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Abstract
Background: Rapid	 on-	site	 cytologic	 evaluation	 (ROSE)	 helps	 to	 improve	 the	
diagnostic	accuracy	in	endobronchial	ultrasound	(EBUS)	procedures.	However,	
cytologists	are	seldom	available	 to	perform	ROSE	in	many	 institutions.	Recent	
studies	have	investigated	the	application	of	deep	learning	in	cytologic	image	anal-
ysis.	As	such,	the	present	study	analyzed	lung	cytologic	images	obtained	by	EBUS	
procedures,	and	employed	deep-	learning	methods	to	distinguish	between	benign	
and	malignant	cells	and	to	semantically	segment	malignant	cells.
Methods: Ninety-	seven	patients	who	underwent	104 EBUS	procedures	were	en-
rolled.	Four	hundred	and	ninety-	nine	lung	cytologic	images	obtained	via	ROSE,	
including	425 malignant	and	74	benign,	and	most	malignant	were	lung	adenocar-
cinoma	(64.3%).	All	the	images	were	used	to	train	a	residual	network	model	with	
101 layers	(ResNet101),	with	suitable	hyperparameters	selected	to	classify	benign	
and	 malignant	 lung	 cytologic	 images.	 An	 HRNet	 model	 was	 also	 employed	 to	
mark	the	area	of	malignant	cells.	Automatic	patch-	cropping	was	adopted	to	fa-
cilitate	dataset	preparation.
Results: Malignant	 cells	 were	 successfully	 classified	 by	 ResNet101	 with	 98.8%	
classification	accuracy,	98.8%	sensitivity,	and	98.8%	specificity	in	patch-	based	clas-
sification;	95.5%	classification	accuracy	in	image-	based	classification;	and	92.9%	
classification	 accuracy	 in	 patient-	based	 classification.	 Malignant	 cell	 area	 was	
successfully	marked	by	HRNet	with	a	mean	intersection	over	union	of	89.2%.	The	
automatic	cropping	method	enabled	the	system	to	complete	diagnosis	within	1 s.
Conclusions: This	is	the	first	study	to	combine	lung	cytologic	image	deep-	learning	
classification	with	semantic	segmentation.	The	model	was	optimized	for	high	ac-
curacy	and	the	automatic	cropping	facilitates	the	clinical	application	of	our	model.	
The	success	in	both	lung	cytologic	images	classification	and	semantic	segmenta-
tion	on	our	dataset	shows	a	promising	result	for	clinical	application	in	the	future.
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1 	 | 	 INTRODUCTION

Endobronchial	ultrasound	(EBUS)	is	a	relatively	new	and	
minimally	 invasive	 procedure	 for	 diagnosing	 peripheral	
pulmonary	lesions	(PPLs)	or	mediastinal/hilar	lesions.1-	3	
Prior	 research	 has	 confirmed	 its	 low	 procedure-	related	
complication	 rates.4	As	a	 result,	EBUS	 is	widely	applied	
in	 diagnosing	 thoracic	 lesions	 in	 many	 clinical	 institu-
tions.5,6	However,	the	diagnostic	yields	of	EBUS	alone	are	
insufficient.7,8	To	 improve	 the	procedure's	diagnostic	ac-
curacy,	attempts	have	been	made	to	combine	EBUS	with	
other	methods,	such	as	fluoroscopy,	virtual	bronchoscopic	
navigation,	and	electromagnetic	navigation.9-	13	However,	
the	equipment	employed	in	these	procedures	is	not	widely	
available	because	of	 the	high	cost	and	other	 limitations.	
As	such,	new	approaches	should	be	identified	for	clinical	
practice.

Rapid	 on-	site	 cytologic	 evaluation	 (ROSE)	 provides	
immediate	feedback,	which	ensures	correct	and	sufficient	
sample	collection.14	Although	ROSE	can	improve	the	di-
agnostic	 accuracy	 of	 EBUS	 procedures,15-	17	 it	 requires	
extra	 time	 from	 the	 cytologist	 and	 is	 largely	 considered	
economically	 inefficient.14	 As	 such,	 few	 cytologists	 are	
willing	 to	 perform	 ROSE	 during	 a	 bronchoscopy	 proce-
dure.	Despite	attempts	to	train	pulmonologists	to	interpret	
cytologic	smears	on-	site	while	EBUS	procedures	are	being	
performed,8	the	EBUS	procedure	time	appears	to	be	pro-
longed	because	of	the	interruption	of	having	to	wait	for	the	
ROSE	results.	An	adequate	and	effective	means	to	present	
on-	site	cytologic	material	during	EBUS	procedures	is	thus	
required	if	the	procedure	time	is	to	be	shortened.

With	 computer	 vision,	 machines	 can	 recognize	 and	
analyze	 images	 and	 videos,	 effectively	 allowing	 them	 to	
view	the	world	as	humans	do.	Advancements	in	computer	
vision	 with	 deep	 learning	 have	 led	 to	 considerable	 de-
velopments,	 particularly	 regarding	 convolutional	 neural	
networks	 (CNNs).	 Previous	 studies	 have	 applied	 CNNs	
in	cytologic	image	analysis.	Sanyal	et	al.	identified	papil-
lary	carcinoma	on	thyroid	fine-	needle	aspiration	cytology	
smears18	 and	 Savala	 et	 al.	 distinguished	 follicular	 ade-
noma	from	follicular	carcinoma	on	fine-	needle	aspiration	
of	thyroid.19	Zejmo	et	al.,	Steiner	et	al.,	and	Bejnordi	et	al.	
classified	breast	cancer	cytologic	specimen.20-	22	Pouliakis	
et	 al.	 analyzed	 the	 role	 of	 artificial	 neural	 networks	 in	
cytopathology.23	Teramoto	et	al.	 classified	 lung	cytologic	
images.24,25	However,	limited	data	have	been	reported	on	
the	application	of	CNNs	in	the	presentation	of	lung	cyto-
logic	specimens	via	EBUS	procedures.	Thus,	 the	present	

study	 evaluated	 the	 accuracy	 of	 CNNs	 in	 distinguishing	
between	malignant	and	benign	pulmonary	cytologic	spec-
imens	obtained	by	EBUS	procedures.

