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Abstract

Immunotherapies, including vaccines, represent a potent tool to prevent or contain disease with high morbidity or
mortality such as infections and cancer. However, despite their widespread use, we still have a limited
understanding of the mechanisms underlying the induction of protective immune responses.
Immunity is made of a multifaceted set of integrated responses involving a dynamic interaction of thousands of
molecules; among those is a growing appreciation for the role the innate immunity (i.e. pathogen recognition
receptors - PRRs) plays in determining the nature and duration (immune memory) of adaptive T and B cell
immunity. The complex network of interactions between immune manipulation of the host (immunotherapy) on
one side and innate and adaptive responses on the other might be fully understood only employing the global
level of investigation provided by systems biology.
In this framework, the advancement of high-throughput technologies, together with the extensive identification of
new genes, proteins and other biomolecules in the “omics” era, facilitate large-scale biological measurements.
Moreover, recent development of new computational tools enables the comprehensive and quantitative analysis of
the interactions between all of the components of immunity over time.
Here, we review recent progress in using systems biology to study and evaluate immunotherapy and vaccine
strategies for infectious and neoplastic diseases. Multi-parametric data provide novel and often unsuspected
mechanistic insights while enabling the identification of common immune signatures relevant to human
investigation such as the prediction of immune responsiveness that could lead to the improvement of the design
of future immunotherapy trials. Thus, the paradigm switch from “empirical” to “knowledge-based” conduct of
medicine and immunotherapy in particular, leading to patient-tailored treatment.

Review
Cross-talks between innate and adaptive immune systems
Pathogen recognition receptors (PRRs) detect foreign
antigens in the form of living pathogen or vaccine [1,2]
activating specific signaling pathways that drive biological
and immunological responses. Among the PRRs, Toll-
like receptors (TLRs) are widely present on innate
immune cells (including DCs, macrophages, mast cells,
neutrophils), endothelial cells and fibroblasts, and their
expression is regulated by several factors, including
foreign antigens, vaccines and cytokines [3-6].
Twelve members of the TLR family have been identified

in mammals to date, and different TLRs are expressed

extra- or intracellularly. In particular, TLRs 1, 2, 4, 5, and
6 are expressed on the cell surface, whereas TLR3, 7, 8,
and 9 are found almost exclusively in intracellular com-
partments such as endosomes [1,2]. Each member of the
TLR family recognizes a specific structural component of
pathogens [1,7-19]. In addition to TLRs, other important
families of PRRs are plasma-membrane and cytoplasmic
receptors, including the C type lectins, which recognize a
range of microbial stimuli from pathogens such as HIV,
HCV, Helicobacter pylori, and Mycobacterium tuberculo-
sis [20,21], and NOD proteins, which recognize compo-
nents of intracellular bacteria [22].
The interaction between PRRs and foreign antigens

expressed by the vaccine triggers a downstream signaling
cascade leading to several cellular processes, including
production of proinflammatory cytokines and chemokines.
In particular, TLR activation induces a signal cascade via
several intermediates, whose endpoint is the activation of
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transcription factors turning on the expression of inflam-
matory cytokine genes, such as TNF-b, IL-6, IL-1b, and
IL-12 [1,23].
Subsequent to the TLR-ligand interaction, APCs (mainly

DCs) uptake and process vaccine antigens to be exposed
on cell membrane surface in association to major histo-
compatibility complex (MHC) molecules for efficient pre-
sentation to adaptive immune cells [24]. DCs undergo full
activation and maturation, characterized by the increased
expression of co-stimulatory molecules (CD40, CD80,
CD86) and production of chemokines (TNFa, RANTES,
MIP1a, MIP1b). Activated and matured DCs migrate to
the regional lymph node, where they provide antigen-spe-
cific activation as well as co-stimulatory signals to naïve T
cells and possibly B cells, bridging innate with adaptive
immunity [25-27].
Engaged naïve T cells undergo clonal expansion and dif-

