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Abstract
Background: Rapid on-site cytologic evaluation (ROSE) helps to improve the 
diagnostic accuracy in endobronchial ultrasound (EBUS) procedures. However, 
cytologists are seldom available to perform ROSE in many institutions. Recent 
studies have investigated the application of deep learning in cytologic image anal-
ysis. As such, the present study analyzed lung cytologic images obtained by EBUS 
procedures, and employed deep-learning methods to distinguish between benign 
and malignant cells and to semantically segment malignant cells.
Methods: Ninety-seven patients who underwent 104 EBUS procedures were en-
rolled. Four hundred and ninety-nine lung cytologic images obtained via ROSE, 
including 425 malignant and 74 benign, and most malignant were lung adenocar-
cinoma (64.3%). All the images were used to train a residual network model with 
101 layers (ResNet101), with suitable hyperparameters selected to classify benign 
and malignant lung cytologic images. An HRNet model was also employed to 
mark the area of malignant cells. Automatic patch-cropping was adopted to fa-
cilitate dataset preparation.
Results: Malignant cells were successfully classified by ResNet101 with 98.8% 
classification accuracy, 98.8% sensitivity, and 98.8% specificity in patch-based clas-
sification; 95.5% classification accuracy in image-based classification; and 92.9% 
classification accuracy in patient-based classification. Malignant cell area was 
successfully marked by HRNet with a mean intersection over union of 89.2%. The 
automatic cropping method enabled the system to complete diagnosis within 1 s.
Conclusions: This is the first study to combine lung cytologic image deep-learning 
classification with semantic segmentation. The model was optimized for high ac-
curacy and the automatic cropping facilitates the clinical application of our model. 
The success in both lung cytologic images classification and semantic segmenta-
tion on our dataset shows a promising result for clinical application in the future.
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1   |   INTRODUCTION

Endobronchial ultrasound (EBUS) is a relatively new and 
minimally invasive procedure for diagnosing peripheral 
pulmonary lesions (PPLs) or mediastinal/hilar lesions.1-3 
Prior research has confirmed its low procedure-related 
complication rates.4 As a result, EBUS is widely applied 
in diagnosing thoracic lesions in many clinical institu-
tions.5,6 However, the diagnostic yields of EBUS alone are 
insufficient.7,8 To improve the procedure's diagnostic ac-
curacy, attempts have been made to combine EBUS with 
other methods, such as fluoroscopy, virtual bronchoscopic 
navigation, and electromagnetic navigation.9-13 However, 
the equipment employed in these procedures is not widely 
available because of the high cost and other limitations. 
As such, new approaches should be identified for clinical 
practice.

Rapid on-site cytologic evaluation (ROSE) provides 
immediate feedback, which ensures correct and sufficient 
sample collection.14 Although ROSE can improve the di-
agnostic accuracy of EBUS procedures,15-17 it requires 
extra time from the cytologist and is largely considered 
economically inefficient.14 As such, few cytologists are 
willing to perform ROSE during a bronchoscopy proce-
dure. Despite attempts to train pulmonologists to interpret 
cytologic smears on-site while EBUS procedures are being 
performed,8 the EBUS procedure time appears to be pro-
longed because of the interruption of having to wait for the 
ROSE results. An adequate and effective means to present 
on-site cytologic material during EBUS procedures is thus 
required if the procedure time is to be shortened.

With computer vision, machines can recognize and 
analyze images and videos, effectively allowing them to 
view the world as humans do. Advancements in computer 
vision with deep learning have led to considerable de-
velopments, particularly regarding convolutional neural 
networks (CNNs). Previous studies have applied CNNs 
in cytologic image analysis. Sanyal et al. identified papil-
lary carcinoma on thyroid fine-needle aspiration cytology 
smears18 and Savala et al. distinguished follicular ade-
noma from follicular carcinoma on fine-needle aspiration 
of thyroid.19 Zejmo et al., Steiner et al., and Bejnordi et al. 
classified breast cancer cytologic specimen.20-22 Pouliakis 
et al. analyzed the role of artificial neural networks in 
cytopathology.23 Teramoto et al. classified lung cytologic 
images.24,25 However, limited data have been reported on 
the application of CNNs in the presentation of lung cyto-
logic specimens via EBUS procedures. Thus, the present 

study evaluated the accuracy of CNNs in distinguishing 
between malignant and benign pulmonary cytologic spec-
imens obtained by EBUS procedures.

