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Abstract

There is limited access to effective cervical cancer screening programs in many

resource-limited settings, resulting in continued high cervical cancer burden. Human

papillomavirus (HPV) testing is increasingly recognized to be the preferable primary

screening approach if affordable due to superior long-term reassurance when nega-

tive and adaptability to self-sampling. Visual inspection with acetic acid (VIA) is an

inexpensive but subjective and inaccurate method widely used in resource-limited

settings, either for primary screening or for triage of HPV-positive individuals. A deep

learning (DL)-based automated visual evaluation (AVE) of cervical images has been

developed to help improve the accuracy and reproducibility of VIA as assistive tech-

nology. However, like any new clinical technology, rigorous evaluation and proof of

clinical effectiveness are required before AVE is implemented widely. In the current

article, we outline essential clinical and technical considerations involved in building a

validated DL-based AVE tool for broad use as a clinical test.

Abbreviations: AI, artificial intelligence; AIS, adenocarcinoma in situ; ALTS, ASCUS-LSIL Triage Study; ASC-US, atypical squamous cells of undetermined significance; AVE, automated visual

evaluation; CIN, cervical intraepithelial neoplasia; CNN, convolutional neural network; DL, deep learning; DNA, deoxyribose nucleic acid; DR, diabetic retinopathy; DSLR, digital single lens reflex;

ECC, endocervical curettage; FGS, female genital schistosomiasis; HIV, human immunodeficiency virus; HPV, human papillomavirus; HR, high-risk; LFU, losses-to-follow-up; LLETZ, large loop

excision of the transformation zone; LSIL, low-grade squamous intraepithelial lesion; ML, machine learning; NHS, Natural History Study; ROI, region of interest; SCJ, squamocolumnar junction;

SIL, squamous intraepithelial lesion; TZ, transformation zone; VAT, visual assessment for treatability; VIA, visual inspection with acetic acid; WHO, World Health Organization; WLWH, women

living with HIV.
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What's new?

An emerging option for cervical cancer screening is deep learning-based automated visual

evaluation (AVE) of cervical images. Here, the authors lay out parameters for the successful

development of deep learning-based AVE. For instance, an algorithm should be trained on rep-

resentative images from each of four distinct biological stages: normal cervix; infection with

high-risk HPV; precancer; and invasive cervical cancer. Characteristics that may lead to errone-

ous classification, such as cervicitis, should also be considered in the training. Introducing deep

learning-based methods prematurely threatens their eventual acceptance and best use.

1 | INTRODUCTION

Cervical cancer remains a leading cause of women's morbidity and mor-

tality in resource-limited settings.1 The World Health Organization's

(WHO) global call to eliminate cervical cancer relies on high-coverage of

human papillomavirus (HPV) vaccination and screening with accurate

and practical technologies to detect and treat precancers.2

Existing cervical cancer screening and triage technologies fall into

three categories: visual, microscopic (eg, cytology) and molecular (eg,

HPV testing).3

Visual inspection of the cervix after applying acetic acid (VIA),

though widely used in low-resource settings for primary screening or

triage, is poorly reproducible across settings and not reliable in dis-

criminating precancers from benign HPV-related and “look-alike”
changes.4 Cervical cytology as performed in most low-resource set-

tings has had poor historical impact due to lack of infrastructure, poor

quality assurance, need for repeated screening and poor follow-up of

screen positives.5 HPV testing is the most sensitive primary screening

method for detecting precancers, thus providing long-term reassur-

ance for HPV-negative women.6 Moreover, HPV testing is compatible

with self-collected vaginal specimens.7 However, to avoid over-

treatment, HPV positivity is best followed by triage testing to identify

the minority of HPV infections linked to precancer.7

Deep learning (DL)-based automated visual evaluation (AVE) of

cervical images is emerging as an alternative novel, low-cost screening

and triage solution. Machine learning (ML) is a type of artificial intelli-

gence (AI) that uses computers to detect patterns in data without

being explicitly programmed to do so.8 DL, inspired by the network of

neurons in the human brain, is a kind of ML method that uses many

layers of arithmetic operations9 to arrive at a model that mimics the

pattern identification for which it has been trained. DL has numerous

applications in medicine (eg, image recognition algorithms like AVE,

automated dual-stain cytology, diagnostic radiology and automated

diabetic retinopathy [DR] screening).10–12 In a DL model for image

recognition, information on different characteristics (eg, texture,

edges and curves) associated with target of interest is gathered from

individual pixels in an image through different layers. Through big data

and advanced computational resources, these elements, combined in

what we call an algorithm, are analyzed to provide accurate diagnosis

for previously unseen images.9,13,14 AVE as an assistive technology to

VIA15,16 offers an opportunity to improve VIA to create a screening

process that supports accelerated control of cervical cancer.

