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Abstract: The current opioid epidemic in the US presents a great problem which calls for policy
supervision and regulation. In this work, the opioid cases of five states were used for trend analysis
and modeling for the estimation of potential policy effects. An evaluation model was established
to analyze the severity of the opioid abuse based on the entropy weight method (EWM) and rank
sum ratio (RSR). Four indexes were defined to estimate the spatial distribution of development
and spread of the opioid crisis. Thirteen counties with the most severe opioid abuse in five states
were determined using the EWM-RSR model and those indexes. Additionally, a forecast of the
development of opioid abuse was given based on an autoregressive (AR) model. The RSR values of
the thirteen counties would increase to the range between 0.951 and 1.226. Furthermore, the least
absolute shrinkage and selection operator (LASSO) method was adopted. The previous indexes were
modified, incorporating the comprehensive socioeconomic effects. The optimal penalty term was
found to facilitate the stability and reliability of the model. By using the comprehensive model, it was
found that three factors—VC112, VC114, VC115—related to disabled people have a great influence
on the development of opioid abuse. The simulated policies were performed in the model to decrease
the values of the indicators by 10%–50%. The corresponding RSR values can decline to the range
between 0.564 and 0.606. Adopting policies that benefit the disabled population should inhibit the
trend of opioid abuse.

Keywords: opioid crisis; entropy weight method; rank sum ratio method; autoregression model;
policy evaluation

1. Introduction

The widespread nature of cases of the misuse of and addiction to opioids, including
prescription pain relievers, heroin, and synthetic opioid cases such as Fentanyl, is a serious
national crisis that affects public health as well as social and economic welfare. The Center
for Disease Control and Prevention estimates that prescription opioid cases misuse alone
brings a loss of approximately USD 78.5 billion a year to the United States [1]. The rapidly
emerging crisis, which has resulted in a significant loss of lives, calls for a coordinated,
comprehensive and multidisciplinary response. In response to the opioid cases crisis,
many measures have been taken by the U.S. Department of Health and Human Services to
mitigate opioid abuse across the country. However, rates of opioid overdose remain severe.
A total of 46,802 opioid overdose deaths occurred in 2018, accounting for 69.5% of all drug
overdose deaths [2].

It has been noticed that opioid overdoses are regionally related. Many researchers
analyzed the spatial difference in opioid overdoses, illustrating the variation in different
states [3] as well as between rural and urban areas [4]. Analysis with geographic tools
was conducted to study the environmentally correlated factors of opioid overdose and the
related deaths, such as the percentage of disabled people or the population percentage
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of a specific race [5]. A difference in the spatial pattern of the opioid epidemic should
be demonstrated as a result of considering socioeconomic factors, such as income [6]
and population density [7]. The geographical clustering and spread of opioid cases have
been the focus of studies. Some research using SatScan [8], a software used to deal with
spatial–temporal data, was carried out to generate clusters adopting models such as those
of Poison or Bernoulli [9–11]. The clusters formulated by spatial–temporal data were used
to analyze the factors correlated with opioid case outcomes.

By elucidating the effects of associated issues on opioid spread, relevant policies
could be adjusted necessarily to prevent the worsening of opioid abuse. Certain trend
analyses have implied the corresponding policy changes [12]. The enforced policy and
administration should play an effective role in preventing the development of opioid
abuse. The mortality rate due to opioid overdose has been successfully reduced by police
actions [13]. Hierarchical Bayesian Poisson space–time models were used to investigate the
interactions between socioeconomic conditions and prescription opioid overdose or heroin
overdose situations [14]. Often, space–time statistical models could be used to understand
the effect of local policies [15,16]. Stopka et al. proposed logic models to relate the policies
to the spatial distribution of the opioid crisis [17]. The effect of policy was predicted to
have been targeted at specific groups.

Davis and Carr analyzed the law related to Naloxone access and suggested provisional
changes in some states to reduce overdose-related morbidity or mortality [18]; though some
models revealed that these laws should have less state-level effects [19]. Such an analysis
could be used to guide the revised interventions to curb the trend of the opioid epidemic. A
further understanding of the regional differences can help in policy responses [20], as could
trend analysis in the abuse and misuse of opioids [21].