2   |   MATERIALS AND METHODS

2.1  |  Participants

Participants were 97 patients with 70 PPLs and 34 for 
mediastinal/hilar lesions who underwent EBUS pro-
cedures at the Division of Thoracic Medicine, National 
Taiwan University Cancer Center, or Division of Thoracic 
Medicine, National Taiwan University Hsin-Chu Hospital, 
between November 2018 and February 2020. Participants 
comprised 53  men and 44 women aged 23–92  years 
(mean: 67.1  years) (Table  1). Written informed consent 
was obtained from each patient prior to the EBUS pro-
cedure. The study was approved by the National Taiwan 
University Cancer Center Institutional Review Board 
(IRB #202012053RINB).

2.2  |  EBUS procedures and on-site 
cytologic image collection

All EBUS procedures were performed by a pulmonologist, 
who has more than 10  years of experience in broncho-
scopic clinical practice. Before the procedures, computer 
tomography images were screened for planning. For the 
diagnosis of PPLs, we performed EBUS-guided transbron-
chial biopsy (EBUS-TBB). If the target lesions were in the 
mediastinal or hilar area, EBUS-guided transbronchial 
needle aspiration (EBUS-TBNA) will be considered.

During EBUS-TBB, we used flexible bronchoscopy 
(BF-Q290 or BF-1T290; Olympus Co.) combined with 
a 20-MHz radial-EBUS (UM-S20-17S or UM-S20-20R; 
Olympus Co.) for the procedure. The radial-EBUS was in-
serted through the working channel of the scope into the 
suspected target bronchus based on computed tomography 
image. After confirming the location of the lesion, speci-
mens were collected via biopsy forceps (NBF01-11018120; 
MICRO-TECH Co. Ltd.) or a guide sheath kit (K201/K203; 
Olympus Co.).

Convex-EBUS (BF-UC260FW; Olympus Co.) was 
dedicated for EBUS-TBNA procedure. We identified the 
mediastinal and hilar lesions via slow withdrawal and ro-
tation of the ultrasound transducer. TBNA biopsy with a 
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22-gauge needle (NA-201SX-4022; Olympus Co.) was then 
performed to obtain histological cores.

During the procedure, material from the EBUS-guided 
samples was imprinted on a clear glass slide without 
mounting coverslip for ROSE. Imprint smears were 
stained using a rapid method (Hemacolor; Merck KGaA) 
and evaluated on-site via microscopy (BX43; Olympus 
Co.) by our pulmonologist who also has well cytologic 
training with more than 6-year experience in cytologic 
clinical practice. When malignant cells were suspected 
during the ROSE, at least three more TBB, or one more 
TBNA would be performed at the same position. If none 
of the suspicious cells was detected, we would change to 
another site for repeating biopsy and ROSE study. The 
EBUS procedure would be terminated if no suspicious cell 
was explored via ROSE study for 2–3 times or if the patient 
could no longer tolerate the procedure. All tissue samples 
obtained by EBUS procedures were impregnated in 10% 
formalin, embedded in paraffin, and stained with hema-
toxylin and eosin for subsequent pathological analysis.