General reporting guidelines for clinical trials with AI-interventions

have been reported previously.17,18 This article, however, outlines our

collective view of considerations required, specifically for developing

and adopting a DL-based AVE algorithm for cervical precancer detec-

tion. We aim specifically to ensure its applicability as a well-

validated clinical test in cervical cancer screening programs globally,

although most principles are likely to be applicable for any AI-based

clinical tests. The text in this article elaborates on an accompanying

checklist to guide the development and validation of an effective

and clinically relevant DL-based AVE algorithm. Particularly, we

wish to caution clinicians and policymakers for the need to evaluate

the clinical effectiveness and applicability of those tools when they

are applied in cervical cancer screening programs to avoid prema-

ture introduction (Table S1).

2 | STEP-WISE CONSIDERATIONS
FOR AI-BASED AVE

2.1 | Before training the algorithm

2.1.1 | The indicated use of AVE

Detecting and treating precancer is the main aim of cervical screen-

ing.19 However, the point-prevalence of precancer, even in previously

unscreened populations, is only �1% in the general population, and

~2.5% in the women living with HIV (WLWH).20 Therefore, as a gen-

eral screening tool, AVE needs to detect precancers sensitively, but

with the perspective that almost all screened women (>95%) will

never develop cervical cancer.21

In contrast, among the HPV positives, the prevalence of pre-

cancer increases considerably from ~1% to >5%.20 Based on the well-

established role of HPV as a necessary cause in cervical

carcinogenesis,21 together with the evidence of long-term negative

predictive value of HPV tests (virtually zero risk over 5 years),6 an

ideal use-case of AVE is for triage of HPV-positive women (Box 1).
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If found to be effective, this screening strategy is envisioned by

our group to be scaled up in a community-based campaign combining:

(a) screen-and-treat screening of mid-adult women (ie, 25 or 30 to

around 45 or 50), and (b) single-dose vaccination of multiple birth-

cohorts of girls and younger women to induce herd protection.32 Such

a conjoined primary and secondary prevention effort is likely to lead

to accelerated cervical cancer control in low-resource settings.

The prevalence of visual abnormalities and precancer further

increase in a colposcopy clinic, where most women have been referred

for equivocal or minor cytologic abnormalities such as HPV-positive

atypical squamous cell of undetermined significance (ASC-US) or squa-

mous intraepithelial lesion (SIL), respectively.33 Within this context,

women referred for colposcopy also have an increased prevalence of

cervical visual abnormalities regardless of final diagnosis. Therefore, an

AVE algorithm trained for indicated use in general screening should not

be assumed to be suitable for use as a tool for triage in a colposcopy

setting and vice versa unless the accuracy of both approaches is explic-

itly demonstrated in a formal evaluation (Figures 1 and S1).

In addition, until sufficient supportive evidence accumulates

regarding accuracy, reliability and portability of the method to

different settings, AVE is best used as an ancillary technology to aid

health workers performing VIA to improve their accuracy, rather than

a standalone tool.34,35

2.1.2 | Clarifying target population for using AVE

Any visual cervical screening methods, including AVE, works best

when applied at an appropriate age range (eg, 25-49 years).36

Within this age-range, HPV infections are more likely to be clini-

cally meaningful than at younger ages at which transiently

detectable HPV are extremely prevalent but cancer is very

rare.37 Moreover, prominent glandular epithelium (“ectopy” or

“ectropion”), common at younger ages, may lead to false-positive

AVE predictions. Also, in mid-adulthood compared to older ages,

the squamocolumnar junction (SCJ) at which most cancers arise

is frequently still fully visible,20 and lesions, if detected, could

still be treated safely without disproportionate risk of damaging

atrophic pelvic structures.38 Using an AVE algorithm on cervical

images when the main site of cervical cancer, the SCJ, is no

BOX 1 AVE as a triage for HPV positives

HPV testing for carcinogenic HPV types is the most sensitive method for cervical cancer screening, providing many years of reassurance

(negative predictive value).6 Therefore, HPV testing is a desirable primary screening test, mainly when few screening rounds are

possible.22,23

Currently, the cost is the prohibitive factor in adopting HPV as a primary screening test in many low-resource settings. However,

based on available tests that cost <5 US dollars and take <1 hour to perform and offer partial HPV genotyping, even lower-cost, point-

of-care HPV tests will likely be widely available in a few years.24

HPV infection is too common to treat all infected women, most of whom do not need treatment, particularly given possible iatro-

genic harms. Relying on negative HPV testing to reassure most women against cervical cancer risk permits public health efforts to focus

on the triage of HPV-positive women with newer technologies like HPV typing and AVE.