Additionally, opioid abuse and misuse could be predicted using appropriate mod-
els [22]. By analyzing opioid abuse trends, and combining the correlating spatial factors,
opioid abuse should be manageable and be brought under control through relevant policy
changes. Other than the unequal spatial factors, the emerging opioid crisis was affected by
economic disparities [23], which should be considered in the intended intervention polices.
Although the trend analysis and modeling could reveal considerable information to guide
the regulation and authority efforts, less attention has been given to developing a model
to estimate the possible effects of the proposed policy. The evaluation of policy could be
an effective approach to solve the complex and dynamic opioid epidemic problem [24].
Policy makers should consider strategies under the assistance of computational analysis
and predictions [25].

In this study, we evaluated areas where opioids are rampant in five states of United
States. The indicators associated with the severity of opioid abuse were defined to build
a comprehensive evaluation model. The model incorporated the historical data and de-
mographic characteristics of the regions to analyze the opioid abuse areas. The particular
indexes for counties in several states were obtained with regard to the degree of the opioid
abuse and spread. Further promoted by time series methods, the model was used to
estimate the possible effects of the proposed policies targeted at the vulnerable population.
The associated index change in the model could be used to evaluate the policy effectiveness,
which can assist governmental departments in adjusting policies to suppress the spread
of opioids.

2. Methods
2.1. Data Source and Preprocessing

The data included drug reports provided by the Drug Enforcement Administration
(DEA) (Table S1) and U.S. Census population data from 2010 to 2016 (Tables S2–S8). The
descriptions of the variables in the U.S. Census population data table (Tables S2–S8) are
listed in Table S9. Drug identification counts during the period 2010–2017 for narcotic
analgesics (synthetic opioid cases) and heroin in each of the counties from these five states,
Virginia (VA), Pennsylvania (PA), Kentucky (KY), Ohio (OH), West Virginia (WV) were
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collected by the National Forensic Laboratory Information System (NFLIS) of the DEA
(Table S1). The drug reports (DR), total county drug reports (TDRC) and total state drug
reports were used for analysis. The statistical standards changed in the year 2013. To
perform a coherent analysis, the EWM-RSR model described in the following section
was established based on the data from 2013 to 2016. When data were not available for
some variables, average values of the variables were filled in the missing place for the
modeling process.

2.2. EWM-RSR Evaluation Model

Several indicators were defined to assess the level of opioid abuse in this section. We
then conducted a comprehensive evaluation using an entropy weight method (EWM) and
a rank-sum ratio (RSR) method.

The entropy method based on information theory was an objective weighing method.
The weight of indexes defined in the method were determined based on the degree of
order of the information contained in each index. The method evaluated the dispersion
degree of the data, which was the most commonly used objective method of weighing.
Entropy was a measure of uncertainty of the indexes. A greater uncertainty corresponds to
a smaller entropy value. Thus, the entropy weight of the indicator was larger if it contained
more information.

To evaluate the severity of the development of opioids in county i , we selected ρi, qi,
Qi, and LOFCk as the evaluation indicators. ρi represented the proportion of opioid cases
in all drug use cases for a county i. qi represented the average change rate in opioid cases
for a county i. Qi represented the average change rate in the proportion of opioid cases use.
LOFCk(i) represented the odds ratio of the county i opioid cases and the sum of opioid
cases in its surrounding k distance neighboring counties. These indicators demonstrated
positive effects on the severity of the development of opioids. The higher value of the
indicators corresponded to a more serious development of opioids in the county i.

The rank-sum ratio (RSR) method [26] was a statistical analysis method applied in
the multi-index comprehensive evaluation of statistical prediction, classification, statistical
quality control and many scientific aspects. It was a non-parametric evaluation method
which considered the relative magnitude of the indicators to be evaluated. In this study,
the socioeconomic development of each county was imbalanced with unique characteristics.
Thus, the RSR method was adopted since it is difficult to directly determine the relationship
between the magnitude of each indicators.

