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Abstract
Neurodegenerative diseases such as Alzheimer's disease present subtle anatomical brain

changes before the appearance of clinical symptoms. Manual structure segmentation is

long and tedious and although automatic methods exist, they are often performed in a

cross-sectional manner where each time-point is analyzed independently. With such analy-

sis methods, bias, error and longitudinal noise may be introduced. Noise due to MR scan-

ners and other physiological effects may also introduce variability in the measurement. We

propose to use 4D non-linear registration with spatio-temporal regularization to correct for

potential longitudinal inconsistencies in the context of structure segmentation. The major

contribution of this article is the use of individual template creation with spatio-temporal
regularization of the deformation fields for each subject. We validate our method with differ-

ent sets of real MRI data, compare it to available longitudinal methods such as FreeSurfer,

SPM12, QUARC, TBM, and KNBSI, and demonstrate that spatially local temporal regulari-
zation yields more consistent rates of change of global structures resulting in better statisti-

cal power to detect significant changes over time and between populations.

Introduction
Longitudinal measures of brain volumetry are powerful tools to assess the anatomical changes
underlying on-going neurodegenerative processes. In different neurological disorders, such as
multiple sclerosis (MS), Alzheimer’s disease (AD) and Parkinson’s disease (PD), brain atrophy
has been shown to be a good surrogate marker of disease progression[1–3]. Magnetic reso-
nance imaging (MRI) can provide reproducible 3D structural images of the brain, which can
be used to assess its integrity. Furthermore, the emergence of freely available longitudinal MRI
databases, (e.g.,Alzheimer’s Disease Neuroimaging Initiative (ADNI)[4], Open Access Series of
Imaging Studies(OASIS)[5] and others) provide the necessary data to develop and test new
methods and investigate the longitudinal structural changes of healthy and pathological brains.
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Image processing in MRI-based neuro-anatomical studies is often performed in a cross-sec-
tional manner where each time-point is evaluated independently. Typically, brain morphome-
try comparisons can be done by matching paired images (template-to-subject or subject-to-
subject), where the deformation field is used to map atlas regions or to compute voxel-wise
comparisons of anatomical changes as in deformation-based morphometry (DBM). However,
in the context of longitudinal datasets, the robust estimation of anatomical changes is still chal-
lenging [6]. Indeed, in the case of neurodegeneration occurring in a short period of time (2–3
years), if we assume that longitudinal changes are smoothly varying, spatially local, and tempo-
rally monotonic processes, considering individual time-points independently can generate
unnecessarily noisy longitudinal measurements due to the intrinsic noise associated with each
visit. Different studies have shown the impact of the MRI acquisition protocol on structural
measurements [7] and cortical thickness [8]. Therefore, methods that integrate constraints
from the temporal dimension (i.e., 4D methods) should produce more accurate, robust and sta-
ble measures of the longitudinal anatomical changes resulting in a more realistic estimation of
temporal evolution. Different approaches have been proposed to overcome the complexity of
anatomical 4D longitudinal data image analysis. We classify these methods in 2 major groups:
“4D” and “longitudinal 3D”. The 4D approaches treat the individual and/or group-wise longi-
tudinal data as an ensemble and provide longitudinal models or measurements. They are math-
ematically sophisticated approaches that have been proposed in the context of modeling larger
anatomical changes over time (i.e., growth over the span of childhood). For example, a 4D pop-
ulation model creation using Gaussian kernel regression has been suggested by Davis et al. [9]
where each image is registered independently to a moving average, avoiding the creation of an
explicit parameterized model of the longitudinal changes (Fig 1A). Kernel regression has also
been used in the framework of the Large Deformation Diffeomorphic Metric Mapping
(LDDMM) for brain shapes [10] (Fig 1B) and images [10–12]. Regarding intra-subject 4D reg-
istration, Lorenzi et al. [13] have proposed 4D non-linear registration via a global 4D deforma-
tion optimization scheme in the Demons registration framework. Finally, Wu et al. [14]
introduced an implicit mean-shape of the population which could be used for individuals.
Their approach maximizes the spatio-temporal correspondence and continuity from a set of
temporal fibre bundles (Fig 1C).