Risk-informed hierarchical partial genotyping of HPV, if incorporated with minimal additional cost into HPV testing, provides impor-

tant risk stratification useful for triage of HPV-positive women.25 Even among the types of HPV defined as carcinogens, there are at

least four distinguished categories based on the risk of invasive cancers. HPV16 (species alpha-9) is uniquely carcinogenic with the

highest risk of cervical precancer and cancer, causing ~60% of squamous cancers. HPV18 and HPV45 (species alpha-7) cause ~15% of

squamous cancers and with HPV16 also account for >90% of adenocarcinomas.26 The types of HPV closely related genetically to

HPV16, namely, HPV31, HPV33, HPV35, HPV52 and HPV58, account for another ~15% of squamous cancers and are conceptually

worth distinguishing from the lower risk, minimally carcinogenic types (HPV39, HPV51, HPV56, HPV59 and HPV68), accounting for

~5% of squamous cancers.27,28 Of note, HPV35 is particularly pernicious for women of African origin.29

It is pertinent to note that if AVE is used alone for standalone primary screening, “look-alike” confounding conditions like severe

cervicitis could lead to over-treatment15 of many women with benign conditions unrelated to cervical cancer. Hence AVE is used as a

triage test for the relevant set of HPV-positives. Cervical sampling for HPV testing abrades the cervix's critical transformation zone (TZ;

where most cancers arise), complicating the use of AVE for triage. Fortunately, vaginal sampling, either by the woman herself or a clini-

cian, has been convincingly shown now to be almost equivalent to clinician sampling of the cervix when a sensitive HPV DNA test is

used.30 In addition, self-sampling is also demonstrated to permit very high-throughput cervical screening in a COVID-safe

manner.20,25,31

Recognizing the eventual importance of vaginal HPV testing, we aim to develop a screening strategy using HPV self-sampling, with

risk-informed partial HPV typing28 and AVE. When used sequentially in combination, this will classify the woman into risk strata

(of highest to lowest probability of precancer) to guide treatment and limit overtreatment.
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F IGURE 1 Scatterplot of algorithm scores and disease status provided in two different settings: (A) general screening and (B) triage. In
(A) scores cluster in each disease state and differentiate precancer from the rest. In (B) data across disease status are sparser, and the distinction
between the three disease strata is less apparent. Source: Graphs are conceptual and not based on real data [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 2 Factors affecting image interpretations by AVE. (A) The impact of age: With increasing age, the SCJ moves inside the endocervical
canal, creating a pink image appearance of mature squamous epithelium and likely to provide false reassurance by negative AVE prediction. On
the other hand, ectopy at younger ages is likely to lead to false-positive results on AVE. Examples: (A1) Type III TZ (AVE prediction = negative,
final diagnosis on endocervical curettage [ECC] histopathology = precancer), (A2) Ectopy (AVE prediction = precancer, Final diagnosis on ECC

histopathology = normal); (B) The impact of quality: AI will give a prediction on any input, including images where the humans would even fail to
identify the region of interest due to either technical factors making the image not even recognizable as a cervix. Examples: (B1) Excessive blur
(AVE prediction = negative), (B2) Bad angle with the undetectable cervical os (AVE prediction = negative), (B3) speculum reflection and glare,
(B4) non-cervix image (AVE prediction = negative), OR anatomic factors obstructing the SCJ; (C) The impact of obstruction of the SCJ: Examples:
(C1) Cervical polyp (AVE prediction = negative), (C2) Uterine fibroid, (C3) Menstrual blood plugging the os. Source: Binary classification algorithm
trained on an enhanced cellphone (EVA) images globally,39 tested on EVA images from Project Itoju, Nigeria (unpublished results by NCI HPV-
AVE research group); Cervical image source: Desai et al20 [Color figure can be viewed at wileyonlinelibrary.com]
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longer visible as occurs with aging may lead to false-negative

AVE prediction (especially when the visible epithelium covering

the cervix appears completely “pink” and normal), hence, nega-

tive results in such women should be reported with caution

(Figure 2A).