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Participants

Participants	 were	 97	 patients	 with	 70	 PPLs	 and	 34	 for	
mediastinal/hilar	 lesions	 who	 underwent	 EBUS	 pro-
cedures	 at	 the	 Division	 of	 Thoracic	 Medicine,	 National	
Taiwan	University	Cancer	Center,	or	Division	of	Thoracic	
Medicine,	National	Taiwan	University	Hsin-	Chu	Hospital,	
between	November	2018	and	February	2020.	Participants	
comprised	 53  men	 and	 44	 women	 aged	 23–	92  years	
(mean:	 67.1  years)	 (Table  1).	 Written	 informed	 consent	
was	 obtained	 from	 each	 patient	 prior	 to	 the	 EBUS	 pro-
cedure.	The	study	was	approved	by	the	National	Taiwan	
University	 Cancer	 Center	 Institutional	 Review	 Board	
(IRB	#202012053RINB).

2.2	 |	 EBUS procedures and on- site 
cytologic image collection

All	EBUS	procedures	were	performed	by	a	pulmonologist,	
who	 has	 more	 than	 10  years	 of	 experience	 in	 broncho-
scopic	clinical	practice.	Before	the	procedures,	computer	
tomography	images	were	screened	for	planning.	For	the	
diagnosis	of	PPLs,	we	performed	EBUS-	guided	transbron-
chial	biopsy	(EBUS-	TBB).	If	the	target	lesions	were	in	the	
mediastinal	 or	 hilar	 area,	 EBUS-	guided	 transbronchial	
needle	aspiration	(EBUS-	TBNA)	will	be	considered.

During	 EBUS-	TBB,	 we	 used	 flexible	 bronchoscopy	
(BF-	Q290	 or	 BF-	1T290;	 Olympus	 Co.)	 combined	 with	
a	 20-	MHz	 radial-	EBUS	 (UM-	S20-	17S	 or	 UM-	S20-	20R;	
Olympus	Co.)	for	the	procedure.	The	radial-	EBUS	was	in-
serted	through	the	working	channel	of	the	scope	into	the	
suspected	target	bronchus	based	on	computed	tomography	
image.	After	confirming	the	location	of	the	lesion,	speci-
mens	were	collected	via	biopsy	forceps	(NBF01-	11018120;	
MICRO-	TECH	Co.	Ltd.)	or	a	guide	sheath	kit	(K201/K203;	
Olympus	Co.).

Convex-	EBUS	 (BF-	UC260FW;	 Olympus	 Co.)	 was	
dedicated	 for	 EBUS-	TBNA	 procedure.	 We	 identified	 the	
mediastinal	and	hilar	lesions	via	slow	withdrawal	and	ro-
tation	of	the	ultrasound	transducer.	TBNA	biopsy	with	a	
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22-	gauge	needle	(NA-	201SX-	4022;	Olympus	Co.)	was	then	
performed	to	obtain	histological	cores.

During	the	procedure,	material	from	the	EBUS-	guided	
samples	 was	 imprinted	 on	 a	 clear	 glass	 slide	 without	
mounting	 coverslip	 for	 ROSE.	 Imprint	 smears	 were	
stained	using	a	rapid	method	(Hemacolor;	Merck	KGaA)	
and	 evaluated	 on-	site	 via	 microscopy	 (BX43;	 Olympus	
Co.)	 by	 our	 pulmonologist	 who	 also	 has	 well	 cytologic	
training	 with	 more	 than	 6-	year	 experience	 in	 cytologic	
clinical	 practice.	 When	 malignant	 cells	 were	 suspected	
during	 the	ROSE,	at	 least	 three	more	TBB,	or	one	more	
TBNA	would	be	performed	at	the	same	position.	If	none	
of	the	suspicious	cells	was	detected,	we	would	change	to	
another	 site	 for	 repeating	 biopsy	 and	 ROSE	 study.	 The	
EBUS	procedure	would	be	terminated	if	no	suspicious	cell	
was	explored	via	ROSE	study	for	2–	3	times	or	if	the	patient	
could	no	longer	tolerate	the	procedure.	All	tissue	samples	
obtained	by	EBUS	procedures	were	 impregnated	 in	10%	
formalin,	embedded	in	paraffin,	and	stained	with	hema-
toxylin	and	eosin	for	subsequent	pathological	analysis.