ferentiation into effector CD4+ T helper cells or CD8+
cytotoxic T lymphocytes (CTL). CD4+ T-helper cells can
be directed into a Th1, Th2 or T-Reg polarization upon
direct contact with antigen-bearing APCs and induction
by specific cytokines. The polarized T-helper cells can
antagonize each other’s actions and will ultimately lead
the adaptive immune system toward either a cellular
(Th1), a humoral (Th2) or a tolerance (T-Reg) response
[28-33]. A subset of polarized activated effector T cells will
further differentiate into long-lasting memory cells to
readily induce an immune response at subsequent encoun-
ters with the same antigen [34].
In such framework, a successful vaccine must be effec-

tive in activating PRRs. However, the degree of TLRs
engagement has been studied only for few licensed vac-
cines, including Bacillus Calmette-Guerin (BCG) [35,36],
Haemophilus influenzae type b (HiB) [37] and live attenu-
ated yellow fever vaccines [38]. For other licensed vac-
cines, although the engagement of TLRs has not been
documented, it could be inferred that live attenuated vac-
cines activate innate immunity following the same path-
way induced by the corresponding native fully replicating
virus. On the contrary, inactivated or subunit vaccines
may be not efficient in activating the innate system,
requiring the addition of an adjuvant in the formulation to
improve their immunogenicity. Among the very few adju-
vants approved for human use, only the Monophosphoryl
Lipid A (MPL) is known to engage a TLR (TLR-4), being a
non-toxic derivative of the lipopolysaccharide (LPS) of Sal-
monella Minnesota [39,40], but many new vaccine adju-
vants are under development and evaluated in clinical
trials, whose mechanism of action is mediated by TLRs
[41-46]. Recently, we reviewed the differential transcrip-
tional activation of monocyte-derived DCs following dis-
tinct and frequently applied maturation strategies and
their strong effect on Th-polarization. This review clearly
demonstrated that the stimulus applied for DC maturation

can affect dramatically the global expression pattern of
these cells and, consequently, their in vitro and in vivo
function [47].
Vaccine development
The goal of a successful vaccine is to induce long-term
protective immunity based on the generation of an anti-
gen-specific immunological memory. This is achieved via
several levels of cross-talks between the innate (antigen-
presenting cells - APCs) and adaptive (T and B lympho-
cytes) immune systems involving both cell-to-cell contact
and/or soluble factors (i.e. cytokines and chemokines).
Most of the current successful vaccines are based on

live attenuated or inactivated pathogens which show dis-
tinctive biological and immunological characteristics.
The live attenuated vaccines are viruses with a limited
replication in the vaccinated host, carrying the native
pathogen-associated molecular signals - PAMS (i.e.: viral
genetic material) which bind the pathogen recognition
receptors - bind PRRs and trigger the activation of the
innate immune system. Such attenuated viruses mimic a
natural infection and spread to multiple host immune
organs or tissues, eliciting immune responses similar to
those induced by fully-replicative pathogens, which are
often effective after a single administration [48]. The
major drawback of such strategy is the mild-to-severe
adverse effects as consequence of the limited replication
in the vaccine recipients. The inactivated vaccines are
viruses which cannot replicate due to irreversible damage
of genetic material induced by heat or chemical treat-
ment. Although safer than attenuated vaccines, they are
generally less effective and require multiple administra-
tions to boost the immune response documented for
instance by enhancement of antibody titers over time.
The inactivated vaccines are made of either whole virus
or subunits (i.e. viral proteins) relevant to the conferring
of protective immunity.
In the last years, also for safety reasons, alternative