The longitudinal 3D approaches include the adaptation of popular 3D/cross-sectional
methodswith some longitudinal constraints or longitudinal pre-processing. For instance, in
the context of clinical evaluation over a few years where anatomical changes are small and con-
tinuous, the use of 3D individual template targets have been proposed to perform non-linear
registration [15–17] or tensor-based analyses (TBM) [18]. Indeed, to compare anatomical dif-
ferences, 3D population templates have proven their importance for different applications such
as mapping function, structure, or vasculature [19] and group comparisons [20]. While differ-
ent techniques exist to create unbiased population templates for multi-subject cross-sectional
studies [21, 22], few of these techniques have been developed for the creation of an individual
3D subject template. More recently, Reuter et al. [16] created a subject-specific 3D template for
longitudinal analysis by computing the median image of the linearly registered images of the
same subject from different time-points and this method is implemented within the longitudi-
nal version of FreeSurfer (http://surfer.nmr.mgh.harvard.edu) [16]. In the continuity of their
work on voxel-based morphometry (VBM) [23–25], Ashburner et al. [17] presented an unbi-
ased “group-wise intra-subject” template with an iterative longitudinal non-uniformity correc-
tion, linear and non-linear diffeormorphic registration that is implemented in the Statistical
Parametric Mapping 12 (SPM12) (http://www.fil.ion.ucl.ac.uk/spm). Aubert-Broche et al. [26]
also proposed to use robust non-linear individual templates to perform tissue classification and
segmentation of pediatric images.

Longitudinal Registration to a Subject-Specific 3D Template
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Inspired by previous work and the need for longitudinal analysis, we propose to include spa-
tio-temporal constraints to analyze longitudinal MRI volumes, combining the advantages of
both 4D longitudinal and 3D longitudinal approaches. An iterative algorithm is presented to
create subject-specific templates for structural segmentation (Fig 1D). The decomposition of
the longitudinal deformation fields, similar to a Taylor series, enables local spatial constraints
as well as temporal regularization. While the spatial constraints aim to preserve the anatomical
consistency in the image, the voxel-wise temporal regularization tackles the potential longitudi-
nal alteration of the images. The temporal regularization is achieved with a local voxel-wise

Fig 1. Longitudinal registration and template creation methods. Each vignette (a, b, c and d) represents different strategies proposed to overcome
longitudinal MRI data analysis. The x-axis represents the time and the y-axis represents the anatomical variability of the image. Each subject’s time-points
are connected by a colored line (blue, green and red) and the black line represents a longitudinal (4D) model. The square boxes represent the population 3D
template in black and individual 3D templates in blue, green and red.

doi:10.1371/journal.pone.0133352.g001
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linear regression of the deformation components over time, resulting in a more consistent
global longitudinal deformation. In this article, we first evaluate the stability and robustness of
our method with a scan-rescan dataset, then, we assess its power to analyze a longitudinal
cohort from the ADNI database. We show that a weak local spatial constraint over time can
have significant positive global effects to significantly reduce inter-visit variability in the mea-
surement of structure volumes such as the lateral ventricles, hippocampi and brain
parenchyma.

Methods
The objective of the template creation algorithm is to find the non-linear transformations that
minimize the anatomical shape differences between images to create the most representative
average of the subject's anatomy. Processing is achieved in two steps. First, all data is processed
cross-sectionally to bring each volume into stereotaxic space. Second, this data is used to build
a subject-specific individual template. The method and notation is inspired from Fonov et al.
[22] and Aubert-Broche et al. [26], and described in the following sections. The nomenclature
is summarized in Table 1.

The Montreal Neurological Institute research ethics committee gave approval for this study.
Two neuroimaging datasets ("scan-rescan" and "ADNI") were used anonymously to evaluate
the proposed algorithm and all subjects gave informed consent. Further information about
ADNI can be obtained from www.adni-info.org and in the Acknowledgments section.

Cross-sectional pre-processing
All MRI data are pre-processed to reduce the effects of artifacts and noise. The standard devia-
tion of the MRI Rician noise is estimated automatically and image redundancy is used to
reduce the noise using a non-local patch-based technique [27]. A non-parametric estimation of
the slow varying non-uniformity field corrects the intensity inhomogeneity produced by scan-
ner radio-frequency coil variations [28]. In addition, linear histogram matching is performed
between each subject and a reference image to normalize the image intensities between sub-
jects/scans to a range between 0.0 and 100.0. The reference image was created to represent the
ageing population brain anatomy from the AD cohort using the unbiased template creation
approaches proposed by Fonov et al. [22]. Finally, to correct for variation in head position,

Table 1. Notation.

