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ABSTRACT

Identification of possible protein targets of small
chemical molecules is an important step for unra-
velling their underlying causes of actions at the mo-
lecular level. To this end, we construct a web server,
idTarget, which can predict possible binding targets
of a small chemical molecule via a divide-and-
conquer docking approach, in combination with our
recently developed scoring functions based on
robust regression analysis and quantum chemical
charge models. Affinity profiles of the protein
targets are used to provide the confidence levels of
prediction. The divide-and-conquer docking
approach uses adaptively constructed small over-
lapping grids to constrain the searching space,
thereby achieving better docking efficiency. Unlike
previous approaches that screen against a specific
class of targets or a limited number of targets,
idTarget screen against nearly all protein structures
deposited in the Protein Data Bank (PDB). We show
that idTarget is able to reproduce known off-targets
of drugs or drug-like compounds, and the suggested
new targets could be prioritized for further investiga-
tion. idTarget is freely available as a web-based
server at http://idtarget.rcas.sinica.edu.tw.

INTRODUCTION

Identification of targets of small chemical molecules is es-
sential for unravelling the underlying molecular causes of
actions. Often, natural products, i.e. compounds dis-
covered from plants, animals, marine lives or other
living organism, exhibit useful pharmaceutical effects,
e.g. anti-inflammatory, anti-cancer and anti-viral effects,

yet their molecular mechanisms remain elusive. On the
other hand, many drugs are known to be accompanied
with unpleasant adverse effects, but the molecular
targets of such effects are largely unknown. On the
contrary, there are also some old drugs whose additional
beneficiary effects are discovered only recently. For
example, the epigenetic mechanism of the anticancer
effect of cholesterol-lowering drugs, statins, was un-
covered rather recently (1).
Conventional virtual screening of chemical libraries has

been used widely to search for new leads in drug develop-
ment for a protein target (2). As the deposited structures
of biomolecules in the Protein Data Bank (PDB) increase
substantially in the past decades, searching for the targets
of a given drug or small compounds (also known as
inverse screening, target fishing, off-target prediction,
etc.) has become a useful approach (3–7).
One of the major hurdles for target identification is the

effectiveness of scoring functions (7,8). To evaluate the
binding affinity of the small ligand and a protein target,
an accurate yet generally applicable scoring function is
essential. We recently developed three robust scoring
functions, AutoDock4RRP, AutoDock4RAP and
AutoDock4RGG (9) based on the energetic terms and the
formulation of AutoDock4 (10). These scoring functions
report the binding free energy in the experimental scale,
which allows direct comparison among different protein–
ligand systems. Two of these three robust scoring func-
tions were constructed using atomic charges from
quantum chemical calculations, namely, RESP (11) and
AM1-BCC (12), and the robust regression analysis (13)
was employed to mitigate the influence of outliers for
the calibration of the scoring functions. These robust
AutoDock4 scoring functions have been benchmarked
for their capability in binding affinity prediction and
binding pose prediction (9). For the assessment of
binding affinity prediction with a large external set of
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1427 complexes from PDBbind v2009, AutoDock4RAP

obtained root-mean-square errors of 2.176 kcal/mol,
while the size of the training set is only 147. Benchmarked
by using two decoy sets (14,15), the robust AutoDock4
scoring functions outperformed most of other scoring
functions for the binding pose prediction (9).
Here, we utilize an efficient docking approach to screen

the protein targets. Evaluation of potential targets is
carried out by using the AutoDock4 robust scoring func-
tions and the affinity profile analysis to enhance the con-
fidence level of prediction.