2.2.1. Spread Index of the Model

Definition 1. The proportion of opioid cases in all drug use case ρt
i .

Based on the data used for analysis, the percentage of opioid cases is defined in county
i in the year t by

ρt
i =

∑
m

DRt
i,m

TDRCt
i

, (1)

where m represents one kind of opioid such as morphine, codeine or heroin. DR represents
the drug report related to opioid case. TDRC represents the total drug reports of a county.
The average ratio of the county i in 2010 to 2017 is defined as

ρi =
1
8

2017

∑
t=2010

ρt
i . (2)

Definition 2. The average rate of change of opioids use for the county i qi is:
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qi =

1
4

2017

∑
t=2014

∑
m

DRt
i,m −

1
4

2013

∑
t=2010

∑
m

DRt
i,m

1
4

2017

∑
t=2014

t− 1
4

2013

∑
t=2010

t

(3)

The rate of change in opioid cases may directly reflect the growth rate of opioid cases
in a county. Calculation with the subtraction of data from adjacent years should lead
to a large error. Hence, the data of the total use of opium cases from 2010 to 2013 were
compared with those of the total use of opioid cases from 2014 to 2017.

Definition 3. The average rate of change in the proportion of opioid cases Qi is:

Qi =

1
4

2017

∑
t=2014

ρt
i −

1
4

2013

∑
t=2010

ρt
i

1
4

2017

∑
t=2014

t− 1
4

2013

∑
t=2010

t

(4)

The average rate of change in the proportion of opioid cases could indicate the
proportion of drug users who prefer opioids. To measure the severity of opioid cases in a
county, both time and space should be taken into consideration. We defined two indicators.
One was the change of opioid cases of the counties between 2010 and 2017. The other
one was the ratio of the number of opioid cases of a county to that of its surrounding
counties. By these two indicators, we could measure the level of opioid use cases in a
county. Therefore, the distance between the county i and the county j was defined to
determine the indicators. In order to show the using level of opioid cases in the county
relative to the neighboring county, the local outlier factor (LOF) [15,27] was adopted to
define the county i relative to the neighbor county’s odds ratio.

Definition 4. The distance between the county i and the county j d(i, j) is:

d(i, j) =
πR
180
· arccos

(
sin ϕi sin ϕj cos ψi−j − cos ϕi cos ϕj

)
(5)

The position of each county was determined using the latitude and longitude coor-
dinates found in Google Maps. According to the spherical distance formula, the distance
between the county i and the county j could be obtained. ϕi and ϕj represented the rem-
nants of the latitude of the county i and the county j , respectively. ψi−j represented the
longitude difference between the county i and the county j.

Definition 5. dk(i) represented the distance between the county i and the k-th nearest county to
the county i.

Definition 6. U(i, k) was the k Neighborhood County Set of the county i if there exists a distance
order d(i, j1) ≤ d(i, j2) ≤ · · · ≤ d(i, jk) = dk(i), where jl ∈ U(i, k), l = 1, . . . , k and jl 6= i.
There were k counties in U(i, k) which satisfied the distance between the county in U(i, k) and the
county i less than or equal to dk(i).
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Definition 7. The odds ratio of the county i opioid cases and the sum of opioid cases in its
surrounding k distance neighboring counties: LOFCk(i) :

LOFCk(i) =

2017

∑
t=2010

∑ DRt
i,m

∑
j∈Nk(i)

2017

∑
t=2010

∑
m

DRt
j,m

(6)

Due to differences in economic and medical standards in each county, we did not
evaluate the severity of opioid use merely based on the number of opioid cases within a
single county. Considering the circulation of opioids, we defined the ratio of the number of
opioid cases in a county to that of its surrounding neighborhoods to evaluate the relative
use of opioids in that county.

2.2.2. Calculation Steps

The calculation steps of the model were as follows:
(1) Rank the original dataset
The m evaluation indicators of the n evaluation objects were arranged into an original

data table with n rows and m columns, followed by ranking each indicator corresponding
to each object. The benefit indicators were ranked from small to large. The cost indicators
were ranked in reverse order. Data for the same indicator were averaged. Thus, the rank
matrix was achieved and denoted as R = (Rij)m×n. Subscript i was the indicator and j
represented the object to be evaluated.