2.1.3 | Aligning the AVE classification categories
with the natural history of HPV and cervical
carcinogenesis

Detection of precancer is the main objective of cervical screening.

However, based on the natural history, there are four biologically

distinct stages in the pathogenesis of cervical cancer, which are:

(a) normal cervix; (b) infection with high-risk (HR)-HPV (very com-

mon); (c) precancer, defined as transforming HR-HPV infection

associated with lesions with a high-likelihood of invasion if left

untreated (uncommon) and (d) invasive cervical cancer (comprising

a small minority of cases compared to precancers).37,40 Each stage

in the carcinogenic process can be linked to distinct clinical man-

agement action in screening programs: (a) reassurance for women

with a normal cervix; (b) triage of HR-HPV infections; (c) treatment

of precancer and (d) advanced treatment of cervical cancer.41

Therefore, the success of AVE can be related to its assignment of a

screened individual to the proper stage linked to distinct manage-

ment actions.

2.1.4 | Reference standard for defining the AVE
classification categories

AVE needs to be trained on representative cervical images of each of

the four natural history categories shown in Figure 3,20,21 which must

be defined clearly to avoid misclassification by teaching (“training”)
the AVE on incorrect labels. In this regard, defining the cervical carci-

nogenesis stages based on nonreproducible historical grading systems

(eg, dysplasia or cervical intraepithelial neoplasia [CIN] stages) is no

longer optimal.42–44 Rather, the four stages can be defined as follows.

Invasive cervical cancer is defined histologically unless the clinical

picture is so severe that surgical pathology is not obtained.

Precancer is defined stringently as a histopathologic CIN3/AIS

(adenocarcinoma in situ) since most histopathologic CIN3/AIS cases

contain the same HPV types found in invasive cancers.19,45 Moreover,

CIN3/AIS histopathologic diagnosis of precancer is reasonably repro-

ducible without resorting to expensive molecular markers of cellular

transformation (eg, viral methylation and viral DNA integration). Addi-

tionally, selected high-risk histopathologic CIN2, if the diagnosis is cor-

roborated by expert gynecologic pathologist review and accompanied

with highest risk HPV-type positivity, is likely to represent precancer.46

However, one needs to be cautious in including all CIN2 as a precancer

target because CIN2 is a poorly reproduced diagnosis with a mixture of

high-grades and regressive low-grades (associated with noncarci-

nogenic HPV types as HPV53), creating a phenocopy of early pre-

cancer. For colposcopic biopsy to be sensitive, multiple biopsies of all

F IGURE 3 The AVE classification categories are expected to be consonant with the four biological distinct stages in the natural history and
pathogenesis of cervical cancer. Reprinted with permission from Schiffman et al21; Histopathology image source: Desai et al20 [Color figure can
be viewed at wileyonlinelibrary.com]
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visible lesions (based on turning white after application of vinegar,

called acetowhitening) is necessary, rather than targeting of the most

severe appearing lesion. Clinician colposcopic impressions, even when

performed by experienced gynecologists, are subjective and variable in

distinguishing precancer from benign HPV-related changes and “look-
alike” conditions.47–49 An algorithm trained on target class definitions

based on human interpretation of cervical images instead of histopatho-

logic diagnosis, particularly for “precancer” target, will be restricted by

the same limitations in accuracy and intraobserver and interobserver

variability as other visual methods (eg, VIA).50 Thus, multiple biopsies

and histopathologic definition of precancer are preferable to high-grade

colposcopic impression.

However, histopathology cannot define the normal cervix, as most

normal women are never thoroughly biopsied. Since the negative predic-

tive value of the HPV test is very high, the ideal definition of “normal”
(in the sense of virtually no imminent risk of cancer) will be images from

confirmed HR-HPV negative women.6 Alternatively, in the absence of

HPV results, the absence of any acetowhitening (ie, entirely “pink” cervix)
on expert review of images from women at a general screening clinic can

be used to define normal because acetowhitening is a sensitive measure

of the risk of precancer,51 and chances of finding CIN3/AIS in women at

a general screening with no cervical acetowhitening is very low.52

Once cancer and precancer are defined histologically (and ideally

virologically as well), and the normal cervix is defined visually, the

remaining category can be conceived of as “HPV-related and other

equivocal changes.” Histopathology has limitations in defining this cate-

gory due to subjectivity in microscopic diagnosis and biopsy placement

errors (eg, targeting only the worst appearing lesions).53 In our experi-

ence, an algorithm not trained explicitly to recognize these “equivocal”
images tends to give extremely erratic predictions on these images

(Figure S2). Since it is in this “equivocal” zone where the experts also

struggle the most and since the associated risk of cervical cancer is

likely to be intermediate (ie, nonzero but much lower than precancer), it

is desirable to train the cervical images with acetowhite changes as a

separate target interposed between “normal” and “precancer” targets.