During the ROSE study, we also recorded the images of 
suspected malignant cells at 100×, 200×, or 400× ampli-
fication with a microscope digital camera system (DP22; 
Olympus Co.). Random cytologic images were also taken 
of samples with no malignant cells. Diagnosis of on-site 
cytologic images was confirmed by the formal cytopatho-
logic results. Based on the cytopathologic results, final 

T A B L E  1   Characteristics of the patients and cytologic images

Characteristics n

Patients 97

Age (years-old, range) 67.1 (23–92)

Male (%) 53 (54.6)

Lesion location 104

Peripheral pulmonary lesions (%) 70 (67.3)

Mediastinal/hilar lesions (%) 34 (32.7)

Cytologic images 499

Malignancy (%) 425 (85.2)

Lung adenocarcinoma 321 (64.3)

Lung squamous cell carcinoma 41 (8.2)

Small cell lung cancer 33 (6.6)

Other NSCLC 12 (2.4)

Breast cancer 6 (1.2)

Pancreatic cancer 2 (0.4)

Hepatocellular carcinoma 10 (2.0)

Non-malignant process (%) 74 (14.8)

Cryptococcosis 4 (0.8)

Granulomatous inflammation 2 (0.4)

Benign inflammation cells 55 (11.0)

Ciliated columnar cells 13 (2.6)

Abbreviation: NSCLC, non-small cell lung cancer.

F I G U R E  1   (A) Each benign image is 
randomly cropped into 15 benign patches 
224 × 224 in size. (B) Each malignant 
image is randomly cropped into 
10 malignant patches in areas overlapping 
malignant cells, and 5 benign patches in 
areas clear of malignant cells



9050  |      LIN et al.

diagnosis of malignancy was defined as positive and non-
malignant process was defined as negative in this study.

In the present study, 499 cytologic images were obtained 
from the participants, with 335 images via EBUS-TBB and 
164 images via EBUS-TBNA. Four hundred and twenty-five 
of them were classified as malignant and 74 as benign. In 
the 425 malignant images, 321 were lung adenocarcinoma, 
41 were lung squamous cell carcinoma, 33 were small cell 
carcinoma, 12 were other non-small cell lung cancer, 10 
were hepatocellular carcinoma, 6 were breast cancer, and 
the remaining 2 were pancreatic cancer. Nonmalignant 
processes were pulmonary cryptococcosis in 4 cases, gran-
ulomatous inflammation in 2 cases, benign inflammation 
cells, which were dominant of alveolar macrophages, poly-
morphonuclear leukocytes, or lymphocytes in 55 cases, and 
ciliated columnar cells only in 13 cases (Table 1).

2.3  |  Data preprocessing

The original images (1920 × 1440 pixels) were cropped into 
small patches (224 × 224 pixels). To balance the number of 
benign and malignant data, additional benign patches were 
generated from the benign images and nonmalignant cell 
areas in the malignant images. First, 15 benign patches were 
randomly cropped from the benign images (Figure  1A). 
Second, we labeled malignant cells area in malignant im-
ages with LabelMe26 in pixel level. From malignant im-
ages, 10  malignant patches were randomly cropped from 
areas overlapping malignant cells, and 5 benign patches 
were randomly cropped from areas clear of malignant cells 
(Figure 1B). A total of 7486 small patches were generated 
after automatic cropping, including 3286 benign patches 
and 4200 malignant patches. Finally, all the patches were 
divided into a training set (70% of participants), a validation 
set (15% of participants), and a test set (15% of participants).

2.4  |  Benign and malignant cell 
classification

The volume of training data was increased through data 
augmentation to avoid overfitting. Data augmentation 
included vertical flips, horizontal flips, random rotation 
by 20  degrees left and right, Gaussian blurring with a 
probability of 0.2 (SD: 0–3), contrast adjustment with a 
probability of 0.2 (gamma: 0.5–2), and hue and saturation 
adjustment with a probability of 0.2 (10 to −10 degrees).