Symbol Definition

v Voxelposition v varying from 0 to N

k Iteration k

It (v) Subject’s set of images from different time-points t

ΦL(v) Subject-specific linear template at voxel v

Fk
NLðvÞ Subject-specific non-linear template at voxel vand iteration k

ck
t;FðvÞ Deformation field of time-point t to template Фat voxel v

φk
t;F
ðvÞ Bias free deformation field of time-point t to template Фat voxel v

Ωv Neighborhood or patchsurrounding voxel v

T (v,t) Trajectory of voxel v at time t

IT(v,t) Jacobian matrix of voxel v at time t

βt (v) Non-uniformity field at voxel v

doi:10.1371/journal.pone.0133352.t001
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orientation and size, an initial 9 parameter linear registration (translation, rotation and scale)
is computed to bring each subject into the ICBM152 template stereotaxic space [29].

Longitudinal processing
The subject-specific template is based on the work of Guimond et al. [21, 30], Joshi et al. [31]
and Fonov et al. [22] where a template is created in two steps, first using linear registration and
second, using non-linear registration with a spatio-temporal regularization.

Linear individual template. In order to refine the alignment of individual images and esti-
mate global whole brain scale factors between the consecutive visits, we perform a hierarchical
iterative linear registration. Starting with the individual stereotaxic image average as the initial
target, the linear individual template (FL(v)) is then defined as the intensity average of the B-
spline (order 4) interpolated individual visit scans after affine registration. For each subject, a
twelve parameter affine registration [29], based on an intensity cross-correlation similarity
measure, is performed between the time-points’(t = [0..n]) and the subject-specific template
volumes at 32, 16, 8 and 4mm hierarchical step sizes.

Non-linear minimum deformation individual template. A non-linear subject-specific
template FNL(v) is estimated with an iterative approach, similar to the linear template, but
using non-linear registration in order to estimate the local deformation between the visits and
the individual template. To create FNL(v), a minimum deformation template (MDT) approach
is used as described by Fonov et al. [22]. However, here the MDT estimation is modified to
account for spatio-temporal regularity constraints (described in 2.2.3) and the implementation
of the 4D constraints is done in the framework of a 3D non-parametric vector field estimator
using the Automatic Non-linear Image Matching and Anatomical Labeling (ANIMAL) proce-
dure [32].

For the MDT, ANIMAL estimates the non-linear deformation field required to align two
image volumes in a hierarchical manner, where the algorithm maximizes the local cross-corre-
lation of the blurred image intensity of the source image with the equivalently blurred image
intensity of a target image. Starting from down-sampled images, the displacement vectors that
best match the two images are stored at the nodes of a 3D grid, producing a dense deformation
field. Then, the deformation field is upsampled and used to initiate the deformation at the next
hierarchical iteration where the blurring kernel is reduced, and the deformation field is refined.
Details of the ANIMAL algorithm are described in[32, 33].

To satisfy the intensity constraint condition (Eq 1) and the deformation constraint condi-
tion of (Eq 2), we use an iterative approach. At each iteration, ANIMAL is used to map the vox-
els v from the MRI of a subject at time-point t = [0..n], It(v), to the current evolving estimate of

the template Fk
NLðvÞ at iteration k through a deformation transformation ck

t;FðvÞ. This is fol-

lowed by the removal of the bias (or mean deformation
Xn
t¼0

ck
t;FðvÞ) to obtain �k

t;FðvÞ (Eq 3)

(thus enforcing the condition in Eq 2) and calculating a new estimate of the template Fkþ1
NL ðvÞ

(Eq 4).

Fk
NLðvÞ ¼ argmin

F

Xn
t¼0

Z
volume

Fk
I ðvÞ � It ck

t;F
ðvÞ

� �� �2

dv ð1Þ

Fk
NLðvÞ ¼ argmin

F

Xn
t¼0

Z
volume

�� k
t;�ðvÞ

��2dv ð2Þ
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φk

t;F
ðvÞ ¼ ck

t;FðvÞ �
Xn
t¼0

 k
t;� vð Þ ð3Þ

Fkþ1
NL ðvÞ ¼

1

n

Xn
t¼0

It φk

t;F
ðvÞ

� �
ð4Þ

In these equations, the operation � denotes concatenation of transformations, and �X
denotes inversion of a transformation X.