non-replicating vaccine strategy, including recombinant
proteins, synthetic peptides, DNA, particulate structures
(i.e.: Virus-Like Particles) have been developed [49].
However, despite relevant safety advantages, such vac-
cine strategies are not always effectively processed by
antigen presenting cells and presented to the adaptive
immune system, lacking “danger” signals necessary to
trigger activation of the innate system and, downstream,
of the adaptive immune response [50].
The role of active specific immunization (vaccines) among
immunotherapy strategies
Immunotherapy is a broad term that encompasses any
manipulation of the immune response to elicit clearance
of unwanted conditions such as infections, cancer, auto-
immunity and rejection of heterologous organs. The
purposes are somewhat opposite in some compared to
other conditions as in some cases immune mediated,
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tissue-specific destruction is desired to clear the organ-
ism of cancer cells or cells infected with pathogens
while in other cases efforts are made to dampen the
same immune mechanisms that are actively causing
unwanted destruction of tissues such is the case for
autoimmunity, transplant rejection and graft versus host
disease; we have recently shown that although the
mechanisms leading to each of this pathological states
or their resolution may be different, the final mechanism
leading to tissue destruction is quite similar and involves
the activation of a limited number of immune effector
genes which we have called the immunologic constant
of rejection (ICR) [51]. Thus, the role of immunotherapy
is to enhance the chances of reaching full activation of
ICR genes on one hand and reduce it on the other. It
has become clear, thanks to transcriptional analyses that
activation of an effector immune response is a multifac-
torial event that includes the activation of all arms of
effector immunity including both innate and adaptive
mechanisms and that neither alone is sufficient to
induce tissue specific rejection [51,52]. Thus, it is likely
that enhancement of one or another aspect of immunity
by isolated immunotherapy strategies will be unlikely to
achieve clearance of disease and combined strategies
should be sought. Currently, immunotherapy strategies
could be characterized by four major approaches: those
aiming at the systemic and non-specific activation of
immune cells (active immunotherapy), those aiming at
the activation of specific antigen recognition pathways by
T or B cells (active-specific immunotherapy), those in
which cells deemed to bear important effector mechan-
isms (either antigen specific or non-specific) are
expanded ex vivo and transfused in large number is
patients (adoptive immunotherapy) and, finally, those in
which effector molecules such as antibodies are trans-
fused into patients (passive immunotherapy). While each
one of these approaches has shown marginal benefit in
the treatment of chronic infections and cancer, none of
them alone has been dramatically effective in clearing
disease and enhancing survival. In this context, active
specific immunization with vaccines has the limited pur-
pose of enhancing antigen-specific recognition by
immune cells; interestingly, this has not been very suc-
cessful in inducing dramatic clinical responses both in
viral and in cancer systems. Recently, however, several
clinical trials in which active specific immunization has
been tested as a modality of treatment for cancer in large
randomized trials have shown that survival is modestly
but significantly enhanced compared to control groups
treated with standard therapy. These studies provide a
proof of principle that vaccination is probably enhancing
the ability of the immune system to specifically recognize
diseased tissues and control their growth. Yet, as we pos-
tulated in the ICR paper, the mechanisms leading to

control of growth and presumably complete clearance of
abnormal cells expand from the simple T or B cell inter-
actions with their target to the activation in the diseased
organ of an acute inflammatory process, triggered by the
production of pro-inflammatory chemokines and lym-
phokines by antigen recognizing cells which can progres-
sively recruit all arms of immune effector function [51].
Induction of adaptive immune response by vaccines
Most of the successful vaccines developed to date induce a
long-lasting protective humoral adaptive immune
response, eliciting the production of neutralizing or opso-
nizing antibodies [53]. However, such vaccines are effec-
tive mainly against pathogens characterized either by a
limited and stable range of serotypes (i.e. smallpox, rubella,
polio) or by seasonal serotypes (influenza). In the latter
case, however, flu vaccine must be manufactured and
administered each year according to the circulating seaso-
nal variant.
However, in many cases the humoral antibody response

by itself is not sufficient to protect against pathogens and,
in the last years, the development of vaccines able to elicit
also an effective cellular adaptive immune response has
become a priority. In fact, if antibody-based vaccines pro-
vide prevention and protection from infection, T-cell-
based vaccines may be relevant in controlling established
chronic infections, such as HCV and HIV viruses [54-57],
or a cancer [58-60]. This is particularly the case for
chronic infections in which viruses are harbored within
the cellular compartment. In that case, antibodies have no
ability to recognize their target as they cannot cross the
cell membrane and only immune cells with cytotoxic func-
tion can kill the infected cells and stop the perpetuation of
the infectious process.
Regardless of the humoral or cellular immunity elicited

