09, 1.26) 

AIx@75 1.05 (1.00, 1.11) 1.07 (1.01, 1.12) 1.08 (1.02, 1.14) 1.05 (0.99, 1.12) 1.05 (1.00, 1.11) 

Pf 1.12 (1.04, 1.20) 1.11 (1.06, 1.15) 1.11 (1.03, 1.20) 1.12 (1.02, 1.22) 1.13 (1.05, 1.21) 

Pb 1.11 (1.03, 1.19) 1.12 (1.06, 1.17) 1.11 (1.02, 1.20) 1.12 (1.03, 1.23) 1.11 (1.04, 1.19) 

RM 1.03 (0.97, 1.08) 1.03 (0.98, 1.09) 1.03 (0.97, 1.09) 1.03 (0.97, 1.10) 1.03 (0.97, 1.08) 
Associations are presented as hazard ratios (95% confidence interval) for one standard deviation increase from the fully adjusted model (age, sex, race, 

height, weight, smoking, diabetes, total cholesterol, high-density-lipoprotein levels, estimated glomerular filtration rate, heart rate, statin use, prior 

cardiovascular disease, antihypertensive drug use and systolic blood pressure). 

Adjustment for DBP was conducted by replacing SBP by DBP. 

Reduced spline use was conducted by only using splines for confounders with a significant or near significant (p < 0.10) non-linear term in any of the 

multiply imputed datasets.  

AIx@75, Augmentation index at 75 beats per minute; cPP, Central pulse pressure; DBP, Diastolic blood pressure; HR, Hazard ratio; MACE, Major adverse 

cardiovascular event; Pb, Backward pressure; Pf, Forward pressure; PWA, Pulse wave analysis; RM, Reflection magnitude; SBP, Systolic blood pressure; 

WSA, Wave separation analysis. 

 

 



TABLE S2. Predictive value of waveform parameters for MACEs – Sensitivity analysis with 

ASCVD probabilities treated non-linearly as splines 

Parameters 
ASCVD-adjusted  C-index 

(%) 

Continuous 

NRI 
IDI (%) 

HR (95% CI) LR Test 

PWA parameters     

cPP  1.06 (1.02, 1.10) 0.005 0.03 0.060 0.08 

AIx@75  1.10 (1.05, 1.15) < 0.001 0.18 0.069 0.10 

      

WSA parameters     

Pf 1.03 (0.99, 1.08) 0.113 -0.01 0.029 0.04 

Pb  1.06 (1.02, 1.10) 0.002 0.05 0.059 0.08 

RM  1.08 (1.03, 1.12) < 0.001 0.13 0.057 0.07 
Hazard ratios are presented for one standard deviation increase. Likelihood ratio tests are presented as the maximal p-

value observed across the ten multiply imputed datasets. 

AIx@75, Augmentation index at 75 beats per minute; CI, Confidence interval; cPP, Central pulse pressure; HR, Hazard 

ratio; MACE, Major adverse cardiovascular event; Pb, Backward pressure; Pf, Forward pressure; PWA, Pulse wave 

analysis; RM, Reflection magnitude; WSA, Wave separation analysis. 

 

 

  



TABLE S3. Interaction between waveform parameters and baseline ASCVD risk 

Parameter p-value  ASCVD = 2.5%  ASCVD = 7.5%  ASCVD = 15%  ASCVD = 25% 

cPP 0.066 1.01 (0.94, 1.08)  1.05 (1.00, 1.09)#  1.07 (1.03, 1.12)#  1.09 (1.04, 1.15)# 

AIx@75  0.024#  1.16 (1.09, 1.23)#  1.10 (1.05, 1.14)# 1.06 (1.00, 1.11) 1.03 (0.95, 1.11) 

Pf  < 0.001# 0.94 (0.88, 1.01) 1.01 (0.96, 1.05)  1.05 (1.01, 1.10)#  1.09 (1.04, 1.14)# 

Pb 0.355 1.04 (0.97, 1.11)  1.06 (1.02, 1.10)#  1.07 (1.03, 1.12)#  1.08 (1.03, 1.14)# 

RM  0.003#  1.16 (1.09, 1.24)#  1.08 (1.04, 1.13)# 1.03 (0.98, 1.09) 1.00 (0.93, 1.06) 
Associations are presented as hazard ratios (95% confidence interval) for one standard deviation increase after adjustment for the 

ASCVD score. P-values were generated using the interaction term between baseline ASCVD risk and each parameter.  

# Indicates a p-value < 0.05 after correction with the Benjamini-Hochberg procedure 

AIx@75, Augmentation index at 75 beats per minute; ASCVD, Atherosclerotic cardiovascular disease; cPP, Central pulse 

pressure; Pb, Backward pressure; Pf, Forward pressure; PWA, Pulse wave analysis; RM, Reflection magnitude; WSA, Wave 

separation analysis. 

 

 

 

  



TABLE S4. Predictive value of waveform parameters for MACEs in each ASCVD risk strata 

Parameter Global 

Low risk 

< 5% 

(n=9,374) 

Intermediate risk 

5-20% 

(n=7,087) 

High risk 

≥ 20% 

(n=1,100) 

Hazard ratio 

  cPP 1.06 (1.02, 1.08) 1.05 (0.96, 1.16) 1.04 (0.99, 1.10) 1.08 (1.00, 1.17) 

  AIx@75 1.10 (1.06, 1.15)  1.15 (1.07, 1.24)# 1.08 (1.02, 1.14) 1.03 (0.91, 1.17) 

  Pf 1.04 (1.00, 1.08) 0.96 (0.86, 1.06) 1.03 (0.97, 1.09) 1.09 (1.01, 1.18) 

