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Abstract
The automatic generation of features without human intervention is the most critical task for biomedical sentiment analysis. 
Regarding the high dynamicity of shared patient narrative data, the lack of formal medical language sentiment dictionaries 
prevents retrieval of the appropriate sentiment, which is unapproachable and can be prone to annotator bias. We propose 
a novel affective biomedical concept-based encoding via sentic computing and neural networks. The main contributions 
include four aspects. First, a biomedical embedding, in which a medical entity is defined, normalized, and synthesized from 
a text, is built using online patient narratives after being combined with label propagation from a widely used comprehen-
sive biomedical vocabulary. Second, considering the dependence on biomedical definitions, drug reaction sample selection 
based on general matching is suggested. These feature settings are then used to build and recognize affective semantics and 
sentics based on an extreme learning machine. Finally, a semisupervised LSTM-BiLSTM model for biomedical sentiment 
analysis is constructed. There was a massive influx of patient self-reports related to the COVID-19 pandemic. A study was 
conducted in this direction, and we tested the validity, medical language familiarity, and transferability of our approach by 
analyzing millions of COVID-19 tweets. Comparisons to affective lexicons also indicate that integrating extreme learning 
machine cognitive capabilities has advantages over biomedical sentiment analysis. By considering sentics vectors on top of 
the formed embeddings, our semisupervised LSTM-BiLSTM achieved an accuracy of 87.5%. The evaluations of unsupervised 
learning approximated the results of the previous model when dealing with a serious loss of biomedical data. In this paper, 
we demonstrate the effectiveness of integrating deep-learning-based cognitive capabilities for both enhancing distributed 
biomedical definitions and inferring sentiment compositions from many patient self-reports on social networks. The relevant 
encoding of affective information conveyed regarding medication subjects clearly reveals defined roles and expectations that 
can have a positive impact on public health.

Keywords Sentic computing · Pandemic COVID-19 · Biomedical sentiment analysis · Distributed biomedical 
vocabularies · Affective computing · Social networks

Introduction

Patient narratives posted on social networks and health-
related platforms reflect a patient’s health status in terms of 
observations and contain much objective information, such 
as descriptions of examinations and interventions. Sentiment 

analysis (SA) models are mostly used to evaluate the senti-
ments conveyed by patient narratives gathered from multiple 
information sources, determine positive or negative clinical 
outcomes and judge the impact of drugs and medical condi-
tions. Their effectiveness depends mainly on how well they 
recognize entities, concepts, events, and their aspects.

Among the most successful SA models are those based 
on deep learning techniques. They perfectly perform within 
the setting in which they were trained, but their perfor-
mance decreases sharply when they are used to analyze 
online patient stories. They often lose ground in the face 
of more flexible knowledge-based challenges [1]. This fail-
ure is due to many problems, particularly the lack of sen-
timent dictionaries in the bio-medical domain, which are 

 * Hanane Grissette 
 hanane.grissette@usmba.ac.ma

 El Habib Nfaoui 
 elhabib.nfaoui@usmba.ac.ma

1 LISAC Laboratory, Faculty of Sciences Dhar EL Mahraz, 
Sidi Mohamed Ben Abdellah University, Fez, Morocco

/ Published online: 18 August 2021

Cognitive Computation (2022) 14:274–299

1 3

http://orcid.org/0000-0002-0904-5868
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-021-09903-z&domain=pdf


unapproachable and can be prone to annotator bias, and the 
lack of discriminatory techniques for medical data objects 
from online patient content.

The corresponding growth of this field has resulted in the 
emergence of various subareas, each addressing a different 
level of analysis regarding various aspects and targets (enti-
ties, events or persons) [2]. Recently, the domain of aspect-
based sentiment analysis (AbSA), in which sentiments are 
analyzed, aggregated over time, and synthesized for given 
aspects, has received much attention, with increasing feed-
back on public health on social media [3, 4]. Issues and 
complex scenarios for AbSA have appeared regarding the 
very large number of medical concept citation medication-
related reports that are affectively and semantically associ-
ated in different contexts. Notably, few AbSA approaches 
consider medication-related concepts and their aspects and 
hardly take into account affective levels regarding medical 
concepts vs. conditions [5, 6]. They mostly neglect unclear 
words and detect emotional valence only by scoring the 
text at the sentence- level or word- level by describing how 
words and phrases match the sentiment vocabulary.

Word-embedding techniques are widely used to capture 
richer contextual semantics because of their ability to learn 
deep patterns and relationships through distributed repre-
sentations. Existing embeddings focus on the structure and 
meaning of words to encode the semantic and syntactic 
information of words that would be used as the input of 
neural networks in sentiment analysis tasks [7]. The best 
accuracy is achieved by exploring bidirectional contextual 
information from a large knowledge-based dataset since the 
accuracy of sentiment classification mainly relies on the 
quality of the annotation, word score, and entity tagging 
techniques [8–10]. Despite their success in modeling varied 
linguistic structures, these methods face many difficulties in 
capturing, extracting and quantifying bio-medical entities 
from unstructured text. Patient narratives can represent a 
combination of meaning, structure, and events. They might 
exhibit additional natural language challenges, such as 
excessive use of abbreviations, acronyms, alternatives, and 
misspellings of medical entity citations [11]. For example, in 
the dataset used in this study, we have found 1489 COVID-
19-related spellings, e.g., “postcovid”, “covidiots”, “non-
covid”, and “covidale”. In addition, the annotated corpora 
proposed in this area are very few. Moreover, current annota-
tion systems primarily focus only on common concept types 
such as genes and diseases [12]. Consequently, the limited 
amount of training data available increases biomedical data 
loss. To overcome this limit, controlled medical languages 
and their data object components, which contain rich seman-
tic information, are incorporated to build and learn medical 
word embeddings [12–14] from generated narratives.

This study addresses the following research questions: 
(1) How can the exactness of medical fact assessments be 

enhanced by studying varied medical concepts from many 
self-reported experiences? (2) What embedding strategy 
should be considered for deploying entity interactions, 
dependencies, contextual semantics, and their sentics for an 
improved biomedical sentiment analysis by considering the 
aspects in which they are extracted? (3) How can salient 
online information be identified to focus on a given person, 
target or entity?

In this paper, we propose a novel method that defines 
and normalizes biomedical concepts and events and syn-
thesizes contextual semantics and their assembled sentics. 
Contextualized embedding is a critical step in biomedical 
sentiment analysis. To support the credibility and correct-
ness of our biomedical representations, we use label propa-
gation at the first model layer by integrating a large number 
of well-coordinated samples of highly controlled vocabulary 
from PubMed. Additionally, we enhance our connotation by 
integrating extreme learning machine cognitive capabilities 
into our neural network model. The obtained embeddings 
are then used to build and recognize affective semantics and 
sentics based on extreme learning machines. Finally, a semi-
supervised LSTM-BiLSTM model for biomedical sentiment 
analysis is constructed.

The proposed model performance meets several require-
ments, such as the use of large and balanced labeled data for 
training models, which further yields good sentiment infer-
ence results. Efficient biomedical sentiment inference involves 
drug-related component distinction within text. In this regard, 
the proposed method has the advantage of considering drug 
reaction identification, which consists of natural biomedical 
concept comprehension and drug reaction extraction.

The remainder of this paper is structured as follows: “Back-
ground and Related Work” provides a summary of the litera-
ture review and the background of this study by illustrating 
the importance of including biomedical aspects in analyzing 
related medication text. “Proposed Approach” presents the 
proposed architecture with more problem definition details. 
“Validation and Results” describes large social network exper-
imentation output and comparisons with state-of-the-art senti-
ment lexicons and sentence-level biomedical distributed sys-
tems. “Linguistic Gap Discussion” discusses some linguistic 
gaps. Finally, “Conclusion” concludes this paper.

Background and Related Work

This section presents relevant works related to sentiment 
analysis in bio-medical domain. First, we present the impor-
tance of extracting aspects and bio-medical entities for 
enhancing SA. Indeed, we review the relevant literature on 
the models applied upon the social media. Second, we cover 
the necessary distributed biomedical background for under-
standing the remainder of the paper, which are exploited to 
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build the embeddings. Finally, we introduce transfer learning 
theory adaptation for transferable characteristics of semantic 
models applied to biomedical sentiment annotation.

Affective Computing and Sentiment Analysis

The basic tasks of affective computing and sentiment anal-
ysis are emotion recognition and polarity detection [15]. 
These two tasks are highly interrelated. Indeed, [16] stated 
that “both the terms of affective computing and sentiment 
analysis relate to the computational interpretation and gen-
eration of human emotion or affect, whereas the former 
mainly relates to instantaneous emotional expressions and 
is more commonly associated with speech or image/video 
processing, the later mainly relates to longer-term opinions 
or attitudes and is more commonly associated with natural 
language processing.”

Aspect‑Based Sentiment Analysis

Sentiment analysis concerns the study of capturing, quan-
tifying, and measuring dynamic public sentiments through 
different methods, tools and techniques. SA can be per-
formed at three levels: at document level, at sentence level, 
and at aspect level.

An important part of research effort focuses on aspect-
based SA. It provides more detailed information than general 
SA [17], which allows to formulate interactions, contextual 
dependencies, semantics, and relationships of different data 
objects, e.g., aspect, event, person, target, etc. Refers to [2], 
three processing steps can be distinguished when performing 
AbSA: identification, classification, and aggregation.

In bio-medical domain, supervised AbSA methods are 
the most accurate approaches [15], especially lexicon-based 
approaches, but many unseen entities still appeared regard-
ing the social networks dynamicity. Although their effec-
tiveness in selecting relevant and original features, they still 
remain not well-adapted to unlabeled examples [10]. Owing 
to the limited availability of lexicons that specifically offer 
medical contextual definitions and sentimental correlations 
between varied medical concepts, they fail to address affec-
tive aspects regarding biomedical contexts. Unsupervised 
AbSA methods are also used to discover medical patterns 
from real-time examples. The problem is that these methods 
might result in redundant and irrelevant features leading to a 
serious loss of biomedical data [1]. Aspect extraction (AE) is 
the most challenging task for biomedical analysis. Numerous 
contributions only consider explicit aspects such as drugs 
or disease where implicit aspects have been neglected. For 
example, [18] used two aspects: drugs and doctors over two 
different corpora extracted from the social web. Authors in 
[19] focused on detecting the mood of patients with cancer 
by analyzing their messages in online communities.

Despite multiple attempts, existing unsupervised 
approaches generally suffer from suboptimal entity recog-
nition methods due to the frequent use of informal medical 
language, non-standard format, poor spelling and biomedical 
abbreviation forms, as well as typos in social media. Two 
main research questions have been involved: (i) how to per-
form the process of AE effectively regarding these unique 
characteristics of social networks toward specific biomedical 
targets ? and (ii) how to map relationships between different 
data objects for improved biomedical aspect-based sentiment 
analysis ?