(2) Determine indicator weights
The main calculation steps were as follows: A total of n objects were to be evaluated.

Each object had m indicators, which resulted in a n×m matrix. xij was the value of the i-th
indicator corresponding to the j-th object. To perform the analysis, the modified value in
the matrix x̃ij was set to be positive by subtracting the minimum value of each indicator
from xij:

x̃ij = xij −min
{

x1j, x2j, · · · xnj
}

(7)

Then, the weight of the indicators was normalized:

pij =
x̃ij

n

∑
i=1

x̃ij

(8)

The entropy of each indicator was achieved after normalization:

ej = −
1

ln n

n

∑
i=1

pij ln pij, (j = 1, 2, · · · , m) (9)

where lim
pij→0

pij ln pij = 0. Thus, the entropy weight coefficient h of each indicator was achieved:

hj =
1− ej

m

∑
j=1

(
1− ej

) , (j = 1, 2, · · · , m) (10)

The larger the entropy weight coefficient hj , the more information this indicator
carries, illustrating a greater role in the processing of comprehensive evaluation.

(3) Calculate the value of RSR and determine the spread
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In the RSR method, the rank sum was calculated without considering the specific value:

RSRi =
1
n

m

∑
j=1

hjRij (11)

where hj was the weight of the j evaluation indicator and
m

∑
j=1

hj = 1. The frequency

distribution of the RSR follows a normal distribution. It can be converted using the Probit
model (a generalized linear model). The conversion method was:

Step 1. The RSR frequency distribution table was prepared. The frequency of each group
f was listed. The cumulative frequency ∑ f of each group was calculated;

Step 2. The range of ranking and average value of RSRs of each group were determined;

Step 3. The cumulative frequency R̄/n × 100% was determined. The last item of the

cumulative frequency was corrected, denoted as 1− 1
4n

;

Step 4. The cumulative frequency to Probit was converted, where Probit was the standard
normal distribution u corresponding to the cumulative frequency plus five.

(4) Perform subsection insertion sorting for corrected RSR value
A linear regression equation was constructed. The cumulative frequency Probit was

the independent variable. The modified RSR was the dependent variable:

RSR = a + b× Probit (12)

The regression equation was used to calculate the estimated RSR value. Then, the evalua-
tion object was sorted.

2.3. Autoregressive Model

The opioid use of each county was assessed to forecast the future development of
opioid abuse. The autoregressive (AR) model [28] was used in time series analysis for
prediction. The AR model was commonly used to fit stationary sequences model with a
time characteristic. Our model considered that the value of xt was primarily affected by
the previous p period. x was one of the indicators to be predicted. Subscript t represents
a specific period. The following form of AR equation was established by the correlation
between the previously collected data and the future expected value:

xt = ϕ1xt−1 + ϕ2xt−2 + · · ·+ ϕpxt−p + ε (13)

where ϕi, i = 1, · · · , p are the parameters of the AR model that need to be determined.
ε represents the error between the predicted value and the real value. This model was
named the p order AR moving average model, abbreviated as AR(p) .

2.4. Important Variables Search with LASSO Regression

The introduced indicators were based on historical data to assess the level of opioid
abuse from different perspectives. The severity of opioid abuse should be the result of the
comprehensive effect of policies, economy and many other factors in the county. Thus,
the next step of this model was to identify the factors that may have an influence on opioid
abuse by evaluating external indicators.