MATERIALS AND METHODS

Docking and scoring

The search engine of idTarget web server is MEDock (16),
which generates initial docking poses of the small ligand.
The global search algorithm used in MEDock has also
been tested recently by random mathematical functions
simulating rugged free energy landscapes with different
dimensionalities (17). It was shown that this global
search algorithm maintained very high searching efficiency
even at the dimensionality of 30 (17), which should be
sufficient for applying to most protein–ligand systems. It
was also shown that the traditional genetic algorithm
failed to deliver good searching efficiency as long as the
dimensionality is beyond 20 (17).
Since the binding sites are generally not known, the

search space (i.e. the docking grid), should cover the
entire protein. However, the searching efficiency also
depends on the size of the search space. To achieve
better searching efficiency, as well as to overcome the
memory limitation when docking to very large proteins,
a divide-and-conquer docking approach, similar to the
partial box approach in BDT (18), was adopted for effi-
cient blind docking. It should be emphasized that the
entire receptor surface is searched, instead of only a part
of the surface or just the active site. This also allows
the search for possible allosteric binding sites. The
divide-and-conquer docking approach can easily take the
advantage of the parallel computing facilities and reduces
the searching time by limiting the size of grids. The large
box that covers the entire protein surface is subsequently
divided into smaller boxes, where the size of the smaller
boxes is dynamically determined according to the size of
query ligand. If a grid box is far away from the receptor,
namely, no atom is within 1.42 times the length of the grid
box to the center, it will be eliminated to reduce the com-
putational cost. The pre-calculated energetic grid maps for
the protein targets are stored in the idTarget web server,
and therefore the time for grid construction can be saved.
To analyze the results of target screening, the affinity

profile of each binding site is constructed. Our affinity
profile analysis was inspired by the structure-based
maximal affinity model recently proposed (19). Here,
instead of maximum affinity, the affinity profile of a
given pocket is modelled by a Gaussian function, whose
width is determined by the range of the predicted binding
affinities of the complexes of different ligands in the same
binding pocket of the same protein. A Z-score of ligand j

to a given protein pocket i is calculated based on above
profile using the following equation:

Zij ¼
Eij � Ei

sdi

Ei ¼
XNc

k¼1

Ec
k=Nc

sdi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNc

k¼1

Ec
k � Ei

� �2
=Nc � 1

vuut

where Eij is the dock energy of ligand j docking to the
protein pocket i. Ec represents the energy directly
evaluated with the crystal pose. Ei and sdi are the center
and the width of the affinity profile of protein pocket i,
respectively. A large negative Z value signifies an import-
ant target of the query compound.

The contraction-and-expansion strategy

Since direct screening for a large set of targets is compu-
tational intensive, a contraction-and- expansion strategy is
adopted to perform target screening efficiently. In the con-
traction stage, the set of representative pockets for the
protein–ligand complexes in the PDB, 3046 mean points
of scPDB (20,21), were clustered by CD-Hit (22) under the
cutoff of 40% sequence identity. After clustering of
protein sequences in the PDB, a contracted list of
targets (2091 targets) was obtained. The targets screening
starts from this contracted list, subsequently, half of
targets with lower docking energy are kept. In the expan-
sion stage, targets that are homologous or contain similar
binding sites to the top representatives are also selected for
screening. The idTarget server is periodically updated to
include new protein structures from PDB. The pockets of
a new PDB entry will be compared with the set of repre-
sentative pockets by SiteEngine (23) and subsequently
assigned to the most similar pocket group.

In addition to the contraction-and-expansion strategy,
idTarget provides two modes for searching binding
poses. In the ‘scanning mode’, conventional docking jobs
are performed for each protein structure. In the ‘fast
mode’, the ligand will first be mapped to the binding
sites of the homologous proteins by superposition of hom-
ologous protein structures with the pre-calculated struc-
tural alignment information by using CE (24), and then its
binding poses are optimized by adaptive local searches to
remove too close contacts with protein atoms. To extend
the coverage of PDB structures, idTarget also performs
a ligand similarity search to find structurally similar
co-crystallized ligands. The Tanimoto coefficients
calculated by OpenBabel 2.3.0 (25) are used to rank the
results of the similarity search by matching molecular
fingerprints.