The extraction of explicit/implicit aspects, medical enti-
ties, aspect categories of multi-word medical concepts may 
require involvement of external controlled medical knowl-
edge and vocabularies. Refers to many studies [11, 20–22], 
this knowledge-based integration ensures and enhances the 
credibility and transparency of analysis conveyed toward 
these medical concepts patterns. Since it relies on suffi-
ciently large biomedical training corpora to define the appro-
priate medical definitions, a deeper understanding of transfer 
learning and semisupervised learning becomes apparent.

Semisupervised learning is a fundamental solution 
that allows learning from heterogeneous unlabeled exam-
ples spread via social network in combination with typi-
cally sets of labeled data. In this sense, several studies used 
semisupervised techniques to primarily develop automated 
corpora [23] by utilizing word representation capabilities 
in two ways: (1) generating context-depend embeddings, 
(2) transferring knowledge from pretrained embeddings or 
fusing weighted distributed features [24–26]. The ultimate 
problem is that these corpora result in low medical entities 
recognition recall due to the failure of recognizing drug-
related components and their aspects such as drug reactions 
and indications

Extracting drug-related explicit aspects may be failed due 
to the existence of adverse drug reaction (ADR) multi-word 
expressions, leading to a higher accumulation of false posi-
tives and negatives. Few studies have been carried out to 
consider side effects in raw text, i.e., annotation of ADR 
lexicons and corpora. Table 1 shows a list of baselines mod-
els used for drug reactions lexicons with relevant details. 
The problems with these lexicons are as follows: (1) They 
are annotated for local context and target. For example, [27] 
considered an adverse drug events benchmark reference 
dataset consisting of 5,645,336 English-language articles, 
but it regarded to specific targets that mentioned at least one 
of six medicinal products of interest such as insulin glargine, 
levetiracetam, methylphenidate, sorafenib, terbinafine, and 
zolpidem. (2) The major limits are concerned with the data. 
Twitter data are unbalanced regarding time, where there is 
no relationship with other drug-related concepts, such as 
indications from formal medical language. Word embed-
ding features created from a large non-domain-specific 
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Twitter dataset have been proposed as a solution that may 
disambiguate medical-sense directions. (3) Another signifi-
cant problem is how efficiently retrieve formal formats of 
drug reaction (combinations of words) from imbalanced 
and unstructured text. This explains why sentiment analysis 
systems are able to perform reasonably well towards given 
entities and events but far poorly on clarifying sentiment 
towards biomedical subjects. To overcome these limitations, 
a medical normalization step [12, 28, 29] is carried out by 
our system for efficient meaning disambiguation as a whole, 
then extract and define medical entities and aspects.

The main contributions of this article include the follow-
ing three goals: (1) using semisupervised learning to unlock 
new paths towards conquering annotated sentiment lexicons 
deficiency for biomedical sentiment analysis, (2) building 
contextual semantics for aspect-based sentiment of a given 
concept or entity, and (3) investigating which way of tackling 
unstructured medication-related data for enhancing biomedi-
cal sentiment analysis training robustness, consistency, and 
reliability.

Biomedical Sentiment Analysis on Twitter

Patient-reported outcome measures are useful to evaluate 
patients health status and their experiences by documenting 
the impact of a disease on functional performance as well as 
the effectiveness of medical and rehabilitation interventions 
[30–34]. Nowadays, online social networks have emerged 
as a new platform that provides an arena for people to share 
their views and perspectives on different issues and subjects 
with their friends, family, relatives, etc [35]. Because of the 
emergence of deep learning techniques, the use of Twitter 
data has become valuable and popular in analyzing the sen-
timental attitudes and measuring patient-reported outcomes 
in recent years.

Traditional approaches, including dictionary-based and 
machine learning tools, are less efficient in terms of learning 
for biomedical sentiment analysis on Twitter. Supervised 
algorithms are commonly used including naive Bayes, 
K-nearest neighbors (KNN), logistic regression, support vec-
tor machine (SVM), and artificial neural networks (ANNs). 

For example, [36] used Bayesian network classifier to per-
form Twitter Sentiment Analysis (TSA) on critical events 
such as natural disasters or social movements. The latter 
used the Bayes factor measure that improved the classifi-
cation performance better than SVM and random forests, 
given a sufficient number of training examples. The most 
significant challenge for the machine learning approaches 
is feature selection, which is often domain dependent. They 
often result in a highly sparse input matrix and produce low 
accuracy measures in biomedical sub-tasks. To reduce spar-
sity, authors in [37] provided a novel supervised learning 
technique that identifies a lexicon set unique to the TSA. 
This identification process generates a collection of vector-
ized tweets for input to machine learning tools, which is 
further reduced into a small set of seven meta-features, but 
they lose word orders and long-term dependencies.

Deep learning methods have increased the accuracy of 
several sentiment analysis tasks, which offer a rich repre-
sentation that allows identifying the relations among words, 
offering interesting qualitative information to historically, 
semantically, and contextually consider the main features. 
While these methods have been considered as state-of-the-
art solutions, there still remain several challenges and limita-
tions confronting their use on medication-related text anal-
ysis. Various contributions rely on combining techniques 
and fusing datasets to conquer most of these limitations and 
boost models performance [27, 37–39].

Moreover, Twitter data exhibit depend-platform prop-
erties or features, and many additional features have been 
considered in the literature. Prior studies propose to develop 
hybrid features regarding Twitter data particularities, which 
proves its subjectivity and effectiveness for polarity detec-
tion with regard to linguistic features such as stylistic part-
of-speech [40]. [41] presented a pattern-matched Twitter 
analysis of US cancer-patient sentiments that mainly char-
acterizes the content of tweets authored by patients with 
cancer in the USA. Indeed, they utilize patient tweets to 
compute the average happiness of patients with cancer for 
each cancer diagnosis. A large sample of English tweets was 
used and the tweets were filtered by the cancer diagnosis. 
The patients’ Twitter identification numbers were used to 

Table 1  An overview of 
baselines models used for drug 
reactions lexicon construction 
regarding varied benchmarks 
algorithms

ADR Lexicon corpus Algorithm Accuracy (%)

[76] Twitter Corpus Multinomial logistic regression 69 %
Bidirectional GRU + GoogleNews embedding 55 %
hierarchical-based-Character LSTM (Char-LSTM) 47 %
hierarchical-based-Character CNN (Char-CNN) 77 %

[77] AskPatient corpus CNN 78 %
DNorm 73 %
RNN 68 %
Multi-class logistic regression 57 %
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gather all the tweets for each patient where happiness values 
for the patients’ tweets were calculated using a quantitative 
hedonometric analysis. Others proposed other salients such 
as [42] that used the citation count as the dependent variable 
(number of unique Twitter users), with 6,482,260 dependent 
tweets linked to 1,083,535 publications, which was consid-
ered an indicator of the regression model. It improved the 
adjusted R-squared value of regression analysis in several 
disciplines.

Biomedical Sentiment Annotation and Sentic Computing

There are currently numerous English-language sentiment 
knowledge bases and state-of-practice benchmarks such as 
SenticNet [43] and SentiWordNet [44], ANEW [45], and 
VADER [38]. Few medical sentiment-annotated lexicons are 
trained on medication-related examples with regard to cross-
domain and cross-lingual measures, such as unprecedented 
shifts in patient attitudes [46]. In particular, biomedical sen-
timent analysis requires particular attention to be paid to 
the sentiment annotation scale regarding biomedical natural 
entities and aspects [47]. Indeed, limited labeled training 
data fails to cover the entire input space.

Automatic sentiment lexicon annotation techniques 
involve other substantial requirements such as aspect 
extraction and medical entity normalization [48], espe-
cially, to bridge the gap between patients’ language and 
formal medical language. The multidimensional way of 
mining their feelings and their sufferings concerning treat-
ments and symptoms is of critical importance. This task 
is extremely difficult, as it involves a deep understanding 
of most of the explicit and implicit meanings. It mainly 
relies on parts of the text and context in which sentiment 
aspects are explicitly expressed, such as polar terms, emo-
tion words, and co-occurrence frequencies. Indeed, patient 
opinions are not just reviews of a product/service but more 
like small donations of experience [34, 49]. In addition, the 
implicit meanings are important. Referring to many studies 
[8], opinions and sentiments are often conveyed implicitly 
through latent semantics, which makes purely syntactical 
approaches ineffective, especially when aiming to find new 
exciting outcomes hidden in the unstructured narratives on 
social networks.

Sentic computing is one of the most crucial techniques 
used for this purpose [15, 50] and has been exploiting in 
many patient-centered applications [51–56], which exploits 
semantics and their sentics based on the relation depend-
ency, and linguistics properties to annotate automatically 
concept-level sentiment of an input phrase. Where seman-
tics are concepts that are most semantically-related to the 
input concept, and sentics are emotion categorization values 
expressed in terms of varied affective dimensions such as 
pleasantness, attention, sensitivity, and aptitude.

Since polarity is strongly connected to attitudes and 
feelings and involves quantifying the affective reaction of 
a human to a document, a media item or an event, we pro-
posed to use sentic computing to encode contextual seman-
tics and sentics to synthesize the full range of emotional 
medication experiences in terms of pleasantness, attention, 
sensitivity, and aptitude. Then after, these generated former 
sentics is efficiently deployed using our extreme learning 
machine model, and therefore a better understanding of the 
contextual role of each concept within a sentence is achieved 
in this study. Indeed, the proposed model leverages semantic 
and contextual relatedness to deeply understand the world 
and social aspects, extract medical components, and define 
cultural awareness and common-sense knowledge.

Biomedical Distributed Representations

Embeddings have received substantial attention because 
of their capabilities to capture the semantics of biomedi-
cal concepts. To date, methods have rapidly adopted word 
embeddings and combined different types of medical dic-
tionaries from controlled biomedical ontologies, vocabular-
ies and medical resources, such as PubMed1and MedLine2 
databases. Many studies have contributed to revolution-
izing the use of word embedding techniques to represent 
biomedical text as a reduced dimensional vector. Primary 
methods trained the embeddings based on (1) the average 
surrounding context words, such as the continuous bag-of-
words (CBOW) model in Word2Vec [57], (2) weighted con-
text words, such as the Skip-Gram model in Word2Vec, (3) 
global cooccurrence statistics, such as GloVe [58], and (4) 
word n-grams, such as fastText [59]. For example, authors 
in [13] applied Word2Vec to a corpus of 10,876,004 English 
abstracts of biomedical articles from PubMed to estimate 
the relatedness of two words. Also, authors in [60] provided 
biomedical word embeddings that combine subword infor-
mation from unlabeled biomedical text with a widely used 
biomedical controlled vocabulary called medical subject 
headings (MeSH). However, word embeddings are tradition-
ally computed at the word level from a large corpus of unla-
beled text, ignoring the information present in the internal 
structure of words or any information available in domain-
specific structured resources such as ontologies. Here these 
knowledges hold the potential for significantly improving the 
quality of word representations, as suggested in some recent 
studies in the public domain.