Several deep-learning classification models were con-
structed to evaluate their ability to classify benign and 
malignant patches. VGG1627 was built for comparison 
with research by Teramoto et al.24,25 ResNet50, ResNet101, 
and ResNet15228 were selected due to its strong ability 

of avoiding accuracy saturation in deep networks. If the 
residual connection was the optimal path for backward 
propagation, then the network would approach the weight 
of the convolutional block to zero, making the network 
continue to learn with other residual blocks. ResNeXt50 
and ResNeXt10129 were able to detect different scale size 
features by combining inception modules and residual 
connections. ResNeSt50, ResNeSt101, and ResNeSt20030 
combined the ResNeXt model with an attention mecha-
nism to enhance the ability of feature extraction. All the 
models were fine-tuned for 100 epochs after pretraining 
on the ImageNet, dataset with natural color (RGB). The 
hyperparameters used in the benign and malignant patch 
classification were an initial learning rate of 0.0001, a 
batch size of 32, and image input size of 224. The opti-
mizer was stochastic gradient descent, the loss function 
was binary cross-entropy, and cosine learning rate decay 
was employed.

During testing, accuracy for patch-based and image-
based classification was calculated separately. Image-based 
classification accuracy was calculated using a sliding win-
dow algorithm, with the 224  ×  224 patches sliding 112 
pixels from the upper left corner of the image to the right, 
moving downward row-by-row. Since the benign patches 
contained background patches, which were easier to be 
classified, the model tended to overfit and focus less on 
classifying benign and malignant cells, resulting in a high 
false-positive rate and low specificity. Moreover, classifying 
malignant patches was difficult and required distinguish-
ing features such as the ratio of the nucleus to the cell, 
which can lead to a high false-positive rate and low speci-
ficity. To solve these problems, we set the Softmax output 
threshold to 0.99. An image was classified as malignant 
only if there was at least a patch with a Softmax output 
higher than 0.99; otherwise, it was classified as benign.

For patient-based classification, each patient had 2–10 
images. A majority vote algorithm was thus employed to 
classify the cases as benign or malignant. The algorithm 
classified cases with more benign images than malignant 
images as benign, and vice versa for those with more ma-
lignant images. To avoid potentially missing malignant 
cases, those with the same number of benign and malig-
nant images were also considered malignant.

2.5  |  Malignant cell segmentation

The CNN for semantic segmentation of malignant cells 
was trained with malignant images only. The 425  ma-
lignant images were divided into a training set (70% of 
images), a validation set (15% of images), and a test set 
(15% of images). Data augmentation was performed to 
increase the volume of data, including random rotation 
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by 90  degrees, random horizontal flips, random vertical 
flips, hue saturation adjustment, brightness and contrast 
adjustment, and random cropping of images with a size of 
1024 × 1024.

During training, different semantic segmentation mod-
els were constructed. FCN31 is the basic model with an 
encoder/decoder structure and was used as our baseline 
model. U-Net32 is suitable for medical image segmenta-
tion which added skip connections between the encoder 
and decoder to achieve well performance with low param-
eters. PSPNet33 applies a pyramid pooling module after 
the encoder and is able to extract useful information in en-
coder. DeepLabv334 is a powerful semantic segmentation 
model on semantic segmentation tasks which employed 
dilated convolution kernels to preserve high-resolution 
information. DeepLabv3+35  simplified the decoder from 
DeepLabv3 to reduce the computational complexity while 
maintaining the ability of preserving high-resolution in-
formation. FPN36 performed well on object detection 
tasks which stacked different sizes of feature maps in 
the decoder to obtain multiscale features. The design of 
the decoder of FPN can also perform well on semantic 
segmentation tasks. HRNet37  leveraged 256  ×  256  high-
resolution image operations throughout the entire net-
work and added some low-resolution image information 
(128 × 128, 64 × 64, 32 × 32) at each stage to provide fea-
tures of larger cells, as shown in Figure 2. This enabled the 
model to segment and distinguish malignant cells globally 
and locally. At the end of the network, feature maps of 
different sizes were stacked to obtain different levels of 
cell information. All the selected models were fine-tuned 
for 300 epochs after pretraining on the ImageNet dataset. 
Hyperparameters employed for semantic segmentation 
included an initial learning rate of 0.001, batch size of 4, 
image input size of 1024, and weight decay of 0.0001. The 
optimizer was stochastic gradient descent, and the loss 
function was 0.5 times the binary cross-entropy plus the 
dice loss.38 Cosine learning rate decay was employed.