by vaccines, relevant markers are needed to evaluate the
vaccine efficacy and/or to optimize its development. Con-
cerning the humoral immune response, a direct relation-
ship between protective effect and serum titers of
antibodies with high specificity and affinity, measured in
ELISA or in neutralization has been widely accepted [61].
However, in few cases, other markers are considered bet-
ter surrogates of protection, such as mucosal IgA titers for
Rotavirus vaccine [62] or CD4+ T cell responses for Zoster
vaccine [63], although in such cases no threshold levels for
protection have been identified.
On the contrary, in situations where the humoral anti-

body response is not the protective arm of the immune
response, specific parameters need to be validated to
assess the relationship between protection and levels as
well as type of cellular immunity. Indeed, a consensus has
not been reached yet and different experimental models
have been taken into account effector CD8+ cytotoxic T
cell activity [64,65], perforin expression [66-68] or cyto-
kine production [69,70].
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Systems biology in vaccine development
The need for clear immunological markers to predict and
evaluate the immunogenicity of vaccines and to optimize
vaccine formulation critically exemplifies the usefulness
of systems biology approaches. A great example was
recently provided by a phase III randomized study in
which a MAGE-A3 peptide was used to treat patients
with advanced non-small-cell lung cancer or melanoma;
this study not only demonstrated that the vaccine
improved survival in either disease but also, by applying
global transcriptional analysis to pre-treatment samples,
the investigators identified signatures that clearly predict
responsiveness to treatment both by immunological
assessment and clinical benefit [71]. Indeed, the advance-
ment of high-throughput technologies, together with the
extensive identification of new genes, proteins and other
biomolecules in the “omics” era, has facilitated large-
scale biological measurements. The new experimental
paradigm of systems biology aims to consider a biological
system as not just a set of distinct elements, but rather as
a complex product of the interactions among these
elements and their relationship with the surrounding
environment (Figure 1). Importantly, there are two major
approaches to systems biology: a top down view in which
potential permutations predicted by experimentally
formed knowledge are predicted with a deductive
approach; conversely, and inductive approach is often
applied in clinical research following a bottom up
approach; in this case, the global picture associated with
a specific biological occurrence are “photographed” using
high throughput technology and the reasons for their
occurrences are then hypothesized using a reverse engi-
neering approach [72]. We contend that this evidence

based approach is a necessary preliminary step to focus
the aim of future investigations because it identifies con-
cept relevant to human physiopathology during the nat-
ural course of the disease or it response to treatment.
Despite the increasing use of such approaches in oncol-

ogy [73-75], autoimmunity and infection [76,77] for the
identification of prognostic or predictive biomarkers, sys-
tems biology has been only recently applied to vaccinology
though the number of information are steadily increasing
[78-80]. Each of the available high throughput methodolo-
gies have been employed to study the immune response
induced by vaccines and a short description is reported
here (Table 1).
Transcriptomics
Transcriptomics enable the identification of set of genes
and pathways differentially regulated in immune cells
upon encounter with a foreign antigen or other non anti-
gen-specific stimulation. DNA microarray technology has
provided new insights into interactions between pathogens
and innate immunity [81-85], which represent the back-
ground information for understanding and predicting the
host response to vaccines. More recently, new powerful
transcriptomics technologies have become widely avail-
able, including next-generation sequencing, exon and
microRNA arrays [86,87].
Vaccines for infectious diseases
Gene ‘signatures’ in humans have been recently identi-
fied to predict immune responses to yellow fever vaccine
(YF-17D) [88,89] and VLP-based HIV vaccine [90-93].
Transcriptional profile of early innate immune genes in
PBMCs from vaccinated individuals showed that vacci-
nation with YF-17D induced in most vaccine recipients
a signature inclusive of genes involved in innate sensing

Computational Biology ; 
mathematical modeling

Data integration
leveraging; 

multi-disciplinary
collaboration

Biomarker discovery;
Rationale vaccine design;

Biomarkers for responsiveness

Dat ntegrationa in
leveragin

Dat ntegratioa in on
ng;
atio

mul
leve
t
eeve

isciplinary
raagig nngg; ;

di
eer

ti-d
eevee

collaboration
mult isciplinaryditi d

Immunological data 
integration leveraging;
Multi-disciplinary
collaboration

Biomarke iscoverer d ry;
RaRatitiononalal

Biomarke
aaccccinin

iscoveer d
ee vava

arke
eesisigngn;;
erry;

ee dede
cove

BiBiomomararkekerr
Rational

ooo
va

rsrs fofoo
ale v

eespsppononsisivevenenessss
cin esign;e de

ooorr rere
accva

Antigen discovery;
Rationale vaccine design;
Immunological biomarkers
for responsiveness