Recently, the use of embedding with advanced compu-
tational linguistics techniques has shown promising per-
formance in biomedical concept extraction and tagging 

1 https:// PubMed. ncbi. nlm. nih. gov/
2 https:// www. nlm. nih. gov/ bsd/ pmres ources. html
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[12], which employed other tools such as PubTator [29] (a 
state-of-the-art named entity recognition system), N-gram 
counts, word sequence occurrences, word sequence prob-
abilities [61], and medical patterns of word semantics. Many 
pre-trained embeddings require no human-labeled data but 
they make use of resources for weak supervision (e.g., 
UMLS semantic types). They have been shown to speed up 
manual data curation by providing human annotators with 
automated pre-annotations generated by rules or machine 
learning models. Authors in [12] deployed PubTator via four 
different word embedding techniques on 30 million Pub-
Med abstracts. It is the largest among the publicly avail-
able biomedical concept embeddings to date. It covers over 
400,000 biomedical concepts mentioned in the literature and 
journal life pharma sciences. Additionally, many researchers 
have built continuous vectors space by using a training set 
of sentence embeddings with over 30 million documents 
from both scholarly articles in PubMed and clinical notes 
from MIMIC-III clinical Database [14]. Their purpose is to 
prove the effectiveness of discriminating expression features 
by employing pair similarity tasks in different biomedical 
text genres. For example, in [62], resources were derived 
from the combination of all publication abstracts from Pub-
Med and all full-text documents from the PubMed Central3 
(PMC) open access subset and others. Our method is imple-
mented on the top of training samples as a combination from 
PubMed and MIMIC-III clinical Notes.

Patient narratives on social network might contain differ-
ent spellings of varied bio-medical entities such as genes, 
drug-interactions, and diseases. The capture of the semantic 
relatedness and contextual visibility of these bio-medical 
entities plays a vital role in retrieving hidden information 
and clarifying meanings and their attached sentiments. Vari-
ous contributions have been done in this context: (1) bag of 
meta-words [63], (2) improved embeddings [64], (3) and 
one-hot character vectors for aspect-based sentiment analysis 
[65]. Deep learning models have slightly improved these 
representations performance. For example, authors in [65] 
joined multiple convolutions to generate suitable word rep-
resentation for typical settings and tasks. Other distributions 
have combined unbiased representations from CNN with 
semantics from multiple BiLSTMs for generating contextual 
vectors [66]. Even if most of them got good accuracy, they 
are not robust because (i) medication-related texts require 
learning from real-world data, (ii) they present additional 
language challenges that may require processing by a word-
expert annotation system for efficient meaning disambigua-
tion, especially for reducing biomedical data loss. To con-
quer these limitations, we attempt to define suitable transfer 
learning setting over the biomedical resource combination 

assessed through the experiments, and therefore this setting 
fit our extreme learning machines to define biomedical pat-
terns on social networks.

Transfer Learning

One of the most powerful ideas in deep learning is that 
sometimes you can take the knowledge that the neural net-
work has learned from one task and apply it to a separate 
task. This process is called transfer learning. Transfer learn-
ing makes sense when you have a large amount of data for 
the problem you are transferring from and usually relatively 
less data for the problem you are transferring to. Transfer 
learning is widespread in deep learning, given the enormous 
resources required to train deep learning models or the vast 
and challenging datasets on which deep learning models are 
trained. Transfer learning can be categorized under one of 
three subcategories: inductive transfer learning, transduc-
tive transfer learning, and unsupervised transfer learning. 
Each subcategory is based on different situations between 
the source and target domains and tasks [67]. Many con-
tributions have been made in this scope. Instance transfer 
approaches aim to reweight some labeled data in the source 
domain for use in the target domain [68–70]. Feature repre-
sentation transfer approaches have been used to find a good 
and reliable feature representation that reduces the difference 
between the source and the target domains and the error 
of classification and regression models [71, 72]. Relational 
knowledge transfer builds a map of the relational knowl-
edge between the source domain and the target domains [73, 
74], with both areas being relational domains and the inde-
pendent and identically distributed (i.i.d.) assumption being 
relaxed in each field.

In the past few years, deep learning has seen incred-
ible progress and has largely removed the requirement of 
strong domain knowledge. However, existing approaches 
in natural language processing still require task-specific 
modifications and training from scratch [75]. Knowledge 
transfer with deep neural networks offers vast improve-
ments to many challenging tasks, e.g., language under-
standing, word embedding, and sentiment classification. 
Sentiment classification has seen full applications because 
of its transfer learning capability to transfer knowledge or 
lexicons from one domain to other domains. It has played 
a vital role in improving various meta-word dictionaries 
by expanding pretrained word embedding vectors such as 
Word2Vec and GloVe. In our study, we apply a semisuper-
vised feature representation transfer approach to the induc-
tive transfer learning mechanism, whereby we aim to find 
distributional feature representations under medical set-
tings that minimize domain divergence and classification 
model error. Technically, the source and target domains are 
different, but they are dedicated to the same task. Indeed, 3 https:// www. ncbi. nlm. nih. gov/ pmc/
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no labeled sentiment dictionaries in the medical context 
data are available; thus, we adopted a massive amount of 
labeled data in a general context. To this end, the source 
domain is represented under the following settings:

D = {FS,P(FS)} ; where FS ∶ Feature Space and P(FS) ∶ 
distribution over the feature space.

Transductive transfer learning must satisfy the follow-
ing criteria:

Rule (i) :  the feature spaces between the source and 
target domains are different, FS ≠ FT

Rule (ii) : the marginal probability distributions of the 
input data are different, P(XS) ≠ P(XT )

Rule (iii) : the label prediction tasks between two tasks 
are different, YS ≠ YT

Rule (iv)  : Data imbalance exists with regard to the 
positive and negative classes for the source and target 
domains, P(YS|XS) ≠ P(YT |XT )

Y is the label space, and P(Y|X) is the conditional prob-
ability distribution over the feature space.

This setting concerns domain adaptation for knowl-
edge transfer in medication-related processing and sample 
selection bias or covariate shift, which we want to imitate 
positive/negative polar facts in given social assumptions. 
Many low-level features learned from enlarged data-
sets might help our learning to better understand meta-
words and make sense of medication-related semantics 
and affective levels from well-understood patterns and to 

recalculate new multi-word expression semantics and con-
textual patterns.

Proposed Approach

As illustrated in the introduction section, our main goal is 
to consider, extract, and exploit biomedical data for efficient 
biomedical sentiment analysis. Figure 1 shows the overall 
architecture of the proposed system. It allows the contex-
tual semantics of a given entity, its data-object properties 
and its relationships to be exploited in order to compute the 
attached sentiment based on the formed sentics. The subsec-
tions below give more details about each component.

Biomedical Embedding Method

The embedding strategy followed at this point in the process 
is designed to create a contextual embedding for biomedi-
cal concept dependencies on very large shared data. We use 
semisupervised learning, which uses label propagation to 
automatically label unlabeled data. As described in Fig. 2, 
an embedding strategy is defined to represent the entire sen-
tential context representation and is primarily constructed on 
two levels as follows: 

1. Enrich the training use case: This is a straightfor-
ward technique for mutating predefined knowledge to 
draw upon pretrained word embeddings (Table 2). An 

Fig. 1  The overall architecture of the proposed system
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embedding strategy with metaword features is used to 
support the large vocabularies of social networks. Three 
main biomedical components were considered: (i) the 
MeSH relationship network, (ii) distributed representa-
tions, and (iii) biomedical concepts and their data-object 
attributes. Behind the biomedical embedding strategy, 
a universal metaword dictionary is used by employing 
GloVe vectors that are trained on very large general-
scope data. Glove vectors are incorporated to adjust the 
general context of some biased medical concepts and 
biased words, e.g., oils, love, and cancer.

2. Transfer learning use case: We followed the setting 
described in “Transfer Learning”, which concerns the 
domain adaptation of knowledge transfer for medication- 
related processing and sample selection. The main 
objectives are to (i) extract medical entities from social 
network content, (ii) define their correspondence on for-
mal vocabularies, (iii) adjust the medical training con-
texts to reduce serious biomedical data loss, and (iv) 
consider the long-term dependencies of n-gram medi-
cal components from highly defined abstracts, such as 
entries referring to the side effects of a given drug.

This method assigns a weight to each entry based on Eq. 1. 
The context embeddings are computed using the weighted 
sum of the embeddings of the neighbor words of the target 
word wi and thereby sequentially generate the augmented 
embedding for representing the entire sentential context.

The performance of transfer knowledge depends mainly 
on how the sufficient and adequate training corpus is used. 
Table 2 summarizes the statistics of the distributed vec-
tors we use in this study, which are used for constructing 
both models and evaluations. They represent an open set 
of biomedical word vectors (embeddings) that combines 
subword information from PubMed and MIMIC-III clinical 
notes with a widely used controlled biomedical vocabu-
lary. Table 3 provides statistics on the different medical 
language systems and corpora used for training our sys-
tem. This combination provides well-learned vectors for 
unseen entries. For each entry that appears in the corpus 
for the first time, we define dependency vectors that capture 

(1)e(i) =

j=i+t∑

j=i−t;j≠i

e(j)
t − |i − j|

t

Fig. 2  The process designed to build embeddings
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semantic and biomedical concept connections and contexts, 
as described in Fig. 2 ; this is not necessarily training with 
additional formal data but retraining in a new model with 
a corpus that has the same vocabulary properties as those 
previously employed. By considering the MeSH relation-
ship network, the embedding gain greatly improves the 
performance of the downstream computational prediction 
models [78]. Indeed, this mechanism enhances the accu-
racy of our model in comparison with other biomedical 
embedding baselines in the literature, as we will discuss 
in “Experiment Design”.

For a better generalization performance, we choose to 
let the training of the new model propagate back to these 
word vectors to gain understanding of the intrinsic semantic 
and conceptual connections. Consequently, we can achieve 
a valid and substantial embedding generation. Then, the 
underlying transfer is deployed sequentially to generate aug-
mented embeddings that leverage adequate contextual bio-
medical representations for biomedical sentiment analysis.

As shown in Table 4, a given patient narrative may represent 
a side effect citation, which can be detected as a drug reaction 
subword that may be neglected or not considered. In the next 
section, we aim to define a drug reaction normalization compo-
nent to embed drug-related entries from given shared contents.