Ongoing work by our group is addressing how best to include this

equivocal class in training (ie, training a multiclass ordinal classifier).

2.2 | Choosing images and metadata for training
the algorithm

2.2.1 | Size, source and representativeness of the
dataset

A typical number of learned parameters in a DL algorithm develop-

ment tend to be up to millions compared to tens in a traditional multi-

variate model.14 Although it is difficult to predict the exact number,

the number of representative images with truth label required to build

an accurate yet generalizable AVE algorithm via DL approach, can be

assumed to be hundreds or greater for each target class to achieve

satisfactory disease discrimination.54,55 It is worth recalling that, even

in high-burden settings, cervical precancer is relatively uncommon52;

thus, ethical acquisition35 of accurately labeled, representative case

images, is challenging.

2.2.2 | Image quality evaluation and pre-exclusion

The provider's training to capture good quality images is a first step for

AVE's successful application. However, when an AI-based image recog-

nition tool is applied in real-world clinics, variation in the quality of

images is inevitable. The image quality is affected, in addition to the

user training, by the lighting (eg, external ring light vs built-in camera

flashlight, shade of white light), image capture device and postcapture

processing of images by device-specific software, anatomic variation,

speculums (eg, metallic vs transparent plastic) and so on.

Without a quality check, AVE will provide a prediction for any

image given to it as an input, including images not even recognizable

as cervix and images with a completely obstructed region of interest

(ROI) (ie, SCJ) (Figure 2B,C).20,56 Therefore, a manual or automated

gatekeeping mechanism should be in place to exclude poor-quality

images from training and evaluation to minimize false predictions.

Various parameters define the image quality, such as blur, Gauss-

ian noise, resolution, color, angle and glare/reflections; not all affect

the AVE's performance equally. The composite minimal image quality

standards needed to obtain a good performance on AVE is an ongoing

advanced research topic.

2.3 | Choosing DL methods for training AVE

Training a DL algorithm is more complex than the simple explanation

described previously.15 Multiple technical choices need to be taken

while training the algorithm (Box S1),9,13,14 which may have implica-

tions for interpreting the output54,57,58 (Figure S3). The aim is: (a) to

achieve accurate and reliable prediction on hold-back images from the

same database as the training set (called “internal validation”), (b) not
to lose generalizability in new images from different databases

(“external validation”). Ongoing work from our group is exploring the

optimal DL approach to train an AVE algorithm to achieve maximum

risk discrimination that has external validity.

In addition, the choice of methods has implications for time and

computational speed requirements to run the algorithm. Ideally, a scal-

able AVE algorithm should be available to run as a standalone app

(without internet) on the image-capture device itself, providing quick

(within few seconds), and real-time predictions for on-site patient's

management to minimize loss-to-follow ups.

2.4 | Validation of the output of the algorithm

2.4.1 | Reproducibility of AVE

The essential first parameter in assessing AVE's validity, like any medi-

cal test, is reproducibility. Like a thermometer, giving a consistent
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reading of body temperature on the repeated measurement of the

same person, an AVE algorithm should give virtually identical outputs

when asked to predict the same image repeatedly. However, in the

case of near-duplicate images (ie, images collected from a woman

under the same image capture protocol consecutively), subtle changes

in the numerical pixel values of the image due to changes in body or

camera position may alter the AVE predictions especially for equivocal

images, despite the visual similarity of the images to the human eyes.