2.6  |  Statistical analysis

Interpretations of the ResNet101-based deep-learning 
models were compared to the final diagnosis from the 
lung cytologic images. Sensitivity, specificity, positive 
predictive value, negative predictive value, and diagnos-
tic accuracy rate were calculated according to standard 
definitions. Mean intersection over union (mIoU) was ob-
tained for each semantic segmentation model during the 
malignant cell semantic segmentation process. The result 
for mIoU was calculated as the intersection area divided 
by the union area for a predicted area and target area. The 
formulas were as follows:

3   |   RESULTS

Among the models tested in this study, the 
ResNet101 model achieved excellent accuracy, sensitivity, 
and specificity in patch-based classification, image-based 
classification, and patient-based classification of benign 
and malignant cells in lung cytologic images obtained via 
EBUS procedures. Our semantic segmentation tests also 
achieved a very high mIoU using the HRNet model.

A total of 66 images (990 patches) taken from 14 pa-
tients were used for testing. Table 2 shows that the sen-
sitivity, specificity, positive predictive value, negative 
predictive value, and diagnostic accuracy rate of the 
ResNet101  model in patch-based classification were 
98.8%, 98.8%, 99.1%, 98.3%, and 98.8%, respectively. 
Table  3  shows that the patch-based diagnostic accu-
racy rate of VGG16, ResNet50, ResNet152, ResNeXt101, 
ResNeSt50, ResNeSt101, and ResNeSt200 was 92.3%, 
94.7%, 92.6%, 94.1%, 96.1%, 94.1%, and 91.7%, respectively. 
Image-based classification using the patch-based classifi-
cation results of ResNet101 with sliding windows yielded 

(1)
Sensitivity = True positives∕ (True positive + False negative)

(2)
Specificity = True negatives∕ (True negative + False positive)

(3)
Positive predictive value=

True positives∕ (True positive+False positive)

(4)
Negative predictive value=

True negatives∕ (True negative+False negative)

(5)mIoU = Area of intersection∕Area of union

F I G U R E  2   The diagram of HRNet. HRNet leveraged 
256 × 256 high-resolution image operations throughout the entire 
network and added some low-resolution image information 
(128 × 128, 64 × 64, 32 × 32) at each stage to provide features of 
larger cells. This enabled the model to segment and distinguish 
malignant cells globally and locally
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98.2% for sensitivity, 77.8% for specificity, 96.6% for the 
positive predictive value, 87.5% for the negative predictive 
value, and 95.5% for the diagnostic accuracy rate (Table 4). 
Tables S1 and S2 show the diagnostic accuracy rate of 
image-based classification with cytologic images obtained 
via TBB and TBNA was 96.0% and 93.8%, respectively. For 
patient-based classification using the image-based classi-
fication results, we obtained 100% for sensitivity, 66.7% for 
specificity, 91.7% for the positive predictive value, 100% 
for the negative predictive value, and 92.96% for the diag-
nostic accuracy rate (Table 5). For semantic segmentation 
testing, the results for FCN, U-Net, PSPNet, DeepLabv3, 
DeepLabv3+, and FPN were 81.3%, 84.2%, 78.6%, 88.2%, 
87.0%, and 88.9% mIoU, respectively. The best result was 
89.2% mIoU, obtained by the HRNet model (Table 6).