The algorithm is initialized with the individual linear template (FL(v)). At each iteration k,

ψt,F is the non-linear transformation required to map It to F
k
NL which was obtained using ANI-

MAL. It is spatially constrained with a linear elastic body model while it minimizes the inten-
sity difference of the paired images (i.e., between template and time-point images). The linear
elastic body constraints are justified in such intra-subject registrations where very large defor-
mations are not expected. The parameters of the hierarchical non-linear registration are chosen
to ensure that the transformation defined by the vector field is smooth, bijective and invertible
[34]. The details of the iterative hierarchical scheduleand the non-linear registration parame-
ters for the 3D grid step size, image blurring kernel and similarity measure neighborhood size
are summarized in Table 2. The registration schedule parameters are similar to Fonov et al.
[34] and ANIMAL is robust to changes in parameters by a factor of 2[32, 35].

This subject-specific template creation process yields the non-linear deformations to map
each of the subject time-points toward the template. By concatenating a forward transforma-
tion to the template and the inverse transformation toward a specific time-point, we can obtain
the total non-linear transformation between two time-points transitively.

Spatio-temporal regularization of minimum deformation template. The MDT algo-
rithm described above is modified to include an additional constraint for the non-linear
transformations between time-points. It is implemented as an additional regularization step
which is performed at each iteration of the template creation in the spatio-temporal domain in
order to obtain a smooth non-linear deformation over time, since we expect the anatomical
changes to happen in a slow and continuous fashion. We replace the individual time-point

non-linear registrations ck
t;F with a continuous and smooth transformation field Tðv; tÞ ¼

½cðvÞkt0 ;�; . . . ;cðvÞ
k
tn ;�

� where T(v,t)can be seen as the trajectory of voxel position v over time t.

The proposed spatio-temporal regularization of the longitudinal deformation field is achieved
through the following steps:

First, we decompose the longitudinal deformation component of the transformation into
a simplified Taylor series expansion of order 1 in space, where the higher order terms are

Table 2. ANIMAL non-linear registration schedule. For each iteration, we define a step size as the distance between control nodes for the free-form defor-
mation recovered. The blurring kernel is the size of the full-width-half-maximum of the Gaussian kernel used to blur the source and target data. The local cor-
relation which defines the local similarity is estimated in the neighborhood of diameter equals to the neighborhood size parameter.

Iteration Step size(mm) Blurring kernel (mm) Neighborhood size (mm)

1 16 8 48

2–3 8 4 24

4–5 4 2 12

6–7 2 1 6

8–9 1 1 6

doi:10.1371/journal.pone.0133352.t002
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neglected, which allows for spatial regularization, such as:

Tðv þ Dv; tÞ � Tðv; tÞ þ ITðv; tÞ � Dv ð5Þ

This Taylor expansion presents the advantage of accounting for the longitudinal deforma-
tion (or temporal trajectory, T(v,t)) as well as the longitudinal local variation (Jacobian matrix,
IT(v,t)).

Second, we want to regularize the trajectory (T(v,t)) to obtain smooth longitudinal deforma-
tions while preserving the longitudinal local variation of the Jacobian matrix (IT(v,t)), such as:

ITðv; tÞ ¼

@Tðv; tÞ1
@v1

. . .
@Tðv; tÞ1
@v3

..

. ..
.

@Tðv; tÞ3
@v1

� � � @Tðv; tÞ3
@v3

2
666666664

3
777777775
�

Tðv þ Dv; tÞ1 � Tðv � Dv; tÞ1
2 � Dv1

. . .
Tðv þ Dv; tÞ1 � Tðv � Dv; tÞ1

2 � Dv3

..

. ..
.