During	the	ROSE	study,	we	also	recorded	the	images	of	
suspected	malignant	cells	at	100×,	200×,	or	400×	ampli-
fication	with	a	microscope	digital	camera	system	(DP22;	
Olympus	Co.).	Random	cytologic	images	were	also	taken	
of	samples	with	no	malignant	cells.	Diagnosis	of	on-	site	
cytologic	images	was	confirmed	by	the	formal	cytopatho-
logic	 results.	 Based	 on	 the	 cytopathologic	 results,	 final	

T A B L E  1 	 Characteristics	of	the	patients	and	cytologic	images

Characteristics n

Patients 97

Age	(years-	old,	range) 67.1	(23–	92)

Male	(%) 53	(54.6)

Lesion	location 104

Peripheral	pulmonary	lesions	(%) 70	(67.3)

Mediastinal/hilar	lesions	(%) 34	(32.7)

Cytologic	images 499

Malignancy	(%) 425	(85.2)

Lung	adenocarcinoma 321	(64.3)

Lung	squamous	cell	carcinoma 41	(8.2)

Small	cell	lung	cancer 33	(6.6)

Other	NSCLC 12	(2.4)

Breast	cancer 6	(1.2)

Pancreatic	cancer 2	(0.4)

Hepatocellular	carcinoma 10	(2.0)

Non-	malignant	process	(%) 74	(14.8)

Cryptococcosis 4	(0.8)

Granulomatous	inflammation 2	(0.4)

Benign	inflammation	cells 55	(11.0)

Ciliated	columnar	cells 13	(2.6)

Abbreviation:	NSCLC,	non-	small	cell	lung	cancer.

F I G U R E  1  (A)	Each	benign	image	is	
randomly	cropped	into	15	benign	patches	
224 × 224	in	size.	(B)	Each	malignant	
image	is	randomly	cropped	into	
10 malignant	patches	in	areas	overlapping	
malignant	cells,	and	5	benign	patches	in	
areas	clear	of	malignant	cells
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diagnosis	of	malignancy	was	defined	as	positive	and	non-
malignant	process	was	defined	as	negative	in	this	study.

In	the	present	study,	499	cytologic	images	were	obtained	
from	the	participants,	with	335	images	via	EBUS-	TBB	and	
164	images	via	EBUS-	TBNA.	Four	hundred	and	twenty-	five	
of	them	were	classified	as	malignant	and	74	as	benign.	In	
the	425 malignant	images,	321	were	lung	adenocarcinoma,	
41	were	lung	squamous	cell	carcinoma,	33	were	small	cell	
carcinoma,	 12	 were	 other	 non-	small	 cell	 lung	 cancer,	 10	
were	 hepatocellular	 carcinoma,	 6	 were	 breast	 cancer,	 and	
the	 remaining	 2	 were	 pancreatic	 cancer.	 Nonmalignant	
processes	were	pulmonary	cryptococcosis	in	4	cases,	gran-
ulomatous	 inflammation	 in	 2	 cases,	 benign	 inflammation	
cells,	which	were	dominant	of	alveolar	macrophages,	poly-
morphonuclear	leukocytes,	or	lymphocytes	in	55	cases,	and	
ciliated	columnar	cells	only	in	13	cases	(Table 1).

2.3	 |	 Data preprocessing

The	original	images	(1920 × 1440	pixels)	were	cropped	into	
small	patches	(224 × 224	pixels).	To	balance	the	number	of	
benign	and	malignant	data,	additional	benign	patches	were	
generated	 from	 the	benign	 images	and	nonmalignant	cell	
areas	in	the	malignant	images.	First,	15	benign	patches	were	
randomly	 cropped	 from	 the	 benign	 images	 (Figure  1A).	
Second,	we	 labeled	malignant	cells	area	 in	malignant	 im-
ages	 with	 LabelMe26	 in	 pixel	 level.	 From	 malignant	 im-
ages,	 10  malignant	 patches	 were	 randomly	 cropped	 from	
areas	 overlapping	 malignant	 cells,	 and	 5	 benign	 patches	
were	randomly	cropped	from	areas	clear	of	malignant	cells	
(Figure 1B).	A	total	of	7486 small	patches	were	generated	
after	 automatic	 cropping,	 including	 3286	 benign	 patches	
and	4200 malignant	patches.	Finally,	all	 the	patches	were	
divided	into	a	training	set	(70%	of	participants),	a	validation	
set	(15%	of	participants),	and	a	test	set	(15%	of	participants).

2.4	 |	 Benign and malignant cell 
classification

The	volume	of	training	data	was	increased	through	data	
augmentation	 to	 avoid	 overfitting.	 Data	 augmentation	
included	 vertical	 flips,	 horizontal	 flips,	 random	 rotation	
by	 20  degrees	 left	 and	 right,	 Gaussian	 blurring	 with	 a	
probability	 of	 0.2	 (SD:	 0–	3),	 contrast	 adjustment	 with	 a	
probability	of	0.2	(gamma:	0.5–	2),	and	hue	and	saturation	
adjustment	with	a	probability	of	0.2	(10	to	−10 degrees).

Several	deep-	learning	classification	models	were	con-
structed	 to	 evaluate	 their	 ability	 to	 classify	 benign	 and	
malignant	 patches.	 VGG1627	 was	 built	 for	 comparison	
with	research	by	Teramoto	et	al.24,25	ResNet50,	ResNet101,	
and	 ResNet15228	 were	 selected	 due	 to	 its	 strong	 ability	

of	avoiding	accuracy	saturation	 in	deep	networks.	 If	 the	
residual	 connection	 was	 the	 optimal	 path	 for	 backward	
propagation,	then	the	network	would	approach	the	weight	
of	 the	 convolutional	 block	 to	 zero,	 making	 the	 network	
continue	to	 learn	with	other	residual	blocks.	ResNeXt50	
and	ResNeXt10129	were	able	to	detect	different	scale	size	
features	 by	 combining	 inception	 modules	 and	 residual	
connections.	 ResNeSt50,	 ResNeSt101,	 and	 ResNeSt20030	
combined	 the	ResNeXt	model	with	an	attention	mecha-
nism	to	enhance	the	ability	of	feature	extraction.	All	the	
models	were	 fine-	tuned	 for	100	epochs	after	pretraining	
on	 the	 ImageNet,	dataset	with	natural	color	 (RGB).	The	
hyperparameters	used	in	the	benign	and	malignant	patch	
classification	 were	 an	 initial	 learning	 rate	 of	 0.0001,	 a	
batch	 size	 of	 32,	 and	 image	 input	 size	 of	 224.	The	 opti-
mizer	 was	 stochastic	 gradient	 descent,	 the	 loss	 function	
was	binary	cross-	entropy,	and	cosine	learning	rate	decay	
was	employed.