2.4.1. Normalization of the Indicators

The indicators in the U.S. Census socioeconomic data (Tables S2–S8) were “Estimate”,
“Margin of Error”, “Percent” and “Percent Margin of Error”. We selected “Percent” as the
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value of the indicators. To unify dimensions and facilitate algorithm convergence, all data
were normalized before fitting:

x∗i = (x∗i1, x∗i2, · · · , x∗im)
T (14)

x∗ij =
xij −min

{
x1j, x2j, · · · , xrj

}
max

{
x1j, x2j, · · · , xnj

}
−min

{
x1j, x2j, · · · , xrj

} (15)

y∗i =
yi −min{y1, y2, · · · , yn}

max{y1, y2, · · · , yn} −min{y1, y2, · · · , yn}
(16)

2.4.2. LASSO Model

LASSO [29], also known as the least absolute shrinkage and selection operator, was
a method used for variable selection and shrinkage in the medium-or high-dimensional
environment. Post-LASSO was to apply ordinary least squares to the model selected by the
first-step LASSO procedure. A penalty term was also included in the objective function,
instead of adopting a cost function that merely focused on the square error between the
prediction and the actual value. In this work, a regression function was established:

ŷ = x∗T β (17)

where β was a parameter vector in the LASSO model associated with the indicator variables.
It was expected to obtain:

min
β

1
n

n

∑
i

(
y∗i − x∗Ti β

)2
+ λ‖β‖1 (18)

where λ was the penalty term. The value of λ determined the number of final variables
reserved. When solving the problem, the leave-one-out-cross-validation (LOOCV) method
was used to determine the optimal λ.

3. Results and Discussion
3.1. Trend Analyses of the Amount of Drugs of Five States

As can be seen in Figure 1, the number of opioid cases of OH is highest among the
five states, followed by that of KY. The trend of number of opioid cases of VA and PA are
similar. The number of opioid cases of WV is lowest. From the trend of drug identification
count versus time, the total amount of opioid cases, as well as all drug cases, in OH steadily
increases from 2010 to 2017. In contrast, the total drug identification count of PA slowly
declines from 2010 to 2013, followed by a slightly increase in 2014, however, it starts to
decrease again afterwards. The trend of the total amount of opioid cases and all drug cases
of VA fluctuate to a certain degree with a similar variation pattern. There is no tremendous
change in terms of opioids and total drug cases in WV and KY.

3.2. Heat Maps of the Opioid Cases

Based on the radiation direction of the heat map (Figure 2), the occurrence of opioids
demonstrates a tendency to spread from the dense areas to the surrounding areas. The
three largest cities in each state by population are denoted as blue dots in Figure 2 (these
cities are also represented by blue dots in Figures 3 and 4). The three largest cities in five
states by population include Columbus, Cleveland, Cincinnati (OH); Virginia Beach, Nor-
folk, Chesapeake (VA); Louisville, Lexington, Owensboro (KY); Philadelphia, Pittsburgh,
Allentown (PA); Charleston, Huntington, Parkersburg (WV). According to the energy
distribution of the heat map, the opioid cases are concentrated in the surrounding areas
near the large cities. The overall growth rate of opioid cases decreased during the period
2014–2017. It may be assumed that the spread of opioids has been controlled to a certain
extent, which could be further validated by the distribution of Qi. There has not been a
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significant increase under these circumstances. However, the areas in northeast KY and
southwest OH show relatively significant growth. The development of opioids in some
counties has not been suppressed.

Figure 1. (a) Trends of opioid cases of five states; and (b) trends of the total drug cases of five states.

Figure 2. (a) Heat map of opioid cases during the period 2010–2013; and (b) heat map of opioid cases during the period 2014–2017.

Figure 3. Advantage point distribution map. The size of the point represents the value of LOFC for
each county.
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Figure 4. Heat map of Qi: (a) the distribution of positive Qi ; (b) the distribution of negative Qi. Positive Qi illustrate may
reflect the effectiveness of regulation.

3.3. Advantage Point Distribution Map of the Opioid Cases

Using the odds ratio defined, an LOFC map (Figure 3) is plotted, where the size of the
red dots represents the magnitude of the LOFC values for each county. At the same time,
we divided the LOFC size into four levels. It can be seen that absolute advantage points
and advantage points are relatively few, compared to the common points and minor points.
The total advantage points may represent the counties with relatively sufficient opioids
resources and weak government supervision. Secondly, most cities previously denoted
in Figure 2 are usually associated with larger and denser absolute advantage points. The
total advantage points may represent either more abundant opioid resources or weaker
government supervision. Due to multiple factors such as demographic characteristics and
governmental regulation, opioid cases are more likely to occur in some counties compared
to other surrounding counties.