Clinically, it is confusing to the user if an AVE algorithm were to label

one image as a precancer and a near-duplicate image (or same image

in a different run) as normal (Figure S4). Therefore, before its use for

clinical decision-making, AVE's robustness for near-duplicate pairs of

images should be measured and reported.59

2.4.2 | Internal validity of AVE

To “teach” the algorithm to recognize the target of interest, we pro-

vide it with sets of “labeled” cervical images in each target class as a

“training” (to learn the features associated with the outcome of inter-

est) and a “validation” set (to iteratively check on and optimize the

algorithm's performance as part of training).15 It is important to note

that the validation set is not a true blinded test set. A performance

achieved by the algorithm on the validation set is likely to be mis-

guiding and over-optimistic.58 When the “training-validation” set is

limited, an algorithm is prone to overfitting to the image features in

the “training-validation” set and may completely fail on the third inde-

pendent “hold-back” set of previously unseen (ie, blinded) images

from the same database as training and validation set.55,60,61 There-

fore, it is essential to assess AVE's performance on an independent

completely blinded “test” set of images not included in the “training-
validation” process (Figure 4A) to have a realistic estimate of internal

validity of AVE on a dataset.

In addition, it is important to include a realistic set of images in the

“test” set on which the performance is finally evaluated. For example,

we may observe good case-control discrimination by AVE on a

“restricted” test set, including only the clearest examples of high-grade

cases (CIN3) and HPV-negative controls. However, it is important to

realize that many cervix images will fall into an equivocal intermediate

zone, including HPV infection, cervicitis and low-grade changes. With-

out examining the discrimination and reproducibility achieved by AVE

in this intermediate zone of “not so clear” case or control assigment (ie,

due to noisy data) where even the expert colposcopists struggle the

most, the promising claims about the algorithm's capacity could be mis-

leading for real-life implementation (Figure 4B).

A critical aspect to evaluate the algorithm's performance is choos-

ing the appropriate statistical approach. First, AVE class predictions

can be compared against the reference standard (eg, histopathology)

in a comprehensive independent test set. Second, the AVE, to be

worth adopting, would ideally demonstrate consistently superior per-

formance to the existing standard of care (eg, unaided VIA as prac-

ticed in the setting), and at least noninferior performance to the

expert clinicians (eg, colposcopists). Of note, AVE is not limited in per-

formance by human factors such as fatigue, mental stress and so on;

hence is theorized to have lower intraobserver variability in addition

to lower interobserver variability than VIA and colposcopy, leading to

higher consistency.

2.4.3 | External validity (generalizability) of AVE and
avoiding overfitting

Verifying an AVE algorithm's performance is a two-step process.

Testing the algorithm's performance (achieving accurate predic-

tions without overfitting) on an independent “test” set of images

derived from the same source as the training set (called “internal
validation”) is a crucial first step,15 but not a final benchmark. This

testing set will be limited by the same “finite” representation and

idiosyncratic random variations as in the “training” set. Thus, the

process does not reflect true validation of an algorithm in terms of

how it will perform in actual clinical practice with “infinite” varia-

tions in patient characteristics, user training and image capture pro-

tocols.9 For example, an AVE algorithm that is overfitted to a

particular set of images from a clinic15 will learn to recognize ran-

dom (ie, nonrelevant) variations in the particular training set that

distinguish precancer from normal, but these distinctions are not

necessarily generalizable to other settings (eg, images from differ-

ent clinics captured under different light sources by different pro-

viders) to distinguish patterns associated with precancer

detection55,60,61 (Figure S5). Therefore, to assess true generalizabil-

ity, one needs to evaluate the AVE algorithm's performance on a

diverse set of images from various clinical settings worldwide. In

addition, ideally, multiple independent formal efficacy assessments

should demonstrate replicability of the results.34,62

2.4.4 | Device portability of AVE

The AVE algorithm works on a pixel-level (ie, trying to compare and

contrast the differences in the pixels on the images and what impact

this can have in classifying them). Therefore, an AVE algorithm trained

on images from one type of image capture device tends to be over-

fitted to the features (ie, pixel patterns) of the particular device and

works well only on that device.55,63 A device-agnostic AVE algorithm

(eg, the current advanced state of facial recognition, likely achieved

due to millions of images available for training) that can read

accurately across different image capture devices (Figure S6) with

minimal adaptation is a critical subcomponent of AVE's generaliz-

ability. Such a device-agnostic algorithm does not yet exist for

evaluation of cervical images and is a subject of active research.