Tðv þ Dv; tÞ3 � Tðv � Dv; tÞ3
2 � Dv1

� � � Tðv þ Dv; tÞ3 � Tðv � Dv; tÞ3
2 � Dv3

2
666666664

3
777777775

ð6Þ

To preserve the spatial consistency, we approximate the Jacobian matrix IT(v,t) from Eq 6,
by averaging across finite differences, such as:

Tðv þ Dv; tÞ � Tðv; tÞ þ 1

jOvj
X
u2Ov

ITðu; tÞ � Dv ð7Þ

where Ov is the local neighbourhoodcentered on v. Thus, this approximation provides a spa-
tially regularized longitudinal deformation and in our experiments, we found that a 3x3x3 local
neighbourhood was a good comprise between spatial smoothing and computational time.

Simultaneously, we perform linear regression of the zeroth order term in Eq 5 in the tempo-
ral domain such as:

Tðv; tÞ � T0ðvÞ þ T1ðvÞ � t ð8Þ

where T0(v) is the intercept and T1(v) is the slope of the linear regression.
Thus, we effectively perform spatio-temporal regularization of the set of deformations fields

with a spatial regularization (Eq 6) and a temporal regression (Eq 8), such as:

T�ðv; tÞ ¼ T0ðvÞ þ T1ðvÞ � t þ
1

jOvj
X
u2Ov

ITðu; tÞ � Dv ð9Þ

We use the resulting regularization procedure instead of Eq 3 in the MDT template
creation.

This approach presents the advantage of taking into consideration the longitudinal defor-
mation at each voxel and at the local neighbourhood level by the means of the local Jacobian
matrix and the explicit local voxel-wise regularization of the deformation field components.

Individual template-based bias field correction. Intensity non-uniformity may vary
between longitudinal scans due to differences in field inhomogeneity (B1) and receiver coil

Longitudinal Registration to a Subject-Specific 3D Template
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sensitivity [36]as well as differences in the positioning of the subject inside the coil. As
described by Holland et al.[37] as well as Ashburner and Ridgway [17], if uncorrected, these
temporal intensity non-uniformities could be detected as atrophy or growth with intensity-
based non-linear registration tools. Therefore, inspired by the differential intensity inhomoge-
neity correction proposed by Lewis et al. [38], we propose to use the intensity difference of the
subject-specific template and the warped time-point image to estimate the smooth longitudinal
inhomogeneity correction field with N3[28]. N3 iteratively sharpens the histogram of the image
intensity difference by de-convolving Gaussian fields from the true signal, while using splines
to represent the estimated bias field. During the iterative process of the individual template cre-
ation and after the spatio-temporal regularization, the image intensity difference of the subject
visit (It) and the current template (FNL(v)) is computed at each iteration after resampling It
with the transformation ck

t;F
. The bias field for each visit (bk

t ) is estimated from the differential

image (Eqs 10 and 11).

akt ¼ N3ðIkt ðck

t;F
ðviÞÞ � Fk

I ðviÞÞ ð10Þ

bk
t ¼ akt

,
exp

1

n

Xn
t¼0

logðakt Þ
 !

ð11Þ

Then the bias field is transformed back into the native time-point space to correct the resid-
ual longitudinal inhomogeneity of the source images for the following iteration (Eq 11).

Ikþ1
t ðvÞ ¼ Ikt ðvÞ � bk

t  k
t;�ðviÞ

� �
ð12Þ

Optimization and convergence. The non-linear template creation optimization is done at
5 hierarchical levels, starting with deformations estimated every 16, 8, 4, 2 and finally 1mm and
the corresponding non-linear registration parameters are summarized in Table 2. At each level,
the regularizations are performed consecutively in the order of Eqs 2, 9 and 3.An initial spatial
regularization is applied to the subject visit-template deformation with a Gaussian kernel while
for the spatio-temporal regularization, the whole time series deformation set is constrained (Eq
9). In our implementation, different parameters of the spatio-temporal regularization can be
adjusted. The neighborhood size of the Jacobian matrix computation can be increased to obtain
smoother deformations.

In previous cross-sectional template creation studies, we found that 9 iterations are enough
for the convergence of the iterative process at each hierarchical level[22]. In the case of individ-
ual template creation, the additional longitudinal regularization could slow down convergence
but it is compensated by the anatomical similarity of the images being registered.We found in
our experiments that 9 iterations are thus also sufficient to converge. The template, longitudi-
nal non-uniformity correction and deformation fields estimated at one hierarchical level are all
used to initialize the procedure at the next hierarchical level.