INPUT

The input window of the idTarget web server requires an
input ligand file for the target screening. Users can upload
a ligand file with the popular molecular file formats (pdb,
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mol2, pdbqt or cif). Internally, idTarget uses the ‘pdbqt’
file format that contains the information of atomic
charges and atom types. Users can select the Gasteiger,
AM1-BCC or RESP model to calculate the atomic charges
for the uploaded ligand. Otherwise, the default atomic
charges will be calculated by the AM1-BCC charge
model. idTarget accepts an ligand file with predetermined
protonated state by checking the option, ‘Yes, no further
addition of polar hydrogens is needed’, or the protonation
state of the ligand will be assigned by the idTarget server.
The idTarget web server also provides a graphical user
interface using the Marvin Sketch applet for directly
drawing a molecule on the web interface. As the default
setting, the larger scale screening is performed with the
idTarget data set. Users can also query a small set of
proteins with known structures by editing a PDB ID list.

OUTPUT

Tracking the status of a job and retrieving the results can
be achieved by input the Task ID. If the e-mail address is
provided, the notification will be sent to users as soon as
the calculation is finished. Although it usually takes hours
to finish a job, depending on the loading of the server,
users can always check the results while some targets
have been screened. During the calculation of a job, the
screening results are sorted immediately for showing the
potential targets in the higher ranks. As depicted in
Figure 1, two hierarchical tables and a molecular
graphic visualizer are shown in the result page. The two-
layer table (grouped by protein name) lists all the results
sorted by dock energies. The PDB entries with the same
target name will be grouped, and one can click on the
button to expand/collapse the next layer or all results at
once. The homologous proteins are grouped in the three-
layer table (grouped by the binding pocket), where the
representative one is shown in the first layer and the
proteins within the same binding pocket are shown in
the second layer. All the PDB entries with the same
target name are collected in the third layer. Users can
also use selected ranges of predicted binding free energy
and Z-score as the filtering criteria to obtain a more
condensed target list.

WEB SERVER

The web interface of idTarget was written in PHP (5.1.6).
Marvin Sketch applet (http://www.chemaxon.com/
products/marvin/marvinsketch/) was embedded in
the idTarget job submission page so that users can draw
their interested ligand online. In the result page, users
can inspect the binding poses and manipulate the
resulting 3D structures interactively via the embedded
OpenAstexViewer applet (http://openastexviewer.net/
web/).

EXAMPLES

To demonstrate the usage of the idTarget web server,
three examples are presented here. The first example is

the HIV-1 protease inhibitor, darunavir (DRV), which
has been approved by FDA on 2006 and has been
validated the inhibition against multidrug-resistant
viruses (26). The second example is one of indirubin de-
rivatives, 6-bromo-indirubin-30 oxime (6BIO), which has
been experimentally validated as an inhibitor of several
kinds of protein kinases (27). The third example is an in-
hibitor of histone deacetylase 2 (HDAC2), namely,
N-(4-aminobiphenyl-3-yl)-benzamide (dubbed ‘LLX’
from its PDB component ID). The target screening
results of these three examples are archived in the web ser-
ver with the Task IDs DRV_screening, 6BIO_screening
and LLX_screening, respectively.

DRV

Mutations of HIV-1 protease (PR) residues usually reduce
susceptibility to the PR inhibitors but not significantly to
darunavir. There have been many structural and kinetic
analyses of darunavir against several drug-resistant
mutants (26,28–30). Table 1 gives the comparison of pre-
dicted and experimental binding affinities for the wild-type
and mutant HIV-1 PR. These results indicate the compar-
able predicted binding affinity to the experimental data.
Although the scoring function was not trained with these
PR-inhibitor complexes, it still can discriminate the fine
difference of affinity against mutants, except for the case
of 3CYW. It should be noted that in the docking, we have
excluded a well-known flap water molecule, which forms a
hydrogen bond network between the flaps of PR and
ligand. If that flap water was included in docking of
DRV, the predicted free energy will be lowered by
�1 kcal/mol. This flap water was removed because in
general it may cause steric clashes for most ligands.
Figure 2 depicts the binding pose of DRV against the
wild-type PR with the rmsd of 0.85 Å compared to the
crystal pose.