CoCompmpututatatioionana BiBiolologogaall BB ggyy ;;
mathematica
Computationa

modelingg
BiologgB ggyy ;

al m
naal

Computational Biology;
Mathematical modeling

Genomics

Transcriptomics

MetabolomicsProteomics

Genetics

Figure 1 Systems biology approaches for vaccine studies interactions and implications on translational research.

Buonaguro et al. BMC Systems Biology 2011, 5:146
http://www.biomedcentral.com/1752-0509/5/146

Page 4 of 11



of viruses and antiviral immunity. Among these, indeed,
were observed genes encoding innate sensing receptors
(i.e.: TLR7, RIG-I), transcription factors that regulate the
expression of type I IFNs, IFN regulatory factor 7 (IRF7)
and signal transducer and activator of transcription 1
(STAT1). A group of transcription factors, including
IRF7, STAT1 and ETS2, were identified as key regula-
tors of the early innate immune response to the YF-17D
vaccine [88,89]. Furthermore, the enhanced transcription
of several downstream genes that play critical roles in
the maturation and differentiation of T cells, B cells, NK
cells, and macrophages was observed [89].
Further bioinformatics approaches applied in a second

YF-17D vaccine trial identified two genes - solute carrier
family 2, member 6 (SLC2A6) and eukaryotic translation
initiation factor 2 alpha kinase 4 (EIF2AK4) - that did cor-
relate (with 90% accuracy) with the magnitude of antigen
specific CD8+ T cell responses and antibody titers. In par-
ticular, EIF2AK4 regulates protein synthesis in response to
environmental stresses by phosphorylating elongation
initiation factor 2a (eIF2a) [94,95]. Indeed, YF-17D vacci-
nation induced the phosphorylation of eIF2a as well as
the formation of stress granules, and other genes involved
in the stress response pathway correlated with the CD8+
T cell response [88].
The TnF receptor superfamily, receptor 17 (TnFRSF17),

which is a receptor for B cell-activating factor (BAFF), was
shown to be a key gene in the predictive signatures. BAFF,
indeed, is thought to optimize B cell responses to B cell
receptor- and TLR-dependent signaling [96,97].
Similar studies have been performed using a baculo-

virus-expressed HIV-VLPs developed in our laboratory
[98]. Such HIV-VLPs, indeed, induced specific transcrip-
tional profiles of genes involved in the morphological and
functional changes characterizing innate and early adap-
tive immune response. This immune signature was
observed in MDDCs [90] as well as in PBMCs from HIV-1
seronegative and seropositive subjects [93,99].
In particular, as described for the yellow fever live

attenuated YF-17D vaccine, HIV-VLPs induced a

molecular signature including several genes involved in
innate sensing of viruses and antiviral immunity. Expres-
sion of proinflammatory mediators CXC-chemokine
ligand 10 (CXCL-10) and interleukin-1a (IL-1a) genes
were found upregulated. Similarly several genes were
identified encoding innate sensing receptors (i.e.: TLR2),
transcription factors that regulate the expression of type
I IFNs, IFN regulatory factor 1 (IRF1) and signal trans-
ducer and activator of transcription 2 (STAT2). The
gene signature predictive of both humoral and cellular
adaptive immune response included several genes. The
CD83 and CD28 genes indicate a strong activation of the
Th2 development and B lymphocytes [100-102]. The TNF
receptor superfamily, receptor 1B and 6B (TnFRSF1B and
TnFRSF6B) are a marker for T and B cell activation
(TnFRSF1B) [103] and resistance to the pro-apoptotic
activity of the FAS-ligand (TnFRSF6B) [104]. The TNFSF9
is a T-cell activation marker [105,106] and the CD40 is
one of the key players in activation of both humoral and
cell-mediated immune responses [107,108].
These studies provide a global description of the innate