Drug Reaction Normalization Component

The strong motivations behind adding the drug reaction 
normalization component are (i) obtaining a distinct set of 
words that refer to drug reactions and (ii) clearly negotiat-
ing the negativity of these elements to reduce the number 
of false positives and false negatives obtained by our clas-
sifier, which are caused mostly by mistaken categorization 
of ADRs (e.g., headache) and beneficial effects (e.g., hair 
loss reversal) (which are also known as medical events). 
We consider the aspect-based sentiments of these medi-
cal events by exploring embedding characteristics through 
groups of drug reactions, where the subgroups consist of 

Table 2  A summary of pre-trained embeddings for biomedical words and phrases using medical databases such as PubMed (abstracts, concepts, 
etc.) and MIMIC-III clinical notes

https:// github. com/ ncbi- nlp/ BioWo rdVec
https:// github. com/ ncbi- nlp/ BioSe ntVec
http:// bioasq. org/ news/ bioasq- relea ses- conti nuous- space- word- vecto rs- obtai ned- apply ing- Word2 Vec- PubMed- abstr acts
https:// github. com/ ncbi- nlp/ BioCo ncept Vec

Biomedical Word Embedding Embedding Parameter settings Text Copora

BioWordVec[13] FastText 200-dimensional word embeddings, where 
BioWordVec vector 13GB in Word2Vec 
bin format and BioWordVec model 26GB.

PubMed and clinical note from MIMIC-III 
clinical Database

BioSentVec[14] Sent2Vec 700-dimensional sentence embeddings. We 
used the bigram model and set window size 
to be 20 and negative examples 10.

PubMed

BioASQ3[60] Word2Vec 1,701,632 distinct word vectors and biomedi-
cal types

10,876,004 English abstracts of biomedical 
articles from PubMed.

BioConceptVec[12] CBOW skip-
gram glove 
fastText

It covers genes, mutations, chemicals, dis-
eases and cellines. The trained embeddings 
contain over 400,000 concepts.

The entire PubMed biomedical concepts. 
PubTator to annotate biomedical concepts 
in the PubMed.

Table 3  Statistics of biomedical corpora and medical ontologies used 
for pre-trained biomedical embeddings training

Sources Documents Sentences Tokens

PubMed 28,714,373 181,634,210 4,354,171,148
MIMIC-III Clinical 

Notes
2,083,180 41,674,775 539,006,967

PubMed Central 2,083,180 41,674,775 539,006,967

Table 4  Samples of annotated tweets and their drug reaction detected

Twitter document Drug reaction detected

@carolewhelan i find this drug worse, it 
has left me in a tired/sleepy fog all day - 
the codeine i can (mostly) deal with.

Sleepy

@shipmom cipro is awful makes me sick 
as a dog too

Sick

@jameetmiller i didn’t have side effects 
when i started taking cymbalta. after 
about 6 mths had to stop because it 
raised my blood pressure.

raised my blood pressure

brisdelle dangerous. paxil is supposed to 
treat depression and suicidal thoughts. i 
took paxil and got depressed. went off & 
ok in 2 wk.

depression

09.26 day 12 rivaroxaban diary: headache, 
right shoulder and neck ache, lower 
back pain, weak knees, limping when 
walking.taken paracetamol

headache
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the defined elements of a group for which the group events 
with regard to a given event are commutative (common drug 
interactions).

Drug reaction normalization is the task of retrieving and 
mapping word combinations that represent drug reactions 
and finding their corresponding formats from external drug 
knowledge such as the side effect resource (SIDER). This 
task frequently requires analysis at the feature extraction 
level, which can be difficult without sufficient background 
knowledge of the formal medical context. For this purpose, 
we have deployed external multicorpus drug reaction knowl-
edge from a state-of-the-art design for adverse drug reac-
tion normalization [76] and the (SMM4H) 2017 shared task 
[79], data and systems for medication-related text classifi-
cation and concept normalization from Twitter. The auto-
matic construction of the annotated drug reaction dataset 
explores many learning algorithms through groups for drug 
reaction detection (25678 annotated tweets and 9150 ADR 
phrases and identifiers). Ensembles of system combinations 
obtained the best score of 88.7%, outperforming individual 
systems for the normalization of ADR expressions on social 
networks. The problems are that (1) the systems frequently 
misclassify rarely occurring ADRs due to suboptimal entity 
recognition methods in drug reaction detection, and (2) 
the lack of context in length-limited posts prevents explicit 
drug reaction formats from being defined. With the depend-
ence on biomedical definitions described in “Biomedical 
Embedding Method”, drug reaction sample selection based 
on general matching and neural networks is developed. We 
have paired the drugs and side effects as samples, thereby 
modeling the problem by using a neural network compo-
nent that serves to extract related drug reaction contextual 
semantics, as described in Fig. 5. Indeed, this component 
consists of the shared layers with the previous construction 
embedding model. We aim to add related side effect seman-
tics to our weight matrix (embedded biomedical definitions) 
by using an annotated dataset primarily to seek the possi-
ble side effect semantics of unknown words such as those 
described in Table 4. This component also allows the long-
term dependencies of drug reactions on large patient reports 
and their related attributes to be defined, such as indications, 
diseases, and drugs.

Each tweet is a candidate for reporting a drug reaction 
or medical event reaction that can be translated into formal 
medical language using our neural-network-based detector. 
The drug reaction detector takes as input a set of n-grams 
and the corresponding medical format, and it is trained prin-
cipally with our proposed model to obtain automatic connec-
tions with positive and negative medical facts. The model 
learns the weights via the portable multicorpus training 
defined earlier. Indeed, a simple recurrent neural network is 
used on top of the augmented embedding from the previous 

component and achieves stable accuracy in detecting drug 
reaction references in a given raw text.

Inductive Sentiment Method

This section presents a novel method to deduce sentiment from 
unlabeled data obtained from social networks. We describe 
the core steps of the proposed analogical affective reasoning 
method as follows: (1) We first describe in detail how we adapt 
the sentic computing approach for the task of encoding the 
affective information conveyed towards medication-related 
targets. Then, (2) we propose leveraging TF-IDF statistical 
features in our proposed feature framework. Finally, (3) we 
create an LSTM-BiLSTM sentiment computing component 
based on the proposed feature framework.

By adding an extreme learning machine algorithm into 
our neural network model, the proposed method obtains a 
good understanding of medication-related affective aspects 
and generates suitable sentics. Furthermore, we address the 
question raised in “Introduction” regarding how the defi-
ciency of recognition tasks for word combinations (large 
medical concepts) in the text may fail to provide relevant 
insight. By convolving the [1-4] gram training setting, it 
is estimated that accurate recognition capabilities can be 
achieved for efficient affective reasoning tasks.

Encoding Sentics and Semantics via a Neural Network

Owing to the need to analyze large volume of patient narra-
tives and extract medication-related concepts, we consider 
two levels of abstraction: a single entry and a set of entries 
under various learning problems as the context and target 
formalization. In particular, we explain the sentic comput-
ing approach to clarify common-sense cognitive aspects and 
affect-related information, especially for medication-related 
natural language concepts. Human emotions and their mod-
eling are increasingly understood to be crucial tasks, espe-
cially under particular circumstances, e.g., patients with 
particular health conditions.

According to the hourglass of emotions model that is 
used to form the full spectrum of human emotional experi-
ences, the mind is to a large extent emotionally controlled 
to obtain independent resources. Moreover, shared informa-
tion can be relatively quantified to generate affective vec-
tors by specifying emotion compounds through four sentic 
dimensions that measure the degree to which (i) the user 
is amused by interaction modalities (pleasantness); (ii) the 
user is interested in the interaction content (attention), (iii) 
the user is comfortable with the interaction dynamics (sen-
sitivity), and (iv) the user is confident in the interaction 
benefits (aptitude). In particular, sentic computing-based 
encoding is used to synthesize the full range of emotions 

283Cognitive Computation  (2022) 14:274–299

1 3



conveyed towards medication-related experiences and 
to make sense of medical facts. The model’s output is in 
terms of the polarity, which is a floating number between 
−1 and +1 (where −1 is extreme negativity and +1 is extreme 
positivity) [15], and is calculated according to the follow-
ing formula:

where ci is an input concept, N is the total number of con-
cepts, and 3 is the normalization factor.

Each concept may appear in a negative context (nega-
tive intensity) or in a positive context (positive intensity). 
Therefore, we consider the absolute value; for example, in 
terms of the attention dimension, “surprise” is negative in 
the sense of lack of attention but positive in terms of the 
point of view.

The existing sentiment generation approaches discussed 
in “Affective Computing and Sentiment Analysis” are mainly 
focused on the identification of parts of the text that express 
sentiment as polar terms, expressions, and statements that 
express emotions. In our proposal, we attempt to build analogy- 
based sentics and semantics within a neural network learning 
strategy that strives to provide an understanding of a clear 
connection between different affective aspects. Indeed, a 
semantic configuration is first used to deconstruct medical 
natural language text into concepts. Second, linguistic patterns 
are used in conjunction with sentic dimensions to infer polar-
ity from sentences. If no match is found in the vocabulary or 
in the linguistic patterns, the neural network model is used.

The large number of patient narratives discussed on 
social networks spread large amounts of information citing 
a large number of medication-related concepts. Indeed, they 
are contextually and semantically associated in different 
contexts, which further require a higher entity recognition 
performance to better capture conceptual and sentimental 
patterns in a sparse dynamic affective space. Moreover, a 
large social network solution requires particular comput-
ing characteristics that allow shared relevant information 
insights to be captured. First, the process should have low 
computational complexity, and fast affective learner aspects 
are required regarding varied targets. In particular, the sentic 
vector encoding is computed every time for various entries, 
and multiword expressions are also considered. Otherwise, 
multiple neural network learning with numerous parameters 
in each time step will lead to issues in backpropagation net-
work training, while ordinary backpropagation-based neu-
ral networks have to deal with the local minima problem, 
including retraining strategies, convergence rates, etc.

All these features are examples of good extreme learn-
ing machine (ELM) training points. Extreme learning 
machine algorithm training shows appreciable results 

(2)p =

10∑

i=1

Pl(ci)| + |At(ci)| − |Se(ci)| + |Ap(ci)|
3N

with very low computational cost, which is especially rel-
evant when dealing with many patterns defined in a high-
dimensional space, where it always converges to the global 
optimal solution. In this study, we proceed by feedforward 
neural networks with multiple hidden layers that power-
fully identify affective patterns as well as those associated 
with medication-related conceptual sentics as a function 
approximation. As depicted in Fig. 3, for a coactivated 
unsupervised learning problem, each concept (target) is 
first learned or explained by general concept matching, 
the semantic and sentic dimensions of which are well 
explained. Otherwise, concept associations regarding spe-
cific biomedical contexts are recalculated every time a new 
multiword expression is inserted into the vocabulary in 
Fig. 1, which is further designed to be the input to the 
LSTM-BiLSTM sentiment inductive model, received as a 
training set X of N labeled pairs, where (xi, yi) is the input.