Experiments
Data. Two neuroimaging datasets were used anonymously to evaluate the proposed algo-

rithm: Scan-rescan and ADNI.
First, to evaluate stability and potential bias, a scan-rescan database of 20 healthy subjects

scanned 4 times within the same week (twice during a first session and twice again over 2 dif-
ferent days) was used. Each subject was taken out from the scanner before getting back in for
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each rescan session. No volume change is expected for the subjects in this database. The
T1-weighted MRI images were acquired on a 1.5T SIEMENS MRI scanner with a 3D spoiled
gradient echo (GRE) sequence (TR = 22ms, TE = 9.2ms, flip angle = 30°, 1mm isotropic
voxels).

Second, to evaluate the performance of the algorithm when changes over time are expected,
we used data obtained from the publically available ADNI database (adni.loni.usc.edu). The
ADNI was launched in 2003 by the National Institute on Aging (NIA), the National Institute
of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies and non-profit organizations, as a $60 million,
5-year public private partnership. The primary goal of ADNI has been to test whether serial
MRI, positron emission tomography (PET), other biological markers, and clinical and neuro-
psychological assessment can be combined to measure the progression of mild cognitive
impairment (MCI) and early AD. Determination of sensitive and specific markers of very early
AD progression is intended to aid researchers and clinicians to develop new treatments and
monitor their effectiveness, as well as lessen the time and cost of clinical trials. More informa-
tion about the ADNI investigators is given in the Acknowledgment section.

To date these three protocols have recruited over 1500 adults, ages 55 to 90, to participate in
the research, consisting of cognitively normal older individuals, people with early or late MCI,
and people with early AD. The follow up duration of each group is specified in the protocols
for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO
had the option to be followed in ADNI-2. For up-to-date information, see www.adni-info.org.

From the website (www.adni.loni.ucla.edu/ADNI), ADNI-1 AD and normal controls (NC)
subjects with 4 time-points (0, 6, 12 and 24 months) acquired on a 1.5T scanner that are part of
the standardized set of subjects as described by Wyman et al.[39] were selected. This selection
yielded155 NC (age average at baseline = 76.0±4.9 years) and 98 AD patients (age average at
baseline = 75.3±7.3) that passed quality control[40]. The3D T1-MPRAGE images (TR = 2300–
3000, TE = /3–4 ms, flip angle = 8–9°, section thickness = 1.2 mm, 256 reconstructed axial sec-
tions) with the following image pre-processing: gradient non-linearity distortion correction
(grad-wrap [41]) and intensity non-uniformity (N3 [28]) were used for subsequent analysis.

Metrics. In order to evaluate the stability, regularity, continuity and bias of the proposed
approach, we chose metrics based on ventricular, hippocampi and cerebral segmentations for
each subject at each time-point. These structures were chosen since they have previously been
used to represent the progression of neurodegenerative processes such as in MS or AD [38, 42,
43]. For the methods described below, these structures were either (i) segmented locally using
the patch-based technique proposed initially by Coupé et al. [44] for hippocampus, for ventri-
cles by Fonov et al. [8] and for brain Eskildsen et al. [45] combined with a Bayesian tissue clas-
sifier [46] to remove cerebrospinal fluid (CSF) from the initial brain mask to conserve only
brain tissue; or (ii) data was downloaded from the "MRI image analyses" section of the ADNI
website (www.loni.ucla.edu/ADNI) as indicated below.

Methods compared. The proposed method is compared to seven other methods. Like the
proposed method, the first two are based on the ANIMAL non-linear registration framework,
while the five others are based on publicly available methods that include FreeSurfer, SPM12,
QUARC, TBM and KNBSI (http://sourceforge.net/projects/bsintegral). The eight techniques
are identified as follows:

• Longitudinal individual template (LIT): LIT is the new method proposed in this paper, with
spatio-temporal regularization with an individual template.

• Individual template (IT): IT method is like LIT with longitudinal pre-processing using all
time-points, but without applying the spatio-temporal regularization.

Longitudinal Registration to a Subject-Specific 3D Template
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• Cross-sectional (CS): CSmethod is based on ANIMAL, and uses direct linear registration
[29] of each time-point independently to the common stereotaxic space (MNI template)
after intensity non-uniformity correction.