4   |   DISCUSSION

A few studies have applied deep-learning models in lung 
cytologic image classification and segmentation. In two 
studies, Teramoto et al have employed CNNs to classify 
benign and malignant cells from lung cytologic images, 
achieving 89.3% sensitivity and 83.3% specificity.24,25 In 
our study, the ResNet101 model with patch-based classi-
fication achieved 98.8% testing accuracy with 98.8% sensi-
tivity and 98.8% specificity. The loss/epoch curve is shown 
in Figure 3. We also found that ResNet101 exhibited the 
highest accuracy, sensitivity, and specificity compared to 
the other CNN models (Table  3). By comparing the re-
sult of ResNet50, ResNet101, and ResNet152 in Table 3, 
we can see that residual connections in ResNet101 pro-
vide the network with appropriate model depth and size 
to learn distinguishable features from cells without over-
fitting. By comparing the result of ResNet and ResNeSt 
in Table  3, we can find that models with an attention 
mechanism have too many parameters, often leading to 
overfitting of the model. Thus, ResNet101 was optimal for 
learning most of the features for distinguishing between 
benign and malignant lung cytologic patches among the 
models we tested. Furthermore, we also observed that the 

patch-based classification accuracy of ResNet101 can be 
increased from 92.2% to 98.8% using the data augmenta-
tion. The use of ImageNet dataset for transfer learning 
can also increase the patch-based classification accuracy 
of ResNet101 from 86.5% to 98.8%.

In image-based classification, images were used as a 
unit to distinguish between benign and malignant cases, 
with the images also cropped into patches through sliding 
windows for patch-based classification. Since the patch-
based classification models tended to have low specificity 
and high false-positive rate, as shown in Table 3, we set 
the threshold of Softmax output to be 0.99. If the Softmax 
output from the patch-based classification was higher 
than 0.99, the image was classified as malignant. The 
image-based classification accuracy was 95.5%, with 98.2% 
sensitivity and 77.8% specificity. Besides, the image-based 
classification was also conducted on a dataset with cyto-
logic images obtained via EBUS-TBB only (Table S1) and 
a dataset with cytologic images obtained via EBUS-TBNA 
only (Table S2). The diagnostic accuracy rate reached 
96.0%, 93.8%, and 95.5% on the EBUS-TBB dataset, EBUS-
TBNA dataset, and EBUS-TBB dataset  +  EBUS-EBNA 
dataset, respectively. To our knowledge, EBUS-TBB and 
EBUS-TBNA approach the different locations of the le-
sions, may have different cytologic pictures. The diag-
nostic accuracy of both study groups is very similar. The 
results demonstrated the effectiveness of our method on 
classifying cytologic images obtained via both EBUS-TBB 
and EBUS-TBNA. The classification results also showed 
that our model can perform well on both kinds of data 
obtained from these two different cytologic image acquisi-
tion methods. Table 4 shows there were two false positives 
and one false negative. The two false positives occurred 
because the nucleus was enlarged in these reactive be-
nign cells (reactive bronchial cells and alveolar macro-
phages), which mimicked the appearance of malignant 
cells (Figure 4). The false-negative image may have been 
caused by blurred cell boundaries, making it difficult for 
our CNN models to identify the target cells. The error in 
the image-based classification of each patient accounted 
for only a few images, and the majority vote algorithm cor-
rected these in the patient-based classification.

The accuracy of the patient-based classification was 
92.9%, with 100% sensitivity and 66.7% specificity. The 
relatively low specificity may be due to the small sample 
size. Fourteen patients were enrolled for the test group, 
with one patient mistakenly categorized as a malig-
nant case (Table 5). Although misdiagnosis might delay 
treatment planning in cancer patients, achieving 100% 
diagnostic accuracy in cytologic interpretation is diffi-
cult, even for experienced cytologists. Clinically, repeat 
sampling would be performed when lung malignancy is 
highly suspected based on computed tomography image 

T A B L E  2   Patch-based benign and malignant classification 
results using ResNet101

ResNet101 Final cytologic image results

TotalPrediction Positive Negative

Positive 563 5 568

Negative 7 415 422

Total 570 420 990

Note: Sensitivity =98.8%, specificity =98.8%, positive predictive 
value =99.1%, negative predictive value =98.3%, and diagnostic 
accuracy =98.8%.
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finding or serological tumor marker elevation. We also 
found that among the two images from this patient, the 
cellular morphology in one image was very similar to 
that of malignant cells. We believe that obtaining more 
images to increase the number of training data during 
the EBUS procedure might minimize or eliminate this 
problem.