– xi ∈ ℝTx : Input embedding vector. Here, Tx is the maxi-
mum length of the inputs.

– yi ∈ ℝ : The expected target polarity value p is calculated 
according to four sentics dimensions (pleasantness, attention, 
sensitivity, and aptitude).

The input layer has Tx time steps and is connected to Nh 
neurons of the hidden layer through a set of weights 
{Ŵj ∈ ℝ

Tx j = 1, ......,Nh} , which is initialized arbitrarily. 
The jth hidden neuron embeds a bias term bj that is activated 
using a nonlinear activation function g(.).

The coactivation of different affective levels allows differ-
ent compound emotions to be captured in varied medication-
related discussions. Effectively, Fig. 4 highlights the ELM-
based network that generates the sentic vectors, where the 
use of a scalar output implies that the network has one output 

Fig. 3  Multiple hidden layer extreme learning machine network
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unit, without loss of generality. The sentic vectors are recal-
culated independently into four predefined levels, allowing us 
to deductively propagate the long-term affective dependen-
cies of each concept in each dimension and then measure how 
each sentic level contributes to the others. Many performance 
evaluations [80] have been carried out on various inference 
problems, and ELM has demonstrated learning abilities lead-
ing to crucial results. The random weights in the hidden layer 
endow a network with a notable representation ability that 
embeds the compound emotions of non sentimental expres-
sions such as medical concepts.

The overall output function, f(x), of the network is:

where W̄j is a vector of weighted links, W̄j ∈ ℝ
Nh.

TF‑IDF Component

After expanding the sentic vectors with the aim of lev-
eraging the seminal affective meaning of medical con-
cepts, related bag-of-sentimental-concepts features are 
formed that are similar to bag-of-concepts features. Each 
dimension in the feature vector represents a concept, 
and each concept is assigned a value by multiplying the 
TF-IDF and the polarity value of the concept. The theo-
retical foundations are considered to be less than firm by 

(3)f (x) =

Nh∑

j=1

W̄jg(Ŵj.x + b̂j)

information theory experts. The inverse document fre-
quency for any given term is defined as:

The nallTweets are tweets that contain term. The Twitter 
TF-IDF matrix is defined as:

Each coefficient Wi,j associated with term i in tweet j 
describes and quantifies how important various terms are 
in a tweet that is part of a Twitter corpus in a slice of time.

Sentiment Computing Component

In this step, we leverage our feature framework from dif-
ferent core steps and bidirectionally propagate them to 
efficiently compute sentiment-related information toward a 
particular target ti in a given context ci . The overall sentiment 
inductive method is shown in Fig. 6. The proposed archi-
tecture is designed to receive as an input a large number of 
tweets represented according to an m-dimensional contextual 
embedding space and to predict the corresponding overall 
sentiment with regard to the various affective dimensions 

(4)tf (term, tweet) =
ftweet(term)

maxword∈tweet ftweet(word)

(5)
fd(t) ∶ frequency of term t in tweet d

idf (term) = log(
ntweet

nallTweets
)

(6)Wtermj,tweeti
= tf (termi, tweetj) ∗ Idf (termi)

Fig. 4  ELM-based network 
to generate sentic vectors by 
specifying compound emotion 
into four sentic dimensions
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involved, i.e., pleasantness, attention, sensitivity, and apti-
tude, as discussed in the last section. For the outputs, in 
principle, the inductive polarity covers three main salient 
features derived from minute Twitter data and is character-
ized by an analog value in the range [−1, 1] , which represents 
the intensity of the expressed or received emotion under a 
medical policy, which is synthesized every time through 
learning procedures.

However, two important aspects should be taken into 
consideration. (1) The architecture relies on an embedding 
strategy that aims to transfer embeddings from large medical 
ontologies already adopted for social network data (“Biomedi-
cal Embedding Method”) and to learn connections between 
new multiword expressions that may refer to medical con-
cepts such as drugs, symptoms, and ADRs. The design of a 
reliable sentiment predictor regarding biomedical contexts is 

Fig. 5  Neural network-based 
drug reaction normalizer 
process

Fig. 6  ELM-based network for 
computing sentimental outputs
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important, especially when considering that few alternative 
schemata have been provided in the literature without clearly 
adopted medication-related concept features or a target of 
analysis. (2) The affective reasoning model discussed previ-
ously is considered an input to the sentiment sequential model. 
Indeed, the values from each sentic dimension are ultimately 
remapped to obtain the expected concept polarity. Neural 
computing spans each affective dimension separately, where 
various dimensions contribute to each other. More complex 
emotions can be synthesized by using three or even four 
other sentic levels, e.g., joy + trust + anger = jealousy , 
as discussed by the authors of [43]. Conceivably, each affec-
tive dimension may be handled by a dedicated ELM, which 
addresses learning and explains semantics for a given sentic 
dimension independently, and then, by using formula 2, the 
semantic associations of attitudes and feelings are defined as 
polarity values. These polarity values are joined to another 
feature ŷ . Then, these values are fed into a BiLSTM senti-
ment classifier that is designed primarily to learn efficient 
connections and long-term dependencies using the policies 
from previous steps and to loop them into a network, as shown 
in Fig. 6, which provides the overall scheme of the proposed 
approach. It yields as output the analog polarity value that 
will eventually lead to the corresponding sentiment insight.

The problem definition should also state what kind of perfor-
mance is desired. In this study, automatic sentiment induction 
of biomedical concepts based on sentic computing and neu-
ral networks is carried out to principally clarify truly affective 
information regarding given medication-related aspects to bet-
ter fit the medical conceptual aspect and affective associations 
to detect the “fakeness” or “genuineness” of a given medical 
fact. Indeed, the ultimate motivation behind the choice of BiL-
STM was to learn long-term dependencies, especially those for  
medication-related terms. Another reason is that multiple BiL-
STM layers allow the exploitation of sentic semantics under 
medical vector dependency at the same time steps and the col-
lection of affective common-sense knowledge through sequen-
tial computing, designing the computation of the four affective 
sentic levels. Moreover, we employ the attention mechanism to 
help memorize long normalized term dependencies and identify 
how much attention should be given to particular medication- 
related concepts through the proposed neural networks. Atten-
tion is arguably one of the most powerful concepts in deep 
learning. The attention layer is a component of memory net-
works, which focuses their attention on external memory stor-
age rather than a sequence of hidden states.

Validation and Results

In this section, we first present the relevant COVID-19 prob-
lem for this study. Afterwards, we conduct experiments in the 
following directions: (1) we respond to the questions raised 

and formulated in this study; (2) we perform a sentence-level 
evaluation with the clinical semantic textual similarity bench-
marking resource to prove model transferability; and (3) we 
discuss the model performance over the embedding levels, 
where it is compared with BioSentVec (a sentence-level bio-
medical distributed representation [14]) in combination with 
general-scope embeddings. We then evaluate the models using 
a set of deep learning algorithms based on our proposed fea-
ture framework in comparison with other sentiment dictionary 
baselines. Furthermore, as discussed in “Introduction”, the 
biomedical knowledge combination advantages in improving 
the system accuracy are assessed through various experiments. 
In addition, we demonstrate the use of additional features, 
e.g., the frequency weighting feature for providing significant 
gains in accuracy and recall over the corpus-based classifier. 
Finally, (4) we present and discuss different medication- 
related short text perspectives and the evaluation results.

Experiment Design

COVID‑19 Case Study

   The current pandemic is widely known owing to the large 
number of patient narratives on social networks, which are 
characterized by vigorous activity and dynamism in terms of 
global pandemic combat. Many platforms, such as Twitter, 
are becoming inundated with information and misinforma-
tion and are used to share serious side effects of vaccinations 
and drugs, which might disturb public health.

To validate the proposed case study, the social network 
Twitter was used. Twitter is a microblogging site that gen-
erates a constant stream of communication, some of which 
concerns events of general topics. In the design of the exper-
iments, a large number of narratives on the COVID-19 crisis 
are extracted using a set of relevant keywords dedicated to 
the filtering of information (the most-used drug data groups 
are used in “Results”). Hence, by posting a tweet, it is possi-
ble to analyze the information behavior and then synthesize 
the affective components (sentics) in the sense of judgments 
or intentions according to a specific target.

 Twitter‑Specific Corpus

   This contribution also addresses medical domain trans-
ferability challenges for biomedical sentiment analysis on 
Twitter. Due to the limited annotated data, we built our 
Twitter-based corpus to efficiently define adequate features to 
generate sentiment semantics and sentics. COVID-19 tweets 
were collected from January 2020 to May 2020 regarding 
three properties: (i) the time axis, (ii) drug-related keywords, 
and (iii) medication-related evidence. We collected tweets 
and replies in COVID-19-related discussions. The methods 
of gathering and preprocessing data are described in Fig. 7. 
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First, we streamed data related to a set of keywords, and we 
built a data scheme with regard to two types of attributes:

– Attributes from Twitter:  [“id”, “created_at”, “source”, 
“original_text”, “lang”, “favorite_count”, “retweet_
count”, “original_author”, “hashtags”, “user_mentions”, 
“place”, “place_coord_boundaries”].

– Encoded attributes :  [“cleaned_text”, “Sentics”, 
“polarity”, “medical concepts”, “Bag_of_ADRs”].

The “Sentics” attribute represents affective dimensions 
including sentiment intensity, semantics, and subjectivity; 
the “polarity” attribute stands for a polarity value, which is 
a floating number between -1 and +1 (where -1 is extreme 
negativity and +1 is extreme positivity); “medical concepts” 
indicates the set of defined medical entities within a text; and 
“Bag_of_ADRs” concerns drug effects or indications stated 
in the Twitter document.

Second, we have stored tweets in a set of files (dataset 
groups) regarding drugs vs. disease components and a time 
axis, allowing more conceptual personalization in the same 
semantic configuration subspace. We applied an explanatory 
analysis to filter the relevant data into drug-related groups to 
make sense of medication-related semantics and affective levels 
from well-understood contextual concept associations. Finally, 
these tweet samples were passed through a set of normaliza-
tion and processing steps. Ultimately, we kept 9 M COVID-
19-related tweets. Based on the previous settings of the prepared 
and encoded attributes, we computed the attached polarities and 
affective dimensions of each tweet and its replies. Then, they 

were annotated automatically using the former sentics, and we 
used them for training and testing purposes.