6BIO

This example shows that not only the well-known kinase
targets (CDK2, CDK5 and GSK-3b) could be identified
by idTarget, but also the kinase PDK1 (27) and other
proteins. More detailed processes are described in
‘Example 1’ in our idTarget web server. The predicted
best targets are as follows: CDK2 (PDB ID: 1FVV, pre-
dicted Ki: 51.7 nM); CDK5 (PDB ID: 1UNH, predicted
Ki: 71.2 nM); GSK-3b (PDB ID: 1Q41, predicted Ki:
63.3 nM); PDK1 (PDB ID: 2PE1, predicted Ki:
96.5 nM). Figure 3 depicts the best docking pose of
6-bromo-indirubin-30 oxime (6BIO) in PDK1 that
confirms the proposed pose in Zahler et al. (27).
To compare directly with the results of Zahler et al.

(27), we performed the screening with the same set of
5821 PDB entries by using the ‘User-edited list’ feature.
The predicted binding free energy was used to rank the
screening results, and the Z-score (<0) was the filter. For
the known protein kinase targets (CDK2, CDK5 and
GSK-3b), the top 1% and top 5% enrichment factors in
our screening results were 6.45 and 11.94, respectively,
while the top 1% and top 5% enrichment factors
calculated from the results of Zahler et al. were 19.35
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and 7.42, respectively. It should be noted that protein
kinases are the only targets of interest in the work of
Zahler et al. However, we found that two proteins,
matrix metalloproteinase and glycogen phosphorylase,
constitute the major part of the top 1% of our results.
Interestingly, we found that a recent experimental work
(31) showed that an indirubin derivative inhibits rabbit
muscle glycogen phosphorylase b. The enrichment factor
for glycogen phosphorylase (PYGM) in the top 1% was
18.18 in our results, but none of PYGM was identified in
the top 5% of the results of Zahler et al. We further
performed the ROC curve analysis (32) to assess of the
performance of the prediction. Figure 4 shows the ROC
curves and numerical values of the areas under the curve
(AUC), where CDK2, CDK5 and GSK-3b are considered
as known targets of 6BIO (in Figure 4a), and these three
kinases plus PYGM are considered as known targets (in
Figure 4b), respectively. Supplementary Figures S1–S4

Figure 1. An example of target screening for the HDAC2 inhibitor (LLX). The left panel gives two kinds of representations: grouped by protein
name and grouped by homology. The right-hand side contains a viewer for visualizing the docking poses online and a panel showing 2D-similar
ligands in PDB.

Table 1. Darunavir screening results for wild-type and mutant

HIV-1 PR

PDBID �Gpred. Kipred.(nM) Z-score mutant Kiexp. (nM)

3CYW �10.99 8.8 0.26 G48V 17a

2F81 �10.82 11.7 0.32 L90M 0.03b

2IEN �10.79 12.3 0.33 wild 0.22–1.0a,b,c

2IDW �10.65 15.6 0.38 V82A 0.8–1.3b,c

2IEO �10.55 18.5 0.41 I84V 3.2b,c

1T3R �10.53 19.1 0.42 wild 0.06d

2HS1 �10.47 21.1 0.44 V32I 3.3e

2F80 �10.4 23.8 0.46 D30N 6.6b

2F8G �10.38 24.6 0.47 I50V 2.0–18a,b

3D1Z �10.38 24.6 0.47 I54M 1.6a

3D20 �10.38 24.6 0.47 I54V 5a

aExperimental data from J. Mol. Biol. (2008) 381, 102–115.
bExperimental data from J. Med. Chem. (2006) 49, 1379–1387.
cExperimental data from J. Mol. Biol. (2004) 338, 341–352.
dExperimental data from J. Med. Chem. (2005) 48, 1813–1822.
eExperimental data from J. Mol. Biol. (2006) 363, 161–173.
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show the ROC curves with different selections of known
targets and Z-score filters. The more the stringent of the
Z-score filter, the higher the AUC was obtained, which
could be due to the nature of conformational selectivity,