  Pb 1.07 (1.03, 1.11) 1.08 (0.99, 1.19) 1.05 (1.00, 1.10) 1.07 (0.99, 1.15) 

  RM 1.08 (1.03, 1.12)  1.15 (1.06, 1.24)# 1.06 (1.00, 1.12) 1.01 (0.91, 1.12) 

 
    

 C-index (%) 

  cPP 0.03 0.00 0.09 0.57 

  AIx@75 0.19 1.12 0.34 0.26 

  Pf -0.08 0.04 0.02 0.52 

  Pb 0.05 0.13 0.12 0.58 

  RM 0.12 0.85 0.22 0.05 

 
    

Continuous NRI 

  cPP 0.006 0.047 0.076 0.061 

  AIx@75 0.066 0.155 0.063 0.006 

  Pf -0.029 -0.005 0.030 0.106 

  Pb 0.016 0.037 0.079 0.057 

  RM 0.053 0.095 0.047 0.010 

 
    

IDI (%)    

  cPP 0.10 0.01 0.04 0.43 

  AIx@75 0.11 0.17 0.07 0.02 

  Pf 0.05 0.01 0.02 0.45 

  Pb 0.10 0.04 0.05 0.32 

  RM 0.07 0.14 0.06 0.00 
# Indicates a likelihood ratio p-value < 0.05 after correction with the Benjamini-Hochberg procedure 

AIx@75, Augmentation index at 75 beats per minute; ASCVD, Atherosclerotic cardiovascular disease; cPP, Central 

pulse pressure; Pb, Backward pressure; Pf, Forward pressure; PWA, Pulse wave analysis; Rm, Reflection magnitude; 

WSA, Wave separation analysis. 

 

  



TABLE S5. Reclassification tables with and without cPP at the tenth-year follow-up 

A. All individuals 

 With cPP 

W
it

h
o

u
t 

c
P

P
  Low risk Intermediate risk High risk 

Low risk 9,217 151 0 

Intermediate risk 259 6,708 125 

High risk 0 112 989 

 
B. Individuals with MACEs  

 With cPP 

W
it

h
o

u
t 

c
P

P
  Low risk Intermediate risk High risk 

Low risk 643 24 0 

Intermediate risk 33 1,168 37 

High risk 0 29 330 

 
C. Individuals without MACEs  

 With cPP 

W
it

h
o
u

t 
c
P

P
  Low risk Intermediate risk High risk 

Low risk 6,158 94 0 

Intermediate risk 176 4,130 65 

High risk 0 59 493 

 

  



TABLE S6. Reclassification tables with and without AIx@75 at the tenth-year follow-up 

A. All individuals 

 With AIx@75 

W
it

h
o

u
t 

A
Ix

@
7

5
 

 Low risk Intermediate risk High risk 

Low risk 9,068 300 0 

Intermediate risk 422 6,514 156 

High risk 0 123 978 

 
B. Individuals with MACEs  

 With AIx@75 

W
it

h
o

u
t 

A
Ix

@
7

5
 

 Low risk Intermediate risk High risk 

Low risk 633 34 0 

Intermediate risk 43 1,156 39 

High risk 0 33 326 

 
C. Individuals without MACEs  

 With AIx@75 

W
it

h
o
u

t 

A
Ix

@
7
5
 

 Low risk Intermediate risk High risk 

Low risk 6,053 199 0 

Intermediate risk 287 3,998 86 

High risk 0 61 491 

  



TABLE S7. Reclassification tables with and without Pf at the tenth-year follow-up 

A. All individuals 

 With Pf 

W
it

h
o

u
t 

P
f  Low risk Intermediate risk High risk 

Low risk 9,268 100 0 

Intermediate risk 150 6,860 82 

High risk 0 63 1,038 

 
B. Individuals with MACEs  

 With Pf 

W
it

h
o

u
t 

P
f  Low risk Intermediate risk High risk 

Low risk 650 17 0 

Intermediate risk 22 1,193 23 

High risk 0 15 344 

 
C. Individuals without MACEs  

 With Pf 

W
it

h
o
u

t 
P

f  Low risk Intermediate risk High risk 

Low risk 6,194 58 0 

Intermediate risk 95 4,232 44 

High risk 0 29 523 

 

  



TABLE S8. Reclassification tables with and without Pb at the tenth-year follow-up 

A. All individuals 

 With Pb 

W
it

h
o

u
t 

P
b

  Low risk Intermediate risk High risk 

Low risk 9,201 167 0 

Intermediate risk 271 6,686 135 

High risk 0 112 989 

 
B. Individuals with MACEs  

 With Pb 

W
it

h
o

u
t 

P
b

  Low risk Intermediate risk High risk 

Low risk 642 25 0 

Intermediate risk 35 1,164 39 

High risk 0 31 328 

 
C. Individuals without MACEs  

 With Pb 

W
it

h
o
u

t 
P

b
  Low risk Intermediate risk High risk 

Low risk 6,149 103 0 

Intermediate risk 183 4,115 73 

High risk 0 58 494 

 

  



TABLE S9. Reclassification tables with and without RM at the tenth-year follow-up 

A. All individuals 

 With RM 

W
it

h
o

u
t 

R
M

  Low risk Intermediate risk High risk 

Low risk 9,145 223 0 

Intermediate risk 294 6,661 137 

High risk 0 116 985 

 
B. Individuals with MACEs  

 With RM 

W
it

h
o

u
t 

R
M

  Low risk Intermediate risk High risk 

Low risk 644 23 0 

Intermediate risk 34 1,169 35 

High risk 0 36 323 

 
C. Individuals without MACEs  

 With RM 

W
it

h
o
u

t 
R

M
  Low risk Intermediate risk High risk 

Low risk 6,100 152 0 

Intermediate risk 199 4,094 78 

High risk 0 59 493 
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