During	 testing,	 accuracy	 for	 patch-	based	 and	 image-	
based	classification	was	calculated	separately.	Image-	based	
classification	accuracy	was	calculated	using	a	sliding	win-
dow	 algorithm,	 with	 the	 224  ×  224	 patches	 sliding	 112	
pixels	from	the	upper	left	corner	of	the	image	to	the	right,	
moving	downward	 row-	by-	row.	Since	 the	benign	patches	
contained	 background	 patches,	 which	 were	 easier	 to	 be	
classified,	 the	 model	 tended	 to	 overfit	 and	 focus	 less	 on	
classifying	benign	and	malignant	cells,	resulting	in	a	high	
false-	positive	rate	and	low	specificity.	Moreover,	classifying	
malignant	patches	was	difficult	and	required	distinguish-
ing	 features	 such	 as	 the	 ratio	 of	 the	 nucleus	 to	 the	 cell,	
which	can	lead	to	a	high	false-	positive	rate	and	low	speci-
ficity.	To	solve	these	problems,	we	set	the	Softmax	output	
threshold	 to	 0.99.	 An	 image	 was	 classified	 as	 malignant	
only	 if	 there	 was	 at	 least	 a	 patch	 with	 a	 Softmax	 output	
higher	than	0.99;	otherwise,	it	was	classified	as	benign.

For	patient-	based	classification,	each	patient	had	2–	10	
images.	A	majority	vote	algorithm	was	thus	employed	to	
classify	the	cases	as	benign	or	malignant.	The	algorithm	
classified	cases	with	more	benign	images	than	malignant	
images	as	benign,	and	vice	versa	for	those	with	more	ma-
lignant	 images.	 To	 avoid	 potentially	 missing	 malignant	
cases,	those	with	the	same	number	of	benign	and	malig-
nant	images	were	also	considered	malignant.

2.5	 |	 Malignant cell segmentation

The	 CNN	 for	 semantic	 segmentation	 of	 malignant	 cells	
was	 trained	 with	 malignant	 images	 only.	 The	 425  ma-
lignant	 images	 were	 divided	 into	 a	 training	 set	 (70%	 of	
images),	 a	 validation	 set	 (15%	 of	 images),	 and	 a	 test	 set	
(15%	 of	 images).	 Data	 augmentation	 was	 performed	 to	
increase	 the	 volume	 of	 data,	 including	 random	 rotation	
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by	 90  degrees,	 random	 horizontal	 flips,	 random	 vertical	
flips,	hue	saturation	adjustment,	brightness	and	contrast	
adjustment,	and	random	cropping	of	images	with	a	size	of	
1024 × 1024.

During	training,	different	semantic	segmentation	mod-
els	 were	 constructed.	 FCN31	 is	 the	 basic	 model	 with	 an	
encoder/decoder	structure	and	was	used	as	our	baseline	
model.	 U-	Net32	 is	 suitable	 for	 medical	 image	 segmenta-
tion	which	added	skip	connections	between	the	encoder	
and	decoder	to	achieve	well	performance	with	low	param-
eters.	 PSPNet33	 applies	 a	 pyramid	 pooling	 module	 after	
the	encoder	and	is	able	to	extract	useful	information	in	en-
coder.	DeepLabv334	is	a	powerful	semantic	segmentation	
model	on	 semantic	 segmentation	 tasks	which	employed	
dilated	 convolution	 kernels	 to	 preserve	 high-	resolution	
information.	 DeepLabv3+35  simplified	 the	 decoder	 from	
DeepLabv3	to	reduce	the	computational	complexity	while	
maintaining	 the	ability	of	preserving	high-	resolution	 in-
formation.	 FPN36	 performed	 well	 on	 object	 detection	
tasks	 which	 stacked	 different	 sizes	 of	 feature	 maps	 in	
the	 decoder	 to	 obtain	 multiscale	 features.	The	 design	 of	
the	 decoder	 of	 FPN	 can	 also	 perform	 well	 on	 semantic	
segmentation	 tasks.	 HRNet37  leveraged	 256  ×  256  high-	
resolution	 image	 operations	 throughout	 the	 entire	 net-
work	and	added	some	low-	resolution	image	information	
(128 × 128,	64 × 64,	32 × 32)	at	each	stage	to	provide	fea-
tures	of	larger	cells,	as	shown	in	Figure 2.	This	enabled	the	
model	to	segment	and	distinguish	malignant	cells	globally	
and	 locally.	 At	 the	 end	 of	 the	 network,	 feature	 maps	 of	
different	 sizes	 were	 stacked	 to	 obtain	 different	 levels	 of	
cell	information.	All	the	selected	models	were	fine-	tuned	
for	300	epochs	after	pretraining	on	the	ImageNet	dataset.	
Hyperparameters	 employed	 for	 semantic	 segmentation	
included	an	initial	learning	rate	of	0.001,	batch	size	of	4,	
image	input	size	of	1024,	and	weight	decay	of	0.0001.	The	
optimizer	 was	 stochastic	 gradient	 descent,	 and	 the	 loss	
function	was	0.5	times	the	binary	cross-	entropy	plus	the	
dice	loss.38	Cosine	learning	rate	decay	was	employed.