the general applicability and the universal physical scale of
our robust scoring function (9). These analyses also
indicate that our predictions are comparable with the pre-
diction of Zahler et al.

LLX

N-(4-aminobiphenyl-3-yl)-benzamide is a compound
recently designed and synthesized to optimize the fitting
of the HDAC2 binding pocket (33). It has been long
recognized that there is a 14 -Å long internal cavity, also
called ‘foot pocket’, adjacent to the catalytic zinc ion of
HDAC. This foot pocket connects to a lipophilic tube
with an angle of about 110�, and this compound sits at
the kink between the foot pocket and the tube. As shown
in Figure 1, the screenshot of the result page given by
idTarget, the compound LLX recognized its co-crystalized
protein structure (PDB ID: 3MAX) with the highest
affinity.

DISCUSSION

Although darunavir is a relatively new drug, its adverse
effects and interactions with other drugs have been
reported (34,35). It may be possible to further investigate
possible molecular causes of actions of these adverse
effects and drug–drug interactions by scrutinizing the list
of proteins identified by idTarget. Our prediction for
possible targets of 6BIO is generally consistent with the
previous work. (27). It is interesting to note that the top
prediction of LLX is 3MAX, which is the HDAC2 struc-
ture crystallized by the same group that designs and syn-
thesizes this N-(4-aminobiphenyl-3-yl)-benzamide. A
possible explanation could be that this compound sits at
the kink between the foot pocket and the lipophilic tube,
which altogether forms a very curved channel structure
and may be rather unique among protein structures.
Drugs can bind to a myriad of particles in the blood,

such as red blood cell, leukocytes, platelets, as well as to
some proteins, e.g. serum albumin, lipoproteins, a1-acid
glycoproteins, a, b, g-globulins, etc. (36). Usually, the

Figure 4. The red curve is obtained from the prediction of Zahler et al., while the black curve is obtained from the prediction of idTarget with
Z-score< 0 set as the selection filter (1161 protein targets selected). (a) CDK2, CDK5 and GSK-3b are considered as known targets and others are
considered as decoys. (b) CDK2, CDK5, GSK-3b and PYGM are considered as known targets and others are considered as decoys.

Figure 2. The docking pose of darunavir (in magenta) compared to the
x-ray pose (in cyan) in the wild-type protease (PDB ID: 2IEN) gives a
RMSD of 0.846 Å.

Figure 3. The best docking pose of 6-bromo-indirubin-3’ oxime (6BIO)
in PDK1.
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metabolites of a drug (or a small molecule) can also bind
to other human proteins to exert unwanted effects, or even
bind to the original target protein and deliver similar
actions. In view of this, target identification should be
employed in tandem with metabolite prediction algo-
rithms, e.g. MetaSite (37). Many drugs, e.g. vinblastine,
verapamil, taxol, etc., are substrates of P-glycoprotein,
whose low resolution structure has been available
recently (38), and higher resolution structures should be
on the way (G. Chang, personal communication). Due to
the tremendous cost of large-scale protein binding assays,
the comprehensive list of the proteins that a given
compound binds is generally not available. One should
also bear in mind that proteins are localized in compart-
mented organelles, and a given compound may not be able
to be distributed to a specific compartment where a certain
protein exists, and therefore the prediction of target iden-
tification should also be guided by the knowledge of
protein subcellular locations to remove the false positives
if only the physiological scenario is of interest.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–4.
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