Unless efforts to develop a device-agnostic algorithm are success-

ful, a dedicated image capture device or devices, with algorithms

trained with their image types, will need to be used to ensure

accurate and time-stable AVE performance.
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2.4.5 | Anatomical and biologic confounding factors
and effect modifiers for AVE

Several patient characteristics may contribute to the erroneous classi-

fication of a given image by AVE (Figure S7).15 For example, ectopy

among young women may result in a high AVE severity class predic-

tion due to the ruddy glandular epithelium extending onto the

ectocervix. Similarly, severe cervicitis, female genital schistosomiasis

(FGS) can be misclassified as precancer, and certain noncarcinogenic

HPV types (eg, HPV71) with no relationship to cervical cancer may

F IGURE 4 (A) AUC results for the discrimination of disease vs no disease in a validation set and a test set. Notice that the AUC value from
the same study images decreases from 0.94 to 0.86 when the algorithm was tested in a hold-back test data set images that were not used at all
during the training and validation of the algorithm. Source: Binary classification algorithm trained on cervigram images from NHS tested on
cervigram images from NHS (unpublished results by NCI HPV-AVE research group). (B) Score values obtained in a binary classification algorithm
trained on cervigram images. AVE prediction scores were presented per definite case, definite control, equivocal case and equivocal control.
When using a selective set of clearly defined cases (precancers) and controls (normal), the algorithm easily discriminated between disease strata,
but when adding equivocal images, as it would be in a real-life scenario, the score distribution tended to be wider and less discriminative of
diseases status. Source: Binary classification algorithm trained on cervigram images from NHS and ALTS tested on cervigram images from NHS
and ALTS (unpublished results by NCI HPV-AVE Research Group) [Color figure can be viewed at wileyonlinelibrary.com]
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cause warty cervical lesions resulting in erroneous high AVE severity

class prediction.

The co-existence of human immunodeficiency virus (HIV) infection

with HPV infection is probably the most important known difficulty in

AVE classification. WLWH, due to shared risk factors for acquisition of

infection, have 2-fold increased likelihood of acquiring HPV. Due to

HIV-associated immunosuppression, they have a greatly elevated risk

of persistent HPV and precancer, leading to a 6-fold increased risk of

cervical cancer compared to HIV-negative women.64,65 Precancerous

lesions tend to be more severe in WLWH,66 affecting the anogenital

epithelium more widely. WLWH also have a high risk of co-infection

with other cervical sexually transmitted infections, which can cause cer-

vicitis that may impact visual appearance of the cervix.

HIV, FGS and cervicitis are highly prevalent in areas with a high

burden of cervical cancer as well (eg, schistosomiasis and HIV in sub-

Saharan Africa, cervicitis in India). Therefore, it is critical to evaluate

the need to train the AVE to control for these factors as much as pos-

sible and whether to have a subgroup-specific AVE is needed. Beyond

the scope of this discussion, the use of DL algorithms to diagnose

FGS is under consideration.

2.4.6 | Risk prediction: “calibration” of AVE

Before adopting any DL-based diagnostic tool in clinical practice, the

clinician should ask what is the tool measuring (ie, output) and the lim-

itations of its interpretation for clinical decision-making. The major

goal of AVE, ideally, is to directly predict the risk (conceptually a con-

tinuous probability from 0 to 1) of a woman having a precancer today

while having some reassurance (ie, negative prediction) for the

future.67 However, the current classifier AVE algorithm approach is

trained to predict discrete target classes (eg, histopathologic cancer or

precancer, low-grade, normal). Such a classifier AVE provides a score

associated with each target class it is trained to predict. However, it is

important to understand that these scores themselves are not true

risk estimates (ie, woman with a “raw” score of 0.9 associated with

the “precancer” class does not necessarily have a 90% probability of

precancer) and are not reliably portable.8,68 In order to obtain a clini-

cally meaningful, reliable and portable estimate of the true risk of pre-

cancer from a classification network, the final AVE class label

prediction needs to be translated into a risk value (ie, observed total

number of women with precancer out of the total number of women

with a given class prediction should match the expected number of

women with precancer based on the absolute risk prediction for the

given class, for example, 90 observed women with precancer out of

100 for the precancer risk of 90% for a precancer class prediction),

taking into account other co-factors (ie, age, HIV status, HPV status,

HPV types, etc), if available (Figure 53), to accurately risk-discriminate

low-risk and high-risk individuals for risk-based clinical management.

Such multivariate models are not yet validated.