and adaptive immune responses induced by two vaccines
based on two different strategies, live attenuated (YF-17D)
and non-replicating Virus-Like Particles (HIV-VLPs),
identifying commonalities between the signatures induced
by the two vaccines. Such results suggest the possible
identification of specific shared predictive gene expression
meta-signatures with a broad application in vaccinology
(Figure 2).
In such studies, predictive signatures of response to vac-

cine have been evaluated using two independent classifica-
tion methods, called classification to nearest centroid
(ClaNC) and discriminant analysis via mixed integer pro-
gramming (DAMIP) [88]. In particular, ClaNC has been
previously shown to successfully develop predictive
transcriptional cancer models [109], while the DAMIP
classification model has proven to be a powerful super-
vised-learning classification approach in predicting various
biomedical and bio-behavioral phenomena [110] and to
produce superior classification accuracy when compared
to traditional quadratic or linear discriminant analysis
[111]. The DAMIP method was found to useful in deter-
mining correlates of vaccine efficacy for both T cell and B
cell responses [88].
Vaccines for cancer
A selected subset of genes differentially expressed in
melanoma metastases lesions have been identified, which
are associated with better response to vaccines [112]. In
particular, patients with a clinical response showed a
gene transcriptional profile characteristic of an inflamma-
tory tumor microenvironment, including chemokines and
T-cell markers, that existed before the initiation of vacci-
nation. A transcriptional profile involving similar set of
genes was associated with better clinical outcome upon

Table 1 Examples of Systems Biology applied to
vaccinology

Strategy Vaccine model Ref

Microarray Yellow fever [88,89]

Microarray HIV [90,93]

Microarray Melanoma [112,113]

Microarray NSCLC [114]

SNPs Measle [120,122]

SNPs Rubella [123]

SNPs Pertussis [126,127]

SNPs Influenza [130,131]
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administration of MAGE-A3 protein vaccine [113].
Indeed, upregulation of CCL5, CXCL9 and CXCL10 che-
mokine genes within the melanoma metastases has been
identified in patients with improved clinical outcome fol-
lowing vaccination, suggesting an effective intra-lesion
recruitment of effector T cells [112].
Very interestingly, the same set of genes has been cor-

related to better outcome in subjects affected by non-
small-cell lung carcinoma (NSCLC) and vaccinated with
the same MAGE-A3 strategy [114].
Such results suggest that the pre-existent inflamed

tumor microenvironment able to recruit activated T
cells may represent a favorable prognostic factor for
clinical response to cancer vaccines.
Genetic polymorphisms in innate immunity genes
Genetic polymorphisms can adversely affect expression
of genes as well as proteins of the innate immune

system and, consequently, host-pathogen interactions
and molecular signaling. This represents an additional
level of analysis to be included in the global evaluation
of factors involved in the host response to foreign anti-
gens, including vaccines [115-119].
Measle Vaccine Associations between SNPs in TLRs 3,
4, 5 and 6 and the downstream intracellular signaling
molecules, MyD88 and MD2, with variations in both
antibody and cellular responses following measles vacci-
nation have been recently described [120]. A SNP in the
3’UTR of TLR3 (rs5743305 at -976 bp of TLR promoter)
has been identified demonstrating an association
between heterozygous variant AT and low antibody as
well as low lymphoproliferative responses in vaccinees.
Similarly, the GA variant of a non-synonymous SNP
also in the TLR3 gene was associated with lower anti-
body production.
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IRF7

EIF2AK4, EIF2a 
phosphorilation, 
JUN, TNFSF9

TNFRSF17, 
TNFRSF1B
CD83, CD28

Red = YF17D
Yellow = HIV-VLP
Orange = shared

Innate Immune 
response

Th1 cells

CD8+ T cell

B-cell

Th2 cells

Figure 2 Genes modulated by YF-17D and HIV-VLP vaccines identified by microarray analyses.
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Moreover, heterozygous variants for two non-synon-
ymous SNPs (Gly299Asp and Ile399Thr) have been iden-
tified in the TLR4 gene and associated with higher IL-4
secretion to the measles vaccine strain [120]. Of note, the
same two SNPs have been studied extensively in associa-
tion with septic shock after infection with gram negative
bacteria, premature birth, myocardial infarction and allo-
graft rejection [121]. More recently, the major alleles
of coding SNPs in the TLR2 (rs3804100) and TLR4
(rs5030710) genes have been associated with a dose-
related increase or decrease in measles-specific antibo-
dies, respectively [122]. Similarly, associations between
SNPs in TLR5 and TLR6 genes and variations in IFN-g
secretion in response to measles virus stimulation have
been identified, whose significance is still unclear [120].
Associations between SNPs in genes of intracellular