CS, IT and LIT represent different levels of the pipeline stages as seen in Fig 2 thus enabling
an evaluation of the contribution of the longitudinal processing and the spatio-
temporalregularizationsteps.

For CS, the structure segmentation was performed independently on the scan from each
subject’s time-point and the volume change was estimated by computing the volume difference
between the visits. In the case of the IT and LIT longitudinal approaches, only the subject-spe-
cific template was segmented and the estimated non-linear transformations were used to trans-
form the segmentation to each time-point and estimate the Jacobian determinant. The volume
change was estimated by integrating the Jacobian determinant within the regional structure
masks for whole brain, ventricles and hippocampi.

• FreeSurfer (FS): The longitudinal stream of FSsoftware (version 5.1) was chosen as it has
shown better results for longitudinal analyses than the cross-sectional version, except for lon-
gitudinal whole brain measurement [47]. FS provides structural segmentations of each sub-
ject time-point that are initialized by independent cross-sectional segmentations estimated
from a linear individual template. For the scan-rescan analysis, the longitudinal version of FS
was used to segment the hippocampi, lateral ventricles and brain. Briefly, FS processing
included motion correction and averaging [48] of multiple volumetric T1 weighted images
(when more than one was available), removal of non-brain tissue using a hybrid watershed/
surface deformation procedure [49], automated Talairach transformation (Collins, 1994),
intensity normalization [28] and segmentation of the subcortical white matter and deep gray
matter volumetric structures (including hippocampi, amygdala, caudate, putamen, and ven-
tricles) [50, 51]. For analysis of the ADNI data, we downloaded the appropriate values from
the ADNI website (UCSF-Longitudinal FreeSurfer (5.1), 2014/05/01) as we felt that these
would have been optimally run by the authors.

• Statistical Parametric Mapping 12 (SPM12): A unified model which combines intensity non-
uniformity correction, linear registration and non-linear registration was proposed by Ash-
burner et al. [17] and implemented in SPM12. Their method produces a subject-specific tem-
plate and uses the Jacobian determinants of the deformation map of the visit toward the
template. As SPM12 does not create structure segmentations, our in-house segmentation
tools were applied on the SPM12 subject-specific template and the volume change was esti-
mated by integrating the Jacobian determinant within the regional structure masks for whole
brain, ventricles and hippocampi. SPM12 was run locally for the scan-rescan and ADNI
data.

• K-means clustering boundary shift integral (KNBSI): KNBSI [52] is based on the classic BSI
procedure [53] and measures the tissue boundary displacement of a pair of images for the
whole brain. KNBSI uses tissue specific normalization, k-means classifiers and specific
parameters to account for large multi-site image intensity variability (in terms of SNR and
tissue contrast differences). To account for the multiple tissue boundariesof the hippocam-
pus, we used the double intensity windowing approach technique which estimates the
boundary shift between CSF and grey matter as well as between grey and white matter [54].
For the scan-rescan data, KNBSI was run locally for all structures after applying our in-house
differential bias correction as recommended by the author. For the ADNI data, KNBSI data
was downloaded from the ADNI site for whole brain and ventricles (Fox Lab, 2014-01-31),
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again to have optimally run values. We ran double window KNBSI locally for the hippo-
campi, as these values were not available on the ADNI website.

Fig 2. Longitudinal pipeline diagram. The different steps performed on each subject time-points are represented in the left part of the diagram, where the
processes in the left small square represents the cross-sectional (CS) part of the pipeline. The individual template (IT) creation (linear and non-linear) is
represented in the right side of the figure.

doi:10.1371/journal.pone.0133352.g002
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• Quantitative anatomical regional change (QUARC): QUARC [37] estimates the volume
changes over a region defined in the baseline image where the deformation is estimated by
combining pair-wise forward and backward non-linear transformations with intensity nor-
malization. As QUARC is not publically available, we did not use it in the scan-rescan evalua-
tion. However, for analysis of the ADNI data we downloaded QUARC results (UCSD,
downloaded on 2014-06-01) from the ADNI web site.