2.6	 |	 Statistical analysis

Interpretations	 of	 the	 ResNet101-	based	 deep-	learning	
models	 were	 compared	 to	 the	 final	 diagnosis	 from	 the	
lung	 cytologic	 images.	 Sensitivity,	 specificity,	 positive	
predictive	value,	negative	predictive	value,	and	diagnos-
tic	 accuracy	 rate	 were	 calculated	 according	 to	 standard	
definitions.	Mean	intersection	over	union	(mIoU)	was	ob-
tained	for	each	semantic	segmentation	model	during	the	
malignant	cell	semantic	segmentation	process.	The	result	
for	mIoU	was	calculated	as	the	intersection	area	divided	
by	the	union	area	for	a	predicted	area	and	target	area.	The	
formulas	were	as	follows:

3 	 | 	 RESULTS

Among	 the	 models	 tested	 in	 this	 study,	 the	
ResNet101 model	achieved	excellent	accuracy,	sensitivity,	
and	specificity	in	patch-	based	classification,	image-	based	
classification,	 and	 patient-	based	 classification	 of	 benign	
and	malignant	cells	in	lung	cytologic	images	obtained	via	
EBUS	procedures.	Our	semantic	 segmentation	 tests	also	
achieved	a	very	high	mIoU	using	the	HRNet	model.

A	 total	of	66	 images	 (990	patches)	 taken	 from	14	pa-
tients	were	used	 for	 testing.	Table 2 shows	 that	 the	sen-
sitivity,	 specificity,	 positive	 predictive	 value,	 negative	
predictive	 value,	 and	 diagnostic	 accuracy	 rate	 of	 the	
ResNet101  model	 in	 patch-	based	 classification	 were	
98.8%,	 98.8%,	 99.1%,	 98.3%,	 and	 98.8%,	 respectively.	
Table  3  shows	 that	 the	 patch-	based	 diagnostic	 accu-
racy	 rate	 of	 VGG16,	 ResNet50,	 ResNet152,	 ResNeXt101,	
ResNeSt50,	 ResNeSt101,	 and	 ResNeSt200	 was	 92.3%,	
94.7%,	92.6%,	94.1%,	96.1%,	94.1%,	and	91.7%,	respectively.	
Image-	based	classification	using	the	patch-	based	classifi-
cation	results	of	ResNet101	with	sliding	windows	yielded	

(1)
Sensitivity = True positives∕ (True positive + False negative)

(2)
Specificity = True negatives∕ (True negative + False positive)

(3)
Positive predictive value=

True positives∕ (True positive+False positive)

(4)
Negative predictive value=

True negatives∕ (True negative+False negative)

(5)mIoU = Area of intersection∕Area of union

F I G U R E  2  The	diagram	of	HRNet.	HRNet	leveraged	
256 × 256 high-	resolution	image	operations	throughout	the	entire	
network	and	added	some	low-	resolution	image	information	
(128 × 128,	64 × 64,	32 × 32)	at	each	stage	to	provide	features	of	
larger	cells.	This	enabled	the	model	to	segment	and	distinguish	
malignant	cells	globally	and	locally
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98.2%	 for	 sensitivity,	 77.8%	 for	 specificity,	 96.6%	 for	 the	
positive	predictive	value,	87.5%	for	the	negative	predictive	
value,	and	95.5%	for	the	diagnostic	accuracy	rate	(Table 4).	
Tables	 S1	 and	 S2	 show	 the	 diagnostic	 accuracy	 rate	 of	
image-	based	classification	with	cytologic	images	obtained	
via	TBB	and	TBNA	was	96.0%	and	93.8%,	respectively.	For	
patient-	based	classification	using	the	image-	based	classi-
fication	results,	we	obtained	100%	for	sensitivity,	66.7%	for	
specificity,	 91.7%	 for	 the	 positive	 predictive	 value,	 100%	
for	the	negative	predictive	value,	and	92.96%	for	the	diag-
nostic	accuracy	rate	(Table 5).	For	semantic	segmentation	
testing,	 the	results	 for	FCN,	U-	Net,	PSPNet,	DeepLabv3,	
DeepLabv3+,	and	FPN	were	81.3%,	84.2%,	78.6%,	88.2%,	
87.0%,	and	88.9%	mIoU,	respectively.	The	best	result	was	
89.2%	mIoU,	obtained	by	the	HRNet	model	(Table 6).