signaling molecules associated with TLRs and the
immune response to measles have been also investigated
and a minor allele variant for a SNP in the 3’UTR of
MyD88, the intracellular adaptor molecule that signals
for most of the TLRs, was found to be associated with a
lower antibody response to measles vaccine. Further-
more, several intronic SNPs in TLR and their associated
intracellular molecule genes were significantly associated
with variations in cellular immune responses to measles
vaccine [120].
Rubella Vaccine
Also for rubella vaccination, associations between SNPs in
TLR and the downstream intracellular signaling molecules
with variations in both antibody and cellular responses
have been recently described [123]. Polymorphisms in pro-
moter and intronic regions of TLR3 and TLR4 genes have
been found associated with rubella virus specific cytokine
immune responses, such as IFN-g, IL-2, TNF-a, and GM-
CSF. In particular, two SNPs in the TLR3 gene appear to
be significantly associated with lower rubella IFN-g secre-
tion in an allele dose-related manner. Of note, the promo-
ter polymorphism (rs5743305, -8441 A > T) in the TLR3
gene, associated with rubella virus induced GM-CSF secre-
tion, is the same SNP suggested to be a risk factor for
lower antibody and low lymphoproliferative responses to
measles vaccine [120]. This finding strongly suggests that
rs5743305 in the TLR3 gene may play a role in viral
immunity and may be a key control point for humoral and
cellular immune responses to both measles and rubella
vaccines.
The same study identified 22 associations between poly-

morphisms in promoter and intronic regions of vitamin A
and vitamin D receptor genes and their downstream med-
iators of signaling with different immune response to
rubella-specific cytokine. Since SNPs in the vitamin D
receptor (VDR) genes have been associated also with pro-
tection from HIV-1 infection [124], it can be postulated
that pro-inflammatory immune responses to viral infection

or live viral vaccination are influenced by functional poly-
morphisms in the VDR gene.
Finally, associations of polymorphisms in the TRIM5

gene with variations in rubella virus-specific immune
responses (TNF-a, GM-CSF and IL-2) have been
observed, in concordance with recent findings on the
role of the same TRIM5-gene SNPs in the immune
response to retroviral (HIV-1) infection [125].
Pertussis Vaccine
The involvement of TLR4 in immunity to B. pertussis vac-
cine has been extensively shown and specific SNPs in the
promoter region of the TLR4 gene influencing the anti-
body response to the pertussis (PT) vaccine have been
identified [126,127]. The evidence of association was most
consistent and strong for the SNPs in the TOLLIP gene,
which showed association in three independent analyses.
TOLLIP is a small protein that binds the activated IL-1
receptor type I (IL-1RI) complex, as well as TLR2 and
TLR4 complexes, coordinating optimal signaling through
IL-1RI and TLR4 [128,129].
Furthermore, associations of SNPs in TIRAP and

TICAM1 genes and immune response to PT vaccine can
be explained by the knowledge that these two factors
belong to the Toll/Interleukin-1 receptor (TIR) domain-
containing adaptors, also including MyD88, that modu-
late TLR signaling pathways. Furthermore, the signal
transduction mediators of the Toll and IL-1 receptor (IL-
1R) families, namely IRAK3 and IRAK4, showed evidence
for association with immune response to PT vaccine.
Influenza vaccine
The role of HLA gene polymorphisms in the response to
influenza vaccine has been evaluated and HLAA* 1101
(p = 0.0001) as well as A*6801 (p = 0.09) alleles were asso-
ciated with higher median levels of antibody titers to influ-
enza vaccine [130]. In the same study, also polymorphisms
of cytokine and cytokine receptor genes were associated
with humoral response to seasonal influenza vaccination.
Previously, the increased frequency of HLADRB1* 0701
and the decreased frequency of HLA-DQB1*0603-9/14
was identified in individuals non-responders to the influ-
enza subunit vaccine [131].
The correlation between specific gene polymorphisms

and responsiveness to the different vaccines has been eval-
uated by different strong statistical analyses. However, in
order to validate such findings, it would be extremely rele-
vant to perform a meta-analysis using the same algorithms.