Additional Twitter Salience

Real-time Twitter-based documents present typical par-
ticularities, including limited text size, noise, informal lan-
guage, and hashtags, which must be taken into consideration. 
Owing to the character limit, the authors of tweets are usually 
straightforward. The shortness and lack of biomedical context 
of length-limited posts cause problems in defining compli-
cated medical components such as drug reactions or events.

Due to the high level of communication rates regarding 
the urgent COVID-19 pandemic, people spend much time 
sharing the same ideas about a given drug or committed 
drug reaction. Observing the three tweets below, each was 
repeated more or less than the average of 596,730 times (in 
9 million tweets). Certain narratives have received much 
attention and have been frequently retweeted.

Tweet 1: Take #hydroxychroloquine followed by a 500ml 
glass of Dettol. (As per Presidential Instructions) Lie 
down in a comfortable position and cover..
Tweet 2: #Hydroxychroloquine in #COVID_19 . The 
drug is untested the benefits unknown, and the risks not 
negligible, especially at the mass prophylaxis level of use.
Tweet 3: Im at a complete loss for words. Fox joined by 
Geraldo Rivera are still PUSHING hydroxychroloquine as 
a magic bullet for Covid_19 The FDA issued a WARNING 

Fig. 7  The process of gathering 
Tweets from ’2020-03-16’ to 
’2020-05-02’ and preparation 
process
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I ve taken the drug for Lupus for 6 years. It has side-effects. 
ENOUGH!

To determine the appropriate boundary of the affinity of 
each term, we define the average affinity value as an addi-
tional feature to adjust the polarity with regard to how many 
representatives are in the corpora by the formula:

The f(P) is the frequency of phrase P and min(f (wi)) is the 
minimum frequency across the words in phrase P. Referring 
to [37], the application of the affinity method allows us to 
select a set of n-grams that have “higher collocation frequen-
cies relative to the individual occurrence frequencies of the 
constituent unigrams.”

 Evaluation Metrics

   The evaluation was performed on two levels: (1) automatic 
biomedical annotation and (2) sentiment classifiers.

Classification Metrics

Precision - The number of definitional sentences cor-
rectly labeled by our model divided by the number of 
sentences marked by our model as definitional.
Recall - The number of definitional sentences correctly 
labeled by our model divided by the number of defini-
tional sentences.
F1-measure - 2PR∕P + R , where (P) is the precision, and 
(R) the recall.

Medical Annotation Evaluation

We conduct a sentence-level medical annotation evalua-
tion for clinical sentence pair similarity tasks. MedSTS4 
and BIOSSES5 are two benchmark datasets and resources 
for determining clinical semantic textual similarity and are 
widely used for medical annotation evaluation tasks. Table 5 
highlights the statistics of these datasets. Alternatively, a 
method that is widely used for evaluating multiword con-
cept normalization, such as drug reactions, is to compare 
the number of correctly normalized drug reactions against 
the ground-truth value. We adopt this method to evaluate our 
drug reaction normalizer, defined as follows:

(7)Affinity(P) =
f (P)

min∀wi∈P
(f (Wi))

where Ncorrect is the number of correctly normalized drug 
reactions and NTg

 is the length of drug annotations that are 
true samples.

 Parameter setting

   This precomputation strategy allows a nice compromise 
between GPU (NVIDIA (R) CUDA compiler driver) and 
implementation simplicity. For the ELM, the wide lower 
layer and each of the 4 bidirectional-LSTM layers, we used 
the Adam optimizer with 128 units for both the LSTM and 
BiLSTM folds. In addition, we trained the model from 1-30 
epochs, computed on the GPU6, and then moved the precom-
puted hidden weights to the CPU for the prediction task. 
This makes many things much easier. To boost our model 
performance, we train a sufficiently large neural network in 
terms of parameters and connections to take advantage of the 
very large number of shared experiences on social networks 
in a matter of seconds.

Results

The experiments conducted assess the performance of our 
model. We mainly compare our model with other methods in 
three aspects: (1) We compare the performance of our proposed 
feature framework with biomedical embedding baselines. (2) 
We explore the performance of our approach in a biomedical 
sentiment analysis case study. (3) We compare different ways 
to encode sentiment regarding medical aspects and related 
components. The most crucial challenge of this study is the 
lack of a labeled training dataset including medication-related 
concepts since the drug reaction detector model requires much 
label training data. However, with word embeddings, the model 
can build good classifiers even with only modestly sized label 
training sets. We cover large-scale biomedical semantic index-
ing and map medical concepts to natural language expressions 
cited in patient narratives on social networks, especially drug 
reaction expressions and PubMed concepts.

In fact, we have a potent biomedical continuous space of 
10, 876, 004 English abstracts of biomedical articles from 
PubMed, 400,000 concepts, and 15, 677 resulting vectors of 
1, 701, 632 distinct words that form drug reaction expres-
sions, PubMed abstracts, symptoms, drugs, etc. All words 
were converted to lowercase, the embedding was converted 
to the same dimension, and the vector dimension was 300. 
Our sequential model considers tweets as a sequence of 
tokens, and the outputs are floating numbers in [−1, 1] with 
clear medical concept tagging. The settings of the features 
used in the model are as follows: 

(8)Accuracy =
Ncorrect

NTg

4 https:// github. com/ ncbi- nlp/ BLUE_ Bench mark
5 https:// www. tabil ab. cmpe. boun. edu. tr/ BIOSS ES/ DataS et. html
6 https:// www. marwan. ma/ hpc
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1. The biomedical distributed representation, which shuf-
fles pad vectors into the same dimension.

2. GloVe vectors, which define universal words and adjust 
the general context of some biased medical concepts and 
biased words, e.g., oils, love, and cancer.

3. Sentic vectors, which define sentimental semantics and 
recontribute to the affective dimensions every time, 
namely, the sentics.

4. The LSTM, which learns embeddings for new multi-
word expressions and represents long-term dependen-
cies in the very large vocabulary of medication-related 
concepts, e.g., drug names, symptoms, pandemics, and 
diseases.

5. The BiLSTM, which deploys precomputed features 
and learns long-term sentiment dependencies regarding 
medication aspects and contexts.

6. The attention mechanism, which defines attention 
parameters that propagate the amount of attention that 
should be given to those features of the input sentence.

For each token, we consider an embedding vector hybridiz-
ing both a universal format and biomedical information into 
a 300-dimensional vector. Our baseline model can actually 
work fairly well using only biomedical vectors but leaves 
out universal and concept-related contexts such as drugs or 
symptoms. Therefore, we developed dynamic medical cor-
pora, which are further dedicated to learning deeper repre-
sentations under target medical settings, and we collected 
8,593,940 examples. The first version of our model used 9 
million COVID-19-related tweets learned by the BiLSTM 
and our sentic computing-based sentiment architecture. This 
gain is sometimes not significant regarding the generaliza-
tion aspect. Moreover, these deep architectures work signifi-
cantly better than the classical approaches. We have obtained 
degrees of error from approximately 8% to 5% when we used 
n-grams with TF-IDF. This number of Twitter examples can 
be addressed efficiently by learning from scratch based on 
the literature, which works best for large datasets, where our 
method beats classical approaches such as the bag of words 
and part-of-speech feature selection techniques. To convert 
our input sequence into a vector of fixed size, we apply some 

dense layers. We apply a multilayer positron on top of the 
300 features and train them using a long-term memory algo-
rithm that uses GloVe vectors to ensure that universal words 
are defined in connection with the biomedical expressions.

We apply neural networks at different architecture levels, 
and we prove how we can embed our medication-related 
concepts efficiently, especially unlabeled examples. We pro-
pose analyzing two-grams and three-grams using the ELM 
neural network to propagate the sentiment aspects for new 
multiword medication expressions that are inserted into the 
vocabulary, which are all fast operations. Therefore, it works 
even faster than classical sentiment lexicon approaches. 
Even drug reactions that are not in the vocabulary may be 
selected as possible drug reactions. They are used to define 
embeddings and may still perform this correctly and general-
ize much better. The activation step of the predicted sentics 
has approximately four levels but concomitant dimensions. 
Theoretically, the model synthesizes the full range of emo-
tional experiences in terms of pleasantness, attention, sen-
sitivity, and aptitude, as the different combined values of 
the four affective dimensions can also model the affective 
states. In this way, we trained our model to achieve good 
performance and obtain a deep sense of concepts.

Additionally, popular non-domain-specific sentiment 
lexicons as well as state-of-the-art machine-learning and 
deep-learning models are chosen as benchmarks, and 
the experimental results show that our sentiment feature 
framework outperforms the benchmarks with statistically 
significant differences, thus proving the effectiveness of 
the proposed approach. An input sequence was first pro-
cessed for embedding generation to train the specific fea-
tures that this neural network needs to classify the con-
veyed sentiment. The LSTM and Bi-LSTM had different 
operational learning procedures, which were learned, 
memorized, and hybridized outputs that served as the 
inputs of the next level (Fig. 6). Indeed, the weight matrix 
of each level was stored for evaluation. Deep learning 
models have slightly different results regarding the embed-
ding strategy offered in this study vs sentiment dictionar-
ies; we also evaluated the models in our model groups 
based on comparisons with deep learning (DL) algorithms 

Table 5  Two banchmarking datasets used for medical annotation evaluation tasks

https:// arxiv. org/ ftp/ arxiv/ papers/ 1808/ 1808. 09397. pdf
https:// tabil ab. cmpe. boun. edu. tr/ BIOSS ES/ DataS et. html

Dataset Description settings Accuracy

MedSTS Resource for clinical Semantic Textual Similarity MedSTS (MedSTS_ann) containing 1,068 sentence pairs 
was annotated by two medical experts with semantic 
similarity scores of 0-5 (low to high similarity).

0.81

BIOSSES Semantic Sentence Similarity Estimation System for 
the bio-medical domain

The BIOSSES data set comprises total 100 sentence pairs 
all of which were selected from the TAC2 biomedical 
Summarization Track Training Data Set .

0.79
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(LSTM, BiLSTM, multiple RNNs, and CNN) and SVM 
on COVID-19 Twitter datasets, as described in Table 6.

The BiLSTM algorithm on one- and two-grams, in 
conjunction with the SenticNet prior sentiment knowl-
edge, achieves an accuracy range of [83-85]%. Particu-
larly, when we merge [1-4]-grams through the proposed 
architecture with BiLSTM on top of those that depend on 
features, we obtain an accuracy of 8.2 bumps, which gives 
us an almost 87.5% accuracy with the potential for clarify-
ing the corresponding medical concepts as targets. Then, 
we ensure that false positives and negatives are avoided. 
We train the model for 1–30 epochs, and then we choose 
a set of optimal parameters from the trained model under 
this setting. Subsequently, we choose the optimal settings 
that yield the minimum loss. Therefore, we can capture 
the information about three-, four-, and five-grams, and 
for each n-gram, new multiword expressions are inserted 
into the vocabulary.