4 	 | 	 DISCUSSION

A	few	studies	have	applied	deep-	learning	models	in	lung	
cytologic	 image	 classification	 and	 segmentation.	 In	 two	
studies,	Teramoto	et	al	have	employed	CNNs	 to	classify	
benign	 and	 malignant	 cells	 from	 lung	 cytologic	 images,	
achieving	 89.3%	 sensitivity	 and	 83.3%	 specificity.24,25	 In	
our	study,	the	ResNet101 model	with	patch-	based	classi-
fication	achieved	98.8%	testing	accuracy	with	98.8%	sensi-
tivity	and	98.8%	specificity.	The	loss/epoch	curve	is	shown	
in	Figure 3.	We	also	found	that	ResNet101	exhibited	the	
highest	accuracy,	sensitivity,	and	specificity	compared	to	
the	 other	 CNN	 models	 (Table  3).	 By	 comparing	 the	 re-
sult	of	ResNet50,	ResNet101,	and	ResNet152	 in	Table 3,	
we	 can	 see	 that	 residual	 connections	 in	 ResNet101	 pro-
vide	the	network	with	appropriate	model	depth	and	size	
to	learn	distinguishable	features	from	cells	without	over-
fitting.	 By	 comparing	 the	 result	 of	 ResNet	 and	 ResNeSt	
in	 Table  3,	 we	 can	 find	 that	 models	 with	 an	 attention	
mechanism	 have	 too	 many	 parameters,	 often	 leading	 to	
overfitting	of	the	model.	Thus,	ResNet101	was	optimal	for	
learning	most	of	 the	features	 for	distinguishing	between	
benign	and	malignant	 lung	cytologic	patches	among	the	
models	we	tested.	Furthermore,	we	also	observed	that	the	

patch-	based	 classification	 accuracy	 of	 ResNet101	 can	 be	
increased	from	92.2%	to	98.8%	using	the	data	augmenta-
tion.	 The	 use	 of	 ImageNet	 dataset	 for	 transfer	 learning	
can	also	increase	the	patch-	based	classification	accuracy	
of	ResNet101	from	86.5%	to	98.8%.

In	 image-	based	 classification,	 images	 were	 used	 as	 a	
unit	to	distinguish	between	benign	and	malignant	cases,	
with	the	images	also	cropped	into	patches	through	sliding	
windows	 for	 patch-	based	 classification.	 Since	 the	 patch-	
based	classification	models	tended	to	have	low	specificity	
and	high	 false-	positive	rate,	as	shown	in	Table 3,	we	set	
the	threshold	of	Softmax	output	to	be	0.99.	If	the	Softmax	
output	 from	 the	 patch-	based	 classification	 was	 higher	
than	 0.99,	 the	 image	 was	 classified	 as	 malignant.	 The	
image-	based	classification	accuracy	was	95.5%,	with	98.2%	
sensitivity	and	77.8%	specificity.	Besides,	the	image-	based	
classification	was	also	conducted	on	a	dataset	with	cyto-
logic	images	obtained	via	EBUS-	TBB	only	(Table	S1)	and	
a	dataset	with	cytologic	images	obtained	via	EBUS-	TBNA	
only	 (Table	 S2).	 The	 diagnostic	 accuracy	 rate	 reached	
96.0%,	93.8%,	and	95.5%	on	the	EBUS-	TBB	dataset,	EBUS-	
TBNA	 dataset,	 and	 EBUS-	TBB	 dataset  +  EBUS-	EBNA	
dataset,	 respectively.	 To	 our	 knowledge,	 EBUS-	TBB	 and	
EBUS-	TBNA	 approach	 the	 different	 locations	 of	 the	 le-
sions,	 may	 have	 different	 cytologic	 pictures.	 The	 diag-
nostic	accuracy	of	both	study	groups	is	very	similar.	The	
results	demonstrated	the	effectiveness	of	our	method	on	
classifying	cytologic	images	obtained	via	both	EBUS-	TBB	
and	 EBUS-	TBNA.	The	 classification	 results	 also	 showed	
that	 our	 model	 can	 perform	 well	 on	 both	 kinds	 of	 data	
obtained	from	these	two	different	cytologic	image	acquisi-
tion	methods.	Table 4 shows	there	were	two	false	positives	
and	 one	 false	 negative.	The	 two	 false	 positives	 occurred	
because	 the	 nucleus	 was	 enlarged	 in	 these	 reactive	 be-
nign	 cells	 (reactive	 bronchial	 cells	 and	 alveolar	 macro-
phages),	 which	 mimicked	 the	 appearance	 of	 malignant	
cells	(Figure 4).	The	false-	negative	image	may	have	been	
caused	by	blurred	cell	boundaries,	making	it	difficult	for	
our	CNN	models	to	identify	the	target	cells.	The	error	in	
the	image-	based	classification	of	each	patient	accounted	
for	only	a	few	images,	and	the	majority	vote	algorithm	cor-
rected	these	in	the	patient-	based	classification.

The	accuracy	of	the	patient-	based	classification	was	
92.9%,	with	100%	sensitivity	and	66.7%	specificity.	The	
relatively	low	specificity	may	be	due	to	the	small	sample	
size.	Fourteen	patients	were	enrolled	for	the	test	group,	
with	 one	 patient	 mistakenly	 categorized	 as	 a	 malig-
nant	case	(Table 5).	Although	misdiagnosis	might	delay	
treatment	planning	 in	cancer	patients,	 achieving	100%	
diagnostic	 accuracy	 in	 cytologic	 interpretation	 is	 diffi-
cult,	even	for	experienced	cytologists.	Clinically,	repeat	
sampling	would	be	performed	when	lung	malignancy	is	
highly	suspected	based	on	computed	tomography	image	

T A B L E  2 	 Patch-	based	benign	and	malignant	classification	
results	using	ResNet101

ResNet101 Final cytologic image results

TotalPrediction Positive Negative

Positive 563 5 568

Negative 7 415 422

Total 570 420 990

Note: Sensitivity =98.8%,	specificity =98.8%,	positive	predictive	
value =99.1%,	negative	predictive	value =98.3%,	and	diagnostic	
accuracy =98.8%.
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finding	or	serological	 tumor	marker	elevation.	We	also	
found	that	among	the	two	images	from	this	patient,	the	
cellular	 morphology	 in	 one	 image	 was	 very	 similar	 to	
that	of	malignant	cells.	We	believe	that	obtaining	more	
images	 to	 increase	 the	number	of	 training	data	during	
the	 EBUS	 procedure	 might	 minimize	 or	 eliminate	 this	
problem.