• Tensor-based morphometry (TBM): TBMmethod proposed by Hua et al. [18], first esti-
mates the statistical properties of the Jacobian determinant of non-linear deformations used
to map training subjects to a population template. Second, a group of voxels with a significant
rate of atrophy as measured by the Jacobian (p<0.001) in the temporal lobes are defined as a
region of interest (“stat-ROI”). Finally, a single measurement for each subject, of an indepen-
dent testing set, is obtained by integrating the Jacobian determinant of the non-linear defor-
mations to the identical population template within the stat-ROI. TBM is not publically
available and was not evaluated with the scan-rescan data. TBM results for ADNI data were
downloaded from the ADNI website (USC, 2013-11-17).

Each image processing pipeline has a different level of robustness, and MRIs that do not
pass quality control could adversely affect the estimation of statistical power. Instead of a head-
to-head comparison, we decided to keep only datasets that passed visual quality control. For
the data downloaded from the ADNI website, quality control information was only available
for FS, KNBSI, and QUARC data. Subjects who passed quality control with the following argu-
ments were kept for the power analyses: FS: QVERALLQC = “Pass” or “Partial”; for the ven-
tricular KNBSI: BSI VENTACCEPT = 1, REGRATING� 3, for KNBSI:
KMNREGRATING� 3; and QUARC QCPASS = 1. The final cohort number for each method
is summarized in Table 3.

Statistics. For the scan-rescan dataset, the percent volume change (VC) and the absolute
percent volume change (aVC) were used respectively to evaluate bias and variability of struc-
ture volume (V). For each structure of each subject at time-point t of the n visitsand the struc-

ture average volume (1
n

Xn
i¼1

Vi), VC and aVC were estimated with the following formulas:

VCt ¼ 100 � 1� Vt

1
n

Xn
i¼0

Vi

0
BBB@

1
CCCA and aVCt ¼ jVCtj ð13Þ

The significant differences between the match-paired segmentations were compared with a
paired t-test for the VC comparison and a Wilcoxon sign-rank test for the aVC comparison.

Table 3. Number of ADNI-1 subjects used for the power analyses for the different methods. These
subjects were available from the downloaded results and/or passed quality controlfor each of their time-points
(m0, m6, m12, m24).

Method NC AD

CS 153 95

IT 155 98

LIT 155 98

FS 152 96

SPM12 98 60

KNBSI 105 66

QUARC 131 73

TBM 115 73

doi:10.1371/journal.pone.0133352.t003
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TheWilcoxon signed rank test was chosen over a paired t-test because the scan-rescan aVC
values do not follow a normal distribution due to the use of the absolute value.

For the longitudinal dataset, the percent volume change measures atrophy or growth using
the baseline volume (V0) as a reference such as:

longVCt ¼ 100 � 1� Vt

V0

� �
ð14Þ

For the longitudinal results, we use power analyses to estimate the required sample size to
assess the interaction of treatment and time in a longitudinal study where smaller longitudinal
variability will enable better detection of a potential treatment effect. Here, the volume change
was estimated using a linear mixed-effect model (LME). Indeed, linear mixed-effect modeling
has shown to be a powerful statistical technique to analyze longitudinal data [55]. In this study,
we used a simple LME of the volume changes (longVC) consisting of a temporal, time-point t
interval (IntervalIt) and group (Group) fixed-effects while subject (I) was chosen as random
effects, such as:

longVCIt ¼ ðb1 þ b2 	 Groupþ bIÞ 	 IntervalIt þ εIt ð15Þ

Power analyses, as described by Diggle et al. [56] and applied in Reuter et al. [16], for longi-
tudinal analysis were performed to estimate the sample size. From the LME model estimation,
the common variance (unexplained variability in longVC), the correlation of the repeated
observations, the number of time-points, the smallest meaningful difference in the rate of
change between AD and NC to be detected (effect size), the power of the test (here we chose
80%) and the within-subject variance of the time-points were used to compute sample size.
Using the Diggle et al. [56] formula, power analysis was performed using the R software pack-
age (http://www.r-project.org) with the lme4 and longpower library. The 95% confidence inter-
vals of the estimated sample sizes were obtained from 1000 parametric bootstrappings of the
LME model.

The stability of LME model is influenced by the variability of the data as well as the number
of time-points. Similarly, the power of the method is more influenced by the baseline and final
time-point. Thus, only subjects with 4 time-points successfully passing the quality control were
included for the power analysis (Table 3).

Results
Qualitatively, a general overview of the pipeline segmentation and individual template of one
subject can be appreciated in Fig 3