Observing sentiment information regarding three perti-
nent drug names reveals their high rate of appearance in 
our experimentation. A statistical analysis was performed on 
the inference results for three drug components to visually 

show the distribution of numerical data and skewness by 
displaying the data quartiles (or percentiles) and averages. 
However, for a different time, Fig. 10 shows a box plot of 
the performances provided for each component. The num-
ber of positive examples was the highest due to the highly 
recommended use of these drugs to avoid COVID-19 con-
tamination. In particular, we obtained many tweets from US 
President Trump discussing chloroquine treatment. Thus, we 
tracked many chloroquine treatment use cases and/or drug 
effects since we captured drug effects in the text, turning 
the target of the analysis towards no emotion. Before regen-
erating sentics-related vectors, the neutrality in the results 
was explained. Fig. 11 shows the dispersion of sentimental 
polarities over the three medical components, which helps in 

Fig. 8  Box plot of the performances provided on each medical com-
ponent

Fig. 9  The dispersity of sentimental polarities vs. training data over 
three medical components

Table 6  Comparison of proposed feature framework with different 
ensemble classifiers using other sentiment benchmark dictionaries

Corpus Sentiment dictionary Algorithm Accuracy

Twitter 
datasets

Our proposed feature LSTM-BiLSTM 0.87

framework LSTM 0.72
Multiple RNN 0.72
CNN 0.68
SVM 0.58

SenticNet [43] BiLSTM 0.79
LSTM 0.73
Multiple RNN 0.66
CNN 0.72
SVM 0.60

AFINN [45] BiLSTM 0.72
LSTM 0.71
Multiple RNN 0.62
CNN 0.68
SVM 0.45

VADER [38] BiLSTM 0.67
LSTM 0.68
Multiple RNN 0.65
CNN 0.63
SVM 0.52

TextBlob [81] BiLSTM 0.67
LSTM 0.62
Multiple RNN 0.70
CNN 0.66
SVM 0.45
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seeking the extreme positive values and extreme negatives, 
which can be used to manually verify whether false posi-
tives or negatives occur. The histogram in Fig. 12 shows the 
positivity and negativity of each component.

   Experiments with different distributed biomedical meth-
ods and sentiment prediction DL-based algorithms were car-
ried out. Our method shows the effectiveness of considering 
medication concepts in various situations. An exploratory 
data analysis is also offered for comparison lexicons. Here, 
we plot the statistical results for the AFINN model. The box 
plot in Fig. 8 shows higher inference positivity, while Fig. 9 
presents a histogram showing the sentiment discrepancy 
over three drug-related discussions.

In addition, we visualize the positive and negative num-
bers in Fig. 13 and a clear indication of the variance behav-
ior. For comparison, we applied literature baseline sentiment 
lexicons based on the embedding vectors we created. We 
have used five benchmark sentiment lexicons for the evalu-
ation: (i) SenticNet: we aimed to evaluate our connotated 
vocabulary with both SenticNet 3 [82], to evaluate the model 
ability to learn affective information of out-of-vocabulary 
terms, and SenticNet 6 [43], to compare the overall polari-
ties with a sentiment lexicon that considers other dimen-
sions; (ii) AFINN: a word list for sentiment analysis for short 
microblog text; (iii) the TextBlob dictionary, and (iv) the 
valence aware dictionary and sentiment reasoner (VADER): 
a second rule-based benchmark sentiment analysis lexicon 
that is specifically attuned to sentiments expressed via social 
media and works well on texts from other domains. Table 7 

Fig. 10  Box plot of the performances provided on each medical com-
ponent

Fig. 11  The dispersity of sentimental polarities vs. training data over 
three medical components

Fig. 12  Positives vs. negatives of three most visible medication-
related components

Fig. 13  Positives vs. negatives of three most visible medication-
related components
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summarizes these word-level benchmark datasets in detail. 
Although they are very effective, these methods have several 
limitations and need to be improved regarding sentiments for 
biomedical text. Indeed, the AFINN lexicon gives the largest 
absolute values, with high positive values. We find similar 
differences between the methods when looking at other met-
rics; the proposed sentic computing-based sentiment model 
is high and has more variance than AFINN and VADER. 
Table 8 presents all sentiments that appeared various times 
in finding long stretches of similar text, but all three meth-
ods agree roughly on the overall trends in the sentiments 
through the common shared narratives we obtained through 
our analysis. An explanatory summary is given in Table 9.

Furthermore, to ensure the effectiveness of our embed-
ding generation, we conducted other experiments using 
two different sentiment lexicons, where three basic feature 
embedding strategies were used. As described in Table 10, 
each embedding feature plays a different role in sentiment 
determination. GloVe Twitter with a combined biomedical 
embedding generally performed much better than BioSent-
Vec, which helped resolve noisy Twitter data and further 
gave meaning to the classification task. However, the pro-
posed biomedical-based embedding clearly enhanced the 
sentiment inference, outperforming the evaluation tech-
niques. Table 11 presents the polarity value of some tweets 
from the dataset groups collected.

Linguistic Gap Discussion

In this section, we discuss the importance of distinguishing 
biomedical components, their aspects, and their relationships 
in detecting sentiment orientation regarding social network 
dynamicity and the rapid progress of biomedical language. 
The poor performance of biomedical sentiment analysis on 
Twitter may be attributed to many challenging particulari-
ties of both tweets and bio-medical entities. Approximately 
twenty billion tweets are typed every day on varied topics. 
Distilling the hidden information faces many difficulties and 
challenges, including language diversity, brevity, shortness, 
acronyms, named entities, hashtags, emoticons, the frequent 
use of informal (nontechnical) medical language, nonstand-
ard formats, and abbreviation forms, as well as typos in 
social network messages. Specifically, the brevity of tweets 
results in relatively few terms, which contributes to increas-
ing the biomedical disambiguation complexity. The massive 
bio-medical entity citations, such as drug names, diseases, 
symptoms, and adverse drug reactions, remain unconsidered 
by existing tagging and entity recognition methods [6], which 
hinders understanding of patient assessments. Therefore, this 
may necessitate a level of biomedical text comprehension. 
Numerous learning approaches have recently been considered 
to overcome these limitations (as discussed in “Background 
and Related Work”).

Table 8  Statistics of proposed sentiment inductive model on first Twitter corpus regarding two frequently related drugs components narratives 
(chloroquine and remdesivir) with other drugs

concept sentiment score 
count

mean std min 25% 50% 75% max

Chloroquine 1261.0 0.051449 0.234630 −0.9 0.0 0.0 0.100 1.0
Other drugs 1224.0 0.058930 0.248925 −1.0 0.0 0.0 0.136 1.0
Remdesivir 774.0 0.043039 0.302643 −1.0 0.0 0.0 0.150 1.0

Table 7  Benchmarking sentiment dictionaries used for evaluation tasks

Lexicon Description Level of automation

VADER [38] A sentiment dictionary, it attuned to sentiment in micro-blog. It combined various lexical features 
with consideration for five general rules that embody grammatical and syntactical conventions 
for expressing and emphasizing sentiment intensity. Thus, It has been found to be quite success-
ful when dealing with social media texts e.g. used by Amazon’s Mechanical Turk for sentiment 
ratings.

Semi-automated

AFINN [45] A sentiment Dictionary ( over than 3300 )rated for valence with an integer between minus five 
(negative) and plus five (positive), though not as good as the more elaborate approach found in 
SentiStrength.

Manual

TextBlob [81] Sentiment Lexicon goes along finding words and phrases it can assign polarity and subjectivity 
to, and it averages them all together for longer text. The scores from TextBlob are normalised 
scale as compare to AFINN.

Automated

SenticNet [43, 50, 82] The knowledge base which the sentic computing framework leverages on for concept-level senti-
ment analysis. SenticNet is automatically constructed by clustering the vector space model of 
affective common-sense knowledge extracted from varied lexical resources.

Automated
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Most supervised learning approaches are trained on a 
limited set of word features that result in traditional fea-
ture representation and typically diminish the model per-
formance by ignoring other significant insights. Thus, these 
approaches focus on an individual word’s sentiment value, 
which is independent of the context and insufficient in yield-
ing a better feature subset and hence affects the classification 
accuracy. The performance of supervised learning depends 
on the quality data annotation or makes use of resources for 
weak supervision [11] and results in a further lack of dis-
criminatory tasks. In the bio-medical domain, these models 
result in inaccurate sentiment prediction performance.

Unsupervised learning approaches result in irrelevant 
and redundant features. Additional techniques have been 
considered, such as N-gram techniques, to efficiently lev-
erage language properties. Such techniques include (1) 
unigram methods used for corpus-based approaches, (2) 

n-grams for tracking syntactical aspects, (3) parts of speech, 
(4) POS tags, and (5) the information gain method, which 
is mostly used to reduce the number of features. These 
methods mostly result in a sparse feature representation 
with ambiguous polarity since some words may have dif-
ferent polarities regarding several contextual aspects. Some 
researchers have assembled various features from different 
methods to enhance the accuracy and recall performance 
[83]. For example, the authors of [84] merged various num-
bers of features, ranging from 3,066 features (a simple col-
lection of unigrams from the General Inquirer) to 34,718 
features (unigrams and bigrams), to boost system perfor-
mance. However, they made their features completely inde-
pendent of each other, and features beyond sentences are 
often corpus dependent, while this may not be the case for 
online corpora. For this reason, many contributions focus 
on extracting features from a sentence only by leveraging 
its definitional structure. Indeed, many previous methods 
generate features from sentence-based dependency pars-
ing, which can reflect only part of the structure feature. 
Thus, in comparison with benchmark machine learning 
algorithms such as SVM, the SVM classifier performed 
worse than unigrams when using all bigrams as features 
instead of just the unigrams. The authors of [85] proposed 
selecting specific bigrams to improve the unigram baseline. 
The selection mechanism of unigrams, bigrams, and even 
3-, 4-, and 5-grams can greatly improve sentiment analysis 
performance while reducing the modeling complexity, as 
noted by [37]. At the sentence level, most studies that use 
unigrams yielded better classification results than those of 
n-grams for domain-dependent use cases.

N-gram-based techniques have recently achieved remark-
able progress in terms of enhancing representation features 
using neural networks. The most successful type of method 
is embedding. One possible solution is that we are most 
likely to focus on ways to improve embeddings of cogni-
tive capabilities, as discussed in “Biomedical Embedding 
Method”. Indeed, we demonstrated the importance of pro-
cessing and selecting n-grams in enhancing affective reason-
ing. In this section, we discuss some linguistic gaps con-
fronted through bio-medical entity identification. For this 
purpose, we perform biomedical embedding comparisons in 
two cases: (i) a small dataset and (ii) a large dataset.