The	images	classified	as	malignant	by	image-	based	clas-
sification	were	sent	to	the	semantic	segmentation	model	
to	 mark	 the	 malignant	 cell	 areas.	 This	 was	 performed	
using	 different	 models	 with	 adjusted	 hyperparameters.	

The	 best	 semantic	 segmentation	 result	 was	 achieved	
using	HRNet	(mIoU:	89.2%),	as	shown	in	Table 6.	HRNet	
comprised	four	subnetworks.	Each	subnetwork	was	oper-
ated	at	different	resolutions	with	information	repeatedly	
exchanged	with	other	subnetworks	via	multiscale	fusion.	
We	leveraged	high-	resolution	image	operations	through-
out	 the	entire	network	 to	 focus	on	 the	 features	of	 small	
cells,	 and	 we	 added	 low-	resolution	 image	 information	
through	 multiscale	 fusion	 for	 the	 features	 of	 large	 cells.	
Hence,	the	model	possessed	sufficient	information	to	seg-
ment	and	distinguish	malignant	 cells,	both	globally	and	
locally.	Adding	an	object-	contextual	representation	(OCR)	
module39	 to	 HRNet	 did	 not	 improve	 the	 accuracy,	 since	
the	dataset	in	this	study	was	a	single-	class	semantic	seg-
mentation	task,	which	does	not	fully	leverage	the	advan-
tages	of	 the	OCR	module.	Figure 5 shows	a	comparison	
of	the	test	images,	test	targets,	and	results	of	the	semantic	
segmentation	by	HRNet	(mIoU:	89.2%).

In	our	study,	the	image	sample	comprised	consider-
ably	more	malignant	cases	than	benign	cases.	We	lever-
aged	a	patch-	cropping	method	during	data	preprocessing	
to	solve	the	data	imbalance	problem	of	image-	level	data	

Model
Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

Positive 
predictive 
value (%)

Negative 
predictive 
value (%)

VGG16 92.3 96.8 86.2 90.5 95.3

ResNet50 94.7 95.4 93.8 95.4 93.8

ResNet101 98.8 98.8 98.8 99.1 98.3

ResNet152 92.6 94.6 90.0 92.8 92.4

ResNeXt50 93.5 96.3 89.8 92.7 94.7

ResNeXt101 94.1 96.8 90.5 93.2 95.5

ResNeSt50 96.1 96.3 95.7 96.8 95.0

ResNeSt101 94.1 94.9 93.1 94.9 93.1

ResNeSt200 91.7 95.8 86.2 90.4 93.8

T A B L E  3 	 Patch-	based	benign	and	
malignant	classification	results	using	
various	deep-	learning	classification	
models

T A B L E  4 	 Image-	based	benign	and	malignant	classification	
results	based	on	the	patch-	based	classification	results	and	a	sliding	
window	algorithm	(EBUS-	TBB	dataset + EBUS-	TBNA	dataset)

ResNet101 Final cytologic image results

TotalPrediction Positive Negative

Positive 56 2 58

Negative 1 7 8

Total 57 9 66

Note: Sensitivity =98.2%,	specificity =77.8%,	positive	predictive	
value =96.6%,	negative	predictive	value =87.5%,	and	diagnostic	
accuracy =95.5%.

T A B L E  5 	 Patient-	based	benign	and	malignant	classification	
results	based	on	the	image-	based	classification	results	and	a	
majority	vote	algorithm

ResNet101 Final cytologic image results

TotalPrediction Positive Negative

Positive 11 1 12

Negative 0 2 2

Total 11 3 14

Note: Sensitivity =100%,	specificity =66.7%,	positive	predictive	value =91.7%,	
negative	predictive	value =100%,	and	diagnostic	accuracy =92.9%.

T A B L E  6 	 Malignant	lung	cell	semantic	segmentation	results	
using	various	deep-	learning	models

Model Backbone mIoU (%)

FCN ResNet101 81.3

U-	Net ResNet101 84.2

PSPNet ResNet101 78.6

DeepLabv3 ResNet101 88.2

DeepLabv3+ ResNet101 87.0

FPN ResNet101 88.9

HRNet HRNet 89.2

HRNet + OCR HRNet 89.1
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and	 then	 calculated	 the	 image-	based	 classification	 re-
sults	based	on	the	results	of	the	patch-	based	classifica-
tion	 with	 a	 sliding	 window	 algorithm.	 The	 number	 of	
benign	images	was	also	directly	upsampled	to	solve	the	
data	imbalance	and	was	defined	as	“Image-	level + up-
sampling”	 in	 this	 study	 (Table  7).	 To	 compare	 the	 ef-
fect	 of	 different	 data	 preprocessing	 methods,	 we	 used	
ResNet101	with	an	initial	learning	rate	of	0.0001,	batch	
size	of	32,	optimizer	set	 to	stochastic	gradient	descent,	
and	 loss	 function	 set	 to	 binary	 cross-	entropy;	 cosine	
learning	 rate	 decay	 was	 also	 used.	The	 only	 difference	
was	that	the	input	image	size	was	512 × 512	for	the	direct-	
image	 classification	 and	 the	 patch	 size	 was	 224  ×  224	

for	the	patch-	based	classification.	Experimental	results	
showed	 that	 the	 accuracy	 of	 patch-	based	 classification	
with	 a	 sliding	 window	 was	 higher	 than	 the	 other	 two	
methods;	thus,	this	approach	could	effectively	solve	any	
data	imbalance.	This	overcomes	the	problem	of	directly	
classifying	lung	cytologic	images	with	a	data	imbalance,	
which	would	result	 in	the	model	predicting	all	 the	im-
ages	as	malignant.	Even	when	the	benign	images	were	
upsampled	 five	 times	 to	 balance	 the	 data,	 the	 benign	
data	variation	was	still	too	low	for	the	model	to	success-
fully	learn	the	cell	characteristics.