Data integration
The most challenging aspect of systems biology
approaches is the integration of different data types to
unveil relationships between genes, transcripts, proteins,
metabolites, and epigenetic regulators. To this aim, appro-
priate analysis and modeling tools are in a continuous pro-
gress of development.
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Algorithms and software packages designed to inte-
grate heterogeneous data types have been released
[132-134] and several publicly available databases of
immunology-related transcriptomic datasets have been
created in the recent years [135-138]. Furthermore, to
improve integration of immunology datasets of these
different databases, the Immunological Genome Project
initiative has been established recently with the ambi-
tious goal to combine immunology and computational
biology laboratories in a systems-level approach [139].
The exploitation of computational methods for data

mining and machine learning as well as bioinformatics
methods for incorporating prior biological knowledge
into data analysis algorithms has been proved to be an
effective strategy. Recently, it has been shown the efficacy
of applying statistical strategies (i.e. Random Forests
method) for integrating genetic (SNPs) and proteomic
(cytokine serum concentrations) data collected to eluci-
date the mechanisms underlying the development of
adverse events (AEs) in patients after smallpox vaccina-
tion [140]. Combining information from previous studies
on AEs related to smallpox vaccination with the genetic
and proteomic attributes identified by RF, the Authors
were able to build a comprehensive model of AE devel-
opment that included specific cytokines (i.e. ICAM-1,
IL-10, and G-CSF) and a genetic polymorphism in the
cytokine gene interleukin-4 (IL4).
Such examples show the efficacy of data integration ana-

lysis and it is an easy prediction that in the next future
more applications will be reported in the literature.

Conclusions
The comprehensive analysis at system level of immune
response to vaccines and immunotherapies (vaccinomics
or systems vaccinology) will provide invaluable knowledge
in immunology and genetics which will lead to optimized
vaccine development - including the identification of opti-
mal antigens, and antigen formulations (i.e.: adjuvant anti-
gens), inducing the sought cluster of genes and immune
pathways leading to the required adaptive immune
response. Moreover, it will greatly facilitate screening for
responsiveness to vaccines or immunotherapies and
understanding eventual failures in individuals enrolled in
clinical trials. Indeed, the identification of gene transcrip-
tional profiles or gene polymorphisms closely associated
with immune response to such immunological strategies
shows the relevance of such comprehensive analysis in the
personalization of treatment to obtain the best clinical
outcome.
However, the systems biology in vaccinology will go

through several steps before becoming a widely used
approach. The science is still developing and the complex-
ity and extensive polymorphic nature of immune response

genes needs enhanced powerful bio-informatics
approaches in order to inexpensively manage the vast
mass of genetic information. Moreover, validation studies
in larger settings of different genetic background will be
required to distinguish between natural and immune-
response related genetic - gene expression or polymorph-
ism - modifications. Indeed, only few examples show that
genes are modulated in response to vaccination with a
cause-effective relationship [141,142]. One way to over-
come such problem is to evaluate the results within the
context of known pathways or to combine multiple data
types. Moreover, according to the vaccine or immunother-
apy evaluated, the predictive target cell population should
be identified which is not always represented by peripheral
blood mononuclear cells.
Nevertheless, regardless the technical, cultural and

financial challenges, systems biology applied to vaccinol-
ogy represents a primary way to go in order to develop
novel vaccines and to re-develop established vaccines,
switching from the “empirical” to the “knowledge-based”
age of vaccinology. This should enable the development
of even more successful vaccines for preventive as well as
therapeutic intervention strategies for human diseases
according to individual- or group-personalized strategy.
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