Table 9  Statistics of other lexicons such as AFINN for sentiment inductive model on first Twitter corpus regarding two frequently related drugs 
components narratives (chloroquine and remdesivir) with other drugs

concept sentiment score 
count

mean std min 25% 50% 75% max

Chloroquine 1261.0 0.002379 2.185993 −9.0 −1.00 0.0 2.0 7.0
Other drugs 1224.0 0.261438 2.067610 −7.0 −1.00 0.0 2.0 7.0
Remdesivir 774.0 −0.114987 2.398460 −15.0 −1.75 0.0 1.0 10.0

Table 10  Evaluation of proposed sentiment feature framework with 
existing embedding strategies

Sentiment dicionary Embeddings Accuracy

Our proposed sentiment Our embeddings framework 0.87
inductive model BioWordVec +BioConceptVec 0.79

BioASQ3 +GloVe 0.71
BioWordVec +GloVe 0.72
BioSentVec+ Twitter GloVe 0.72
BioWordVec +FastText 0.76

SenticNet Our embeddings framework 0.79
BioWordVec +BioConceptVec 0.75
BioASQ3 +GloVe 0.76
BioWordVec +GloVe 0.69
BioSentVec+ Twitter GloVe 0.73
BioWordVec +FastText 0.70

AFINN Our embeddings framework 0.74
Twitter GloVe +BioWordVec 0.70
BioSentVec + GloVe 0.67

VADER Our embeddings framework 0.81
GloVe +BioWordVec 0.77
BioSentVec + GloVe 0.73

TextBlob Our embeddings framework 0.71
GloVe +BioWordVe 0.69
BioSentVec + GloVe 0.67
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On a small dataset, utilizing BioWordVec as a large dis-
tributional biomedical space in the literature, more than 
18 drug names in each dataset group were unrecognized. 
Approximately the same filtering rate was obtained using 
a Google Word2Vec pretrained embedding. Thus, the Bio-
ConceptVec model resulted in poor performance in detect-
ing multiword medical components, and similar results were 
obtained for all the embedding versions used (CBOW, Skip-
Gram, fastText, and GloVe). Otherwise, the GloVe model 
performed better; in this case, only nine drugs were unde-
fined because GloVe was trained on Wikipedia corpora.

On a large dataset, the evaluation was performed on 
441,228 original tweets (with repeated tweets filtered out) 
from 9 million tweets collected in this study, with 407,578 
total words. Table 12 summarizes the results we obtained 
after generating embeddings using various biomedical mod-
els. These models only captured some general medical con-
cepts (such as cancer and tumor) because of the very large 
general-scope corpora they were trained on, such as Google 

News and Wikipedia. After the first filtering attempt, we 
identified 292,358 words ignored by the GloVe model. We 
found 79,096 (18%) words defined by the GloVe model and 
301,392 (69%) undefined terms. We performed the same 
process using the Google model to identify general-scope 
words, and we obtained only 12% of the terms in the vocabu-
lary. After a second filtering with the GloVe model, we iden-
tified 282,430 ignored words. A mean of 380,480 undefined 
medical bigrams was found, and in terms of medical uni-
grams, only 25.8% of all words were defined, with 74.17% 
of all words lacking embedding vectors. Even though we 
enriched the data and retrained the word embeddings, the 
semantically rich knowledge, contexts, and medical senses 
were lost.

The nonidentification of the full range of words is made 
completely clear by all the embeddings that we evaluated. 
BioConceptVec defined only 77,853 (17.6%) concepts, 
whereas 302,635 (68.5%) concepts were ignored. Although 
BioWordVec was trained on PubMed abstracts and the 

Table 11  The overall sentiment (polarity value) of some tweets from dataset groups collected through this study

Twitter document Medical components Polarity value

@singleuesguy hydroxychloroquine ninety percent chance help 
covid19 patient with chronic disease state association

hydroxychloroquine, covid19, patient,chronic disease 0.4

@thekjohnston remember trump amp blowhard fox wouldnat 
shut hydroxychloroquine miracle covid cure makina

covid,hydroxychloroquine -0.2

@channelstv bauchi governor mandate use chloroquine treat 
covid19

chloroquine, covid19, -0.02

@jamestodaromd fda need randomize controlled trial hydroxy-
chloroquine treatment covid19 also fda discourage

trial, hydroxychloroquine treatment covid19 -0.4

@tedlieu anyone read tweet @realdonaldtrump say hydroxy-
chloroquine amp azithromycin game changer #covid

hydroxychloroquine, amp, azithromycin 0.1

@ingrahamangle hyperglycemia hydroxychloroquine covida19 
pandemic drop brufsky journal medical virology wiley online 
lia

hyperglycemia, hydroxychloroquine, covida19, medical virol-
ogy

-0.3

Table 12  Statistics on over 9 Millions Tweets vs. Distributed representation of general scope data(Word2Vec-GloVe) and biomedical datasets

Emebeddings setting of embedding words analysis
Corpus statistics defined words undefined words

Google Word2Vec model google news 300dim 48931( 12%) 331557( 76%)
GloVe model wikipedia 840B tokens, 2.2M vocab, cased, 

300d vectors
79096( 18%) 301392( 69%)

BioWordVec model PubMed+MIMIC-III 200dim Word2Vec bin format 87810( 19%) 292678( 66%)
BioConceptVec with CBOW model PubMed and Pubtator auto-tagger contain over 400,000 concepts 

100dim
77853( 17.6%) 302635( 68.5%)

BioConceptVec with Skip-Gram 
model

PubMed and Pubtator auto-tagger contain over 400,000 concepts 
100dim

77853( 17.6%) 302635( 68.5%)

BioConceptVec with fastText 
model

PubMed and Pubtator auto-tagger contain over 400,000 concepts 
100dim

77853( 17.6%) 302635( 68.5%)

BioConceptVec with GloVe model PubMed and Pubtator auto-tagger contain over 400,000 concepts 
100dim

77853( 17.6%) 302635( 68.5%)
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MIMIC-III clinical Database, it neglected much drug-
related information, such as [‘wcco’, ‘partnera’, ‘warna’, 
‘unimelb’, ‘mcswan’, ‘creatina’, ‘ncdca’, ‘asu per’, ‘attenta’, 
and ‘tidak’], which were subsequently identified using Bio-
ConceptVec vectors. This inability is due to the multiple 
name types. Another significant challenge in terms of related 
word names is that a medical concept may be known by its 
commercial name and reported by its chemical name or vice 
versa. Each concept may have many names ranging from nat-
ural language concepts, commercial names (generic brand 
names), and chemical names to other spellings depending on 
the region or speaking culture. For example, methylpheni-
date drugs are referred to by many names, including Ritalin, 
attenta, Medikinet, and metadata, as discussed in Table13.

The semisupervised approach has great adaptability to 
domain-dependent challenges, offers more portable solutions 
across various domains and significantly allows domain 
transferability [37] due to reusable feature-sentiment cor-
relation across domains. Therefore, we deployed a transfer 
mechanism to obtain generalization benefits from corpora 
trained on very large datasets to obtain various biomedical 
components. Indeed, this setting is convolved to leverage 
knowledge from both the bio-medical domain and general-
scope domains to overcome the constraints of limited train-
ing data in biomedical contexts.

Conclusion

   Information on social media can have a direct influence 
on patients’ decisions to seek a second opinion or choose 
among potential alternatives such as diagnoses or treatments. 
Sentiment analysis is widely used for analyzing online 

patient-generated narratives. In this research, we develop 
an affective concept-based encoding method via neural net-
works and sentic computing. It relies mainly on biomedical 
semantic identification, which is investigated at three levels: 
(1) a contextual neural network, (2) an embedding matrix, 
and (3) a biomedical distributed representation obtained 
from comprehensive and controlled medical databases such 
as PubMed. Then, the natural medical concept semantic and 
sentic vectors are calculated. In addition, this paper presents 
a comprehensive state-of-the-art overview of the studies per-
formed in various areas of biomedical sentiment analysis.

During the worldwide combat of COVID-19, we have 
suggested validating the proposed approach by analyzing 
COVID-19 narratives shared on social networks. Experi-
ments have shown the effectiveness of considering biomedi-
cal concepts in analyzing medication-related texts. Indeed, 
the results proved that integrating deep-learning-based 
cognitive capabilities enhances the biomedical sentiment 
analysis performance. In particular, our affective encoding 
approach outperforms benchmarks with statistically signifi-
cant differences. Furthermore, the current work can provide 
meaningful support for biomedical sentiment analysis appli-
cations in social networks and can truly track patient sta-
tus. It may also help researchers and professionals in many 
related discovery tasks, such as (1) inferring unknown side 
effects of possible drugs and treatments based on the formed 
embeddings, (2) clarifying the relationships among sets of 
drugs and conditions and situations to better clarify the 
“fakeness” or “genuineness” of a given medical fact, and (3) 
analyzing changes in health status or unexpected situations.

In future work, we plan to investigate the impact of incor-
porating additional affective dimensions such as frustration to 
model more complex emotions regarding patient aspects. As a 

Table 13  Example of two different undefined words showing the weakness of BioWordVec to detecting related-drug information

https:// pubch em. ncbi. nlm. nih. gov/ compo und/ Creat ine# secti on= Struc tures
https:// www. webmd. com/ vitam ins/ ai/ ingre dient mono- 873/ creat ine
https:// www. fda. gov/ home
https:// www. cancer. gov/
https:// apps. medic ines. org. au/ files/ afcat ten. pdf
https:// medic ines. org. au/ files/ afpat ten. pdf

Medical term Description Other names reference

Creatine Creatineis a chemical that is found in the 
body. an effective therapy for cancer, 
which in samples obtained by the NCI and 
the FDA consisted of creatine monohy-
drate in mineral oil.

Acetic acid, Cr, Creatin, Creatina, Créatine, 
Créatine Anhydre, Creatine Anhydrous, 
Creatine Citrate, Créatine Citrate, Cre-
atine Ethyl Ester, Créatine Ethyl Ester...
etc.

FDA(U.S. Food and Drug Admin-
istration) and NCI(National 
Cancer Institute).

Attenta Attenta belongs to a group of medicines 
called central nervous system stimulants. 
Attenta is thought to work by regulat-
ing certain chemicals in the brain, which 
affect behaviour and sleep.

Piperidine acetic acid,�-phenyl-, Ritalina, 
Rilatine, Attenta, Medikinet, Metadate, 
Methylin, Penid, Tranquilyn, and Rubifen 
...etc.

Medicines
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https://www.cancer.gov/
https://apps.medicines.org.au/files/afcatten.pdf
https://medicines.org.au/files/afpatten.pdf


second future project, we would like to apply our unsupervised 
algorithm using transformers such as BioBERT and GPT3 to 
improve the ability to learn and recall factual knowledge.
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