2.4.7 | Predicting immediate vs future risk

AVE algorithms have been commonly trained cross-sectionally on the

woman's present status and images, rather than a longitudinal set of

images per woman, and are therefore likely to only predict a prevalent

risk of precancer. At present, it is not known for how long a negative

AVE test confers reassurance. It is unlikely to be for as long as an

HPV test.6

2.5 | Field implementation

The considerations described here are mainly focused on the technical

efficacy of AVE. When scaled-up for implementation, outside the

F IGURE 5 A recommended approach for cervical cancer screening based on HPV genotyping and AVE. HPV extended genotype provides a
risk stratification that, when added to the AVE class label prediction, provides 17 risk strata. When each stratum is calibrated to represent the
absolute probability of a woman having a precancer (ie, risk), a direct risk-based clinical management decision can be taken tailored to resources
availability. Reprinted with permission from Wentzensen et al3 [Color figure can be viewed at wileyonlinelibrary.com]
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research settings, even well-validated algorithms will have many chal-

lenges (eg, data privacy, patient acceptability and provider training) as

observed in other medical fields.63,69,70 For example, even a highly

accurate DR screening algorithm inside a computer lab has been docu-

mented to have failed in the field clinics due to practical challenges.71

Some of these challenges present valuable parallels to the AVE imple-

mentation work. For example, the DR algorithm could not read a high

proportion of images due to poor quality attributed to variation in

lighting conditions across the field clinics, differentially affecting the

retinal dilations.70,71 Also, it was sometimes impossible to take a single

image capturing the entire field of view (eg, retina), leading to a failed

prediction by the algorithm.70 These image quality issues lead to a

similar dilemma as in AVE of balancing the risk of predictions based

on imperfect data against the risk of inaction from losses-to-follow-up

(LFU) during referrals.70 There is a balance between efforts to improve

image quality by users against making the algorithm robust enough to

tolerate “less than perfect” images. The delayed or failed image analy-

sis on a cloud-based DR algorithm due to poor internet connectivity

at the field clinics is another parallel with AVE, confirming our group's

insistence on the absolute need for the AVE algorithm to work off of

a local hardware with sufficient processing power without internet

connectivity.70,71 The challenges encountered in developing a robust

and reliable DR algorithm also have many analogs for the AVE deve-

lopment effort. Some of these challenges are: generating reproducible

ground truth labels with high interobserver agreement among the

experts for training the algorithm, particularly for the classes with high

interclass similarities (eg, hard vs soft exudates)72; difficulties in

detecting lesions in the presence of noise (eg, optical reflections) and

commonly encountered nonlesion structures (nerve fiber reflections,

vessel reflections and drusen)72; and developing a generalizable algo-

rithm that could work accurately across inevitable common variations

in the clinical environment (eg, images collected from multiple centers

on machines ranging from smartphone cameras to high-end

fundoscopes).73

The main important considerations specific for implementation of

AVE for cervical cancer screening are human resource capacity-

building to manage screen-positive women detected by AVE, develop-

ing data management systems to support tracking women needing

referral and cost-effectiveness analysis to evaluate AVE's impact in

real-life programs.

It is important to emphasize that to prevent cancer we need to

detect precancer lesions and treat them adequately. Absence of treat-

ment is a major and unfortunately very common reason for screening

program's failure. For women requiring treatment, thermal-ablation

using a battery-operated mobile device is currently the most portable

option given that it is safe, effective, affordable and does not require

sophisticated equipment.74 However, because not all women are

eligible for thermal-ablation due to abnormalities or benign changes

on the cervix,75 local providers will need to identify which women

require referral for further evaluation for more invasive treatments

(eg, conization, Large Loop Electrosurgical Excision of the Transforma-

tion Zone [LLETZ]), unavailable in many resource-limited settings. For

providers, this assessment is prone to variability and challenges.76

DL-based AVE based on expert reviews of cervical images is under

development to predict a woman's eligibility for treatment with abla-

tion; an initial pilot suggesting good performance.16

3 | CONCLUSIONS

DL-based AVE of the cervical image is a promising but still evolving

clinical test. Even though the inner workings of DL remain obscure,

DL-based AVE, in the end, is no different from any other clinical diag-

nostic test. Since the limitations of the DL described here might not

be fully appreciated by end-users, the onus lies on the developer of

an AI-based device to make the subtle issues explicit, particularly in

the less regulated markets. Raising awareness and knowledge of the

goodness-of-fit and limitations of DL-based AVE among end users is

critical to improve clinical practice. Nonetheless, some AVE-type

products are already being marketed without substantial documenta-

tion of effectiveness.77,78 Thus, in line with the WHO guidance,35 we

maintain that premature introduction of AI-based methods, without

transparency and accountability, threatens their eventual acceptance

and best use.
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