The images classified as malignant by image-based clas-
sification were sent to the semantic segmentation model 
to mark the malignant cell areas. This was performed 
using different models with adjusted hyperparameters. 

The best semantic segmentation result was achieved 
using HRNet (mIoU: 89.2%), as shown in Table 6. HRNet 
comprised four subnetworks. Each subnetwork was oper-
ated at different resolutions with information repeatedly 
exchanged with other subnetworks via multiscale fusion. 
We leveraged high-resolution image operations through-
out the entire network to focus on the features of small 
cells, and we added low-resolution image information 
through multiscale fusion for the features of large cells. 
Hence, the model possessed sufficient information to seg-
ment and distinguish malignant cells, both globally and 
locally. Adding an object-contextual representation (OCR) 
module39 to HRNet did not improve the accuracy, since 
the dataset in this study was a single-class semantic seg-
mentation task, which does not fully leverage the advan-
tages of the OCR module. Figure 5 shows a comparison 
of the test images, test targets, and results of the semantic 
segmentation by HRNet (mIoU: 89.2%).

In our study, the image sample comprised consider-
ably more malignant cases than benign cases. We lever-
aged a patch-cropping method during data preprocessing 
to solve the data imbalance problem of image-level data 

Model
Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

Positive 
predictive 
value (%)

Negative 
predictive 
value (%)

VGG16 92.3 96.8 86.2 90.5 95.3

ResNet50 94.7 95.4 93.8 95.4 93.8

ResNet101 98.8 98.8 98.8 99.1 98.3

ResNet152 92.6 94.6 90.0 92.8 92.4

ResNeXt50 93.5 96.3 89.8 92.7 94.7

ResNeXt101 94.1 96.8 90.5 93.2 95.5

ResNeSt50 96.1 96.3 95.7 96.8 95.0

ResNeSt101 94.1 94.9 93.1 94.9 93.1

ResNeSt200 91.7 95.8 86.2 90.4 93.8

T A B L E  3   Patch-based benign and 
malignant classification results using 
various deep-learning classification 
models

T A B L E  4   Image-based benign and malignant classification 
results based on the patch-based classification results and a sliding 
window algorithm (EBUS-TBB dataset + EBUS-TBNA dataset)

ResNet101 Final cytologic image results

TotalPrediction Positive Negative

Positive 56 2 58

Negative 1 7 8

Total 57 9 66

Note: Sensitivity =98.2%, specificity =77.8%, positive predictive 
value =96.6%, negative predictive value =87.5%, and diagnostic 
accuracy =95.5%.

T A B L E  5   Patient-based benign and malignant classification 
results based on the image-based classification results and a 
majority vote algorithm

ResNet101 Final cytologic image results

TotalPrediction Positive Negative

Positive 11 1 12

Negative 0 2 2

Total 11 3 14

Note: Sensitivity =100%, specificity =66.7%, positive predictive value =91.7%, 
negative predictive value =100%, and diagnostic accuracy =92.9%.

T A B L E  6   Malignant lung cell semantic segmentation results 
using various deep-learning models

Model Backbone mIoU (%)

FCN ResNet101 81.3

U-Net ResNet101 84.2

PSPNet ResNet101 78.6

DeepLabv3 ResNet101 88.2

DeepLabv3+ ResNet101 87.0

FPN ResNet101 88.9

HRNet HRNet 89.2

HRNet + OCR HRNet 89.1
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and then calculated the image-based classification re-
sults based on the results of the patch-based classifica-
tion with a sliding window algorithm. The number of 
benign images was also directly upsampled to solve the 
data imbalance and was defined as “Image-level + up-
sampling” in this study (Table  7). To compare the ef-
fect of different data preprocessing methods, we used 
ResNet101 with an initial learning rate of 0.0001, batch 
size of 32, optimizer set to stochastic gradient descent, 
and loss function set to binary cross-entropy; cosine 
learning rate decay was also used. The only difference 
was that the input image size was 512 × 512 for the direct-
image classification and the patch size was 224  ×  224 

for the patch-based classification. Experimental results 
showed that the accuracy of patch-based classification 
with a sliding window was higher than the other two 
methods; thus, this approach could effectively solve any 
data imbalance. This overcomes the problem of directly 
classifying lung cytologic images with a data imbalance, 
which would result in the model predicting all the im-
ages as malignant. Even when the benign images were 
upsampled five times to balance the data, the benign 
data variation was still too low for the model to success-
fully learn the cell characteristics.