The	weights	of	the	last	layer	of	the	ResNet101	were	also	
visualized	 for	 the	 patch-	based	 classification	 to	 confirm	

F I G U R E  3  The	loss/epoch	curve	of	
ResNet101	while	fine-	tuning

F I G U R E  4  Image-	based	classification	results	visualization.	White	areas	are	patches	predicted	as	malignant	and	black	areas	are	patches	
predicted	as	benign	or	background.	(A)	True-	positive	image.	(B)	False-	positive	images.	(C)	False-	negative	images
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whether	 the	 model	 had	 focused	 on	 the	 correct	 informa-
tion.	The	red	area	in	Figure 6	indicates	the	area	the	model	
focuses	 on	 while	 learning;	 the	 blue	 area	 receives	 less	
focus.	We	found	that	the	model	learned	the	specific	char-
acteristics	of	malignant	cells	and	ignored	the	background	
and	benign	areas,	 thus	confirming	that	 it	 focuses	on	the	
correct	area	of	the	cell.

We	routinely	perform	ROSE	with	Hemacolor	stain	in	
our	institution	because	the	color	is	very	similar	to	Diff-	
Quik	 stain	and	 the	procedure	 time	 is	 shorter.	Most	 re-
ports	on	the	efficacy	of	CNNs	use	Papanicolaou	stain	for	
cytologic	 preparation.24,25	 In	 previous	 clinical	 studies,	

different	 staining	 methods	 have	 been	 associated	 with	
sensitivities	 ranging	 from	 72.8%	 to	 96.9%.40-	42	 In	 the	
present	 study,	 ResNet101	 exhibited	 excellent	 perfor-
mance	in	differentiating	between	benign	and	malignant	
cells.	This	 is	 the	first	study	to	use	deep-	learning	meth-
ods	to	interpret	the	cytologic	specimens	via	Hemacolor	
stain,	confirming	that	different	staining	methods	can	be	
used	by	deep-	learning	models	 in	 interpreting	cytologic	
specimens.

In	future,	more	data	and	pulmonologist	should	join	
to	 overcome	 the	 limitations	 in	 our	 study.	 First,	 the	
volume	 of	 data	 was	 relatively	 small	 for	 training	 the	

F I G U R E  5  Semantic	segmentation	results	visualization.	Test	images	are	in	the	first	row;	test	targets	(ground	truth)	are	in	the	second	
row.	White	pixels	denote	areas	predicted	as	malignant	and	black	pixels	denote	areas	predicted	as	benign	or	background.	Semantic	
segmentation	results	are	in	the	third	row

T A B L E  7 	 Classification	method	comparison	of	different	data	preprocessing	methods

Methods
Benign training 
data

Malignant 
training data Accuracy (%) Sensitivity (%)

Specificity 
(%)

Image-	level 59 324 86.4 100.0 0.0

Image-	level + upsampling 295 324 86.4 100.0 0.0

Patch-	based + sliding	window 3286 4200 95.5 98.2 77.8
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deep-	learning	 model.	 Second,	 most	 of	 the	 malignant	
data	 were	 from	 cases	 of	 lung	 adenocarcinoma	 so	 the	
data	amount	of	other	cancer	cells	should	be	increased.	
Third,	only	one	pulmonologist	(L.C.K.)	who	is	focus	on	
interventional	 pulmonology	 has	 completed	 the	 course	
of	cytologic	training.	Due	to	this	reason,	ROSE	can	only	
be	 performed	 during	 the	 bronchoscopy	 procedure	 and	
we	 limited	 our	 research	 to	 EBUS	 procedures.	To	 over-
come	 these	 limitations,	 future	 studies	 should	 follow	
the	present	investigation	but	with	a	larger	and	different	
study	population.

In	 conclusion,	 classification	 procedures	 followed	 by	
semantic	 segmentation	 yield	 high	 accuracy	 for	 lung	 cy-
tologic	 analysis.	 ResNet101	 achieved	 98.8%	 accuracy	 for	
patch-	based	 classification	 after	 hyperparameter	 adjust-
ment.	 Image-	based	 classification	 accuracy	 was	 95.5%	
with	 the	 sliding	 window	 algorithm,	 and	 patient-	based	
classification	accuracy	was	92.9%.	After	benign	and	ma-
lignant	 classification	 of	 lung	 cytologic	 images,	 semantic	
segmentation	was	employed	to	classify	each	pixel	 in	 the	
malignant	 images	to	mark	malignant	cell	areas;	 for	this,	
HRNet	achieved	an	mIoU	of	89.2%.	This	is	the	first	study	
to	 combine	 lung	 cytologic	 image	 deep-	learning	 classifi-
cation	with	semantic	segmentation.	It	is	also	the	first	re-
search	and	deep-	learning	analysis	of	a	dataset	comprising	
Hemacolor-	stained	lung	cytologic	images.	We	believe	that	
the	 deep-	learning	 model	 employed	 in	 this	 study	 can	 be	
applied	 clinically	 in	 the	 interpretation	 of	 lung	 cytologic	
images	in	the	future.
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