3.4. Heat Map of Qi

Qi represents the average change rate in the proportion of opioid cases use, which
illustrates the development of opioid cases and the effectiveness of the policy supervision
to some certain degree. The positive Qi may suggest a loose or less effective control. As
can be seen in Figure 4a, the positive Qi areas almost collide with the area where opioid
cases are concentrated (Figure 2), suggesting more effective control may be needed in the
major large cities, though the rural area may lack adequate harm reduction services [17].
On the contrary, the negative Qi distributed areas (see Figure 4b) are generally not close to
the cities.

3.5. Application of the EWM-RSR Model

The EWM-RSR model was used to analyze the severity of the opioid abuse, by con-
sidering the different political, economic, and demographic factors affecting the regional
development of these five states. The degree of opioid abuse in the given counties was
divided into six levels according to the distribution of RSR. The first level indicates that
the opioid abuse in the county is very serious. The 13 most serious opioid abuse counties
derived from the EWM-RSR model are listed in Table 1. These counties include: Adams,
Montgomery, Butler (OH); Allegheny, Lycoming (PA); Madison, Fayette, Jefferson (KY);
Warren, Spotsylvania, Culpeper (VA); Nicholas, Harrison (WV), which are denoted with
green dots (Figure 5). The blue dots represent the three largest cities in each state.
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Table 1. The 13 most serious opioid abuse counties.

State County ρi qi Qi LOFCk(i) RSRi

OH

39,061 0.37 3490.25 0.106 0.881 1.064
39,113 0.32 885.25 0.102 0.742 0.964
39,017 0.36 426 0.086 0.42 0.908

PA
42,003 0.48 1210.25 0.111 0.846 1.11
42,081 0.35 110 0.175 0.672 0.995

KY

21,151 0.57 92.5 0.054 0.49 1.085
21,067 0.38 93.75 0.099 0.66 0.989
21,111 0.37 86.25 0.115 0.897 0.934

VA

51,187 0.52 36.5 0.098 0.418 1.072
51,177 0.39 97.25 0.125 0.44 0.979
51,047 0.33 47.75 0.19 0.442 0.927

WV
54,067 0.5 29.25 0.084 0.664 0.987
54,033 0.47 31.25 0.236 0.546 0.89

Figure 5. The 13 counties with the most serious opioid abuse.

The ρi, qi, Qi and LOFCk(i) values in the 13 counties with severe opioid abuse are
relatively large, indicating the higher proportion of opioid cases and faster growth rate.
Drug users in these counties may prefer opioids. In the next step, these counties are used
for further analysis.

3.6. Application of the AR Model

The time series models were used to make predictions for each of the counties in the
five states, and the following two aspects of prediction information were obtained: First,
we obtained the predicted value of the total number of crimes in the county by the AR(p)
model; Then, the predicted value of the number of opioid cases in the county was obtained
by the AR(p) model.

Based on the results of the time series model and the EWM-RSR model, the level of
opioid cases abuse could be estimated in each county. Since our time series model defines
a period of 4 years, we can speculate on the trend for the next four years. Before 2021,
the following counties may enter the stage of cases of the serious abuse of opioids. The
specific results are shown in Table 2.
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Table 2. The indicators’ values of the counties with most serious opioid abuse.