The weights of the last layer of the ResNet101 were also 
visualized for the patch-based classification to confirm 

F I G U R E  3   The loss/epoch curve of 
ResNet101 while fine-tuning

F I G U R E  4   Image-based classification results visualization. White areas are patches predicted as malignant and black areas are patches 
predicted as benign or background. (A) True-positive image. (B) False-positive images. (C) False-negative images
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whether the model had focused on the correct informa-
tion. The red area in Figure 6 indicates the area the model 
focuses on while learning; the blue area receives less 
focus. We found that the model learned the specific char-
acteristics of malignant cells and ignored the background 
and benign areas, thus confirming that it focuses on the 
correct area of the cell.

We routinely perform ROSE with Hemacolor stain in 
our institution because the color is very similar to Diff-
Quik stain and the procedure time is shorter. Most re-
ports on the efficacy of CNNs use Papanicolaou stain for 
cytologic preparation.24,25 In previous clinical studies, 

different staining methods have been associated with 
sensitivities ranging from 72.8% to 96.9%.40-42 In the 
present study, ResNet101 exhibited excellent perfor-
mance in differentiating between benign and malignant 
cells. This is the first study to use deep-learning meth-
ods to interpret the cytologic specimens via Hemacolor 
stain, confirming that different staining methods can be 
used by deep-learning models in interpreting cytologic 
specimens.

In future, more data and pulmonologist should join 
to overcome the limitations in our study. First, the 
volume of data was relatively small for training the 

F I G U R E  5   Semantic segmentation results visualization. Test images are in the first row; test targets (ground truth) are in the second 
row. White pixels denote areas predicted as malignant and black pixels denote areas predicted as benign or background. Semantic 
segmentation results are in the third row

T A B L E  7   Classification method comparison of different data preprocessing methods

Methods
Benign training 
data

Malignant 
training data Accuracy (%) Sensitivity (%)

Specificity 
(%)

Image-level 59 324 86.4 100.0 0.0

Image-level + upsampling 295 324 86.4 100.0 0.0

Patch-based + sliding window 3286 4200 95.5 98.2 77.8
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deep-learning model. Second, most of the malignant 
data were from cases of lung adenocarcinoma so the 
data amount of other cancer cells should be increased. 
Third, only one pulmonologist (L.C.K.) who is focus on 
interventional pulmonology has completed the course 
of cytologic training. Due to this reason, ROSE can only 
be performed during the bronchoscopy procedure and 
we limited our research to EBUS procedures. To over-
come these limitations, future studies should follow 
the present investigation but with a larger and different 
study population.

In conclusion, classification procedures followed by 
semantic segmentation yield high accuracy for lung cy-
tologic analysis. ResNet101 achieved 98.8% accuracy for 
patch-based classification after hyperparameter adjust-
ment. Image-based classification accuracy was 95.5% 
with the sliding window algorithm, and patient-based 
classification accuracy was 92.9%. After benign and ma-
lignant classification of lung cytologic images, semantic 
segmentation was employed to classify each pixel in the 
malignant images to mark malignant cell areas; for this, 
HRNet achieved an mIoU of 89.2%. This is the first study 
to combine lung cytologic image deep-learning classifi-
cation with semantic segmentation. It is also the first re-
search and deep-learning analysis of a dataset comprising 
Hemacolor-stained lung cytologic images. We believe that 
the deep-learning model employed in this study can be 
applied clinically in the interpretation of lung cytologic 
images in the future.
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