State County RSR2017 RSR2018–2021 Level2017 ∆Level

OH
39,035 0.844 1.193 2 1
39,085 0.872 1.000 2 1

PA 42,101 0.887 1.053 2 1

KY

21,059 0.592 1.007 3 2
21,107 0.504 0.951 3 2
21,227 0.474 1.107 4 3

VA

51,041 0.832 1.108 2 1
51,121 0.671 1.226 3 2
51,047 0.634 1.041 3 2

WV 54,107 0.833 1.028 2 1

3.7. Application of the Comprehensive Evaluation Model

Figure 6 shows the ridge trace of the LASSO regression of the indicators and variables
related to demographic characteristics. The lines in Figure 6 (ridge traces of the LASSO
model) represent the variation of the coefficients of the variables(demographic factors)
with the increase of penalty term λ. The purple lines correspond to the factor HC03_VC112;
the blue lines correspond to the factor HC03_VC197; the red lines correspond to the factor
HC03_VC48,the pink lines correspond to the factor HC03_VC135; the orange lines corre-
spond to the factor HC03_VC115; the green lines correspond to the factor HC03_VC162; the
black lines correspond to the factor HC03_VC17. By using the LOOCV method, the optimal
λ value 3× 10−3 was achieved. The reliability and stability of the model were improved
by using this lambda value, as well as the regression coefficients in the model.

Figure 6. Regularized ridge coefficients.

By means of the LASSO regression, variables were obtained in terms of the demo-
graphic characteristics related to the four indicators. The correlation was presented between
the variables with large correlation coefficients and four indicators through the factor cor-
relation structure diagram as shown in Figure 7.

To further explore the relationship between the variables describing demographic
characteristics and the four indicators, we selected the variables with higher correlation
coefficients. The causes of the correlations were analyzed. The analysis results are shown
in Table 3 which contains the main part of correlations and explanations. Table S10 includes
all the correlations and explanations for the reasons for the remaining variables with small
correlation coefficients.
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Table 3. Main part of correlations and explanations.

yi xi Coefficient Explanation

ρi
VC112 0.18404

The health of people who live out of a nursing home or institutions with medical
instructions is not guaranteed. It is possible for them to access opioids through illegal

channels. The disabled people may use opioids to alleviate physical or mental suffering
which leads to opioid addiction.VC115 0.16771

qi VC03 0.24625 If the proportion of drug users to the total population is fixed, a larger total number of
households leads to more drug users.

Qi

VC101 0.12905
Veterans should develop a certain degree of self-control through intensive training. They

have a certain understanding of the harm of opioids. The increase in the proportion can lead
to a less rapid growth of opioid usage.

VC112 −0.25485

The healthcare of disabled civilians is not guaranteed for those who live out of a nursing
home or institutions with medical instructions. The percentage of the population is relatively

small among drug users due to finances and health conditions. They are less favored
for opioids.

LOFCk(i)

VC114 0.50514

People with disabilities are more likely to be exposed to opioids. Without appropriate
medical guidance, the possibility of misuse or opioid abuse is high. The more people there
are with disabilities in a county, the more likely it is to have opioid use. Therefore, a higher
proportion of the disabled population leads to more opioid cases in the county, and a greater

advantage ratio of the county relative to surrounding counties.

VC122 0.23481
If a county has a small population flow range, the number of drug users may increase due to
a gathering of drug users. As a result, the county may develop a greater advantage ratio of

the county to surrounding counties.

Figure 7. Factor correlation structure diagram.

3.8. Model Modification with the LASSO Regression Method

A regression equation is established between the population indicators and the evalu-
ation indicators via LASSO regression. Combined with the regression equation established,
the model is modified into comprehensive indicators that involve both demographic and
historical characteristics:

ρ̃i = ρ̂∗i · ρi
q̃i = q̂∗i · qi
Q̃i = Q̂∗ ·Qi

˜LOFCk(i) = ˆLOFCk(i)∗ · LOFCk(i)

(19)

Assuming that the population indicators of all counties remain the same, then drug
abuse in the counties depends on their performance in recent years. If the indicators are
different, the correction value, such as ρ̂∗i , could be interpreted as the difference of trend
and process in the development of drug abuse. After applying the indicator modification
in the EWM-RSR model, the impact of opioids can be evaluated more comprehensively
on regional historical development and demographic characteristics. According to the
deductions listed in Table 3, it was found that there were three factors directly related to
disabled people, namely HC03_VC112, HC03_VC115 and HC03_VC114. In the meantime,
these indicators played a positive role in increasing the levels of opioid abuse. In response
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to this situation, policies may be necessitated to increase the care of disabled people and
rationally control the use of their opioids.

According to the model, the change of demographic characteristics in a short period
of time would have a weak impact on historical development but ultimately would affect
its development speed and trend. Let this effect be generated at a rate of α. The original
demographic feature is ρ̂∗i, old . The new demographic characteristics under natural influ-
ence or policy impact are ρ̂∗i, new . Then, the effect equation is defined for comprehensive
evaluation under the new demographic characteristics:

ρ̂i, new =
[
α
(
ρ̂∗i, new − ρ̂∗i, old

)
+ ρ̂∗i, old

]
ρ̂i, old (20)

The effectiveness of the policy could be evaluated by whether the value of EWM-RSR
is reduced using the modified comprehensive model. This change in the evaluation should
be superior to the original time series model that relies on the historical data.

3.9. Simulation and Estimation of Policy Effectiveness

To determine the effectiveness of the simulated policies, the four indicators established
by all the counties are averaged as the indicators of five states. Assuming that the simulated
policies have been implemented, the variables VC112, VC115, VC114 related to the disabled
population should decline to a certain extent. This simulation decreased the three variables
by 10%, 20% and 50%, respectively. The change was recorded in the four indicators of five
states. It can be seen from the simulation result (Table 4) that the greater the stimulation
degree, the more favorable the rapid decline of RSR scores, corresponding to a more
effective policy. When the policy is weak (10% decrease), the decline of RSR value is very
slow. Less effective social treatment may induce more opioid abuse. These simulation
results point out the importance of raising the strategies and policies targeted at the disabled
population. It may be inferred that the development of opioid abuse in the state would
be significantly inhibited by adopting policies targeted at the disabled population. In the
analysis conducted by Cordes, it was found that the mortality was positively correlated
with the percentage of the disabled population [5]. In addition, the demographic pattern of
deaths and the most rampant opioid drug type vary throughout time [30]. Thus, the model
is needed to benefit policy making by evaluating the dynamic changes of socioeconomic
factors and propose strategies for different specific populations.

Table 4. Results of policy change simulation.

Simulation Degree Period RSR RSR

Base N/A 0.60846 N/A

10%

1 0.60589 0.00257
2 0.60461 0.00128
3 0.60207 0.00254
4 0.6008 0.00127
5 0.59578 0.00502

20%

1 0.60461 0.00385
2 0.6008 0.00381
3 0.59205 0.00875
4 0.58225 0.0098
5 0.58104 0.00121

50%

1 0.59081 0.01765
2 0.57383 0.01698
3 0.56671 0.00712
4 0.56553 0.00118
5 0.56435 0.00118

4. Conclusions

In summary, this study presented the trends of the amount of drugs in five states of
the United States. The heat map of the occurrence of opioid cases was plotted to illustrate
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the tendency of spreading. The overall growth rate was retarded. Some counties remained
a slow growth rate. The advantage points distribution map characterized by the magnitude
of the LOFC values was demonstrated. It turns out that the absolute advantage points
were generally away from the state capitals. According to the scattering diagram, it may
infer in that the counties, opioid abuse areas should exist surrounding the state capital.
Additionally, we established the EWM-RSR model to analyze the severity of the opioid
case abuse in these states. Combined with the AR model, the future development of opioid
abuse was predicted. Furthermore, we used the LASSO regression for cross-validation
to improve the model reliability with the optimal lambda value determined. Finally,
the regression equation was added in the previous model to incorporate indicators related
to demographic characteristics. It was found that the factors related to disabled people
played a significant role in the level of opioid abuse. This combined model can be used to
evaluate the policy effect on the opioid abuse control and provides instructions on curbing
the trend of opioid abuse. Moreover, the proposed methods and models in this paper could
be used for predicting the usage of other drugs given with previous data. The possibility
of the area with a high risk of drug abuse could be estimated by identifying different
indicators and calculating the sum of the rank defined by the model. Thus, the areas where
drug abuse may occur could be determined. After determining the essential characteristic
factors based on the socioeconomic data, some potentially modified policies could be
assessed. Hence, it can help different agencies to perform effective measures to cope with
drug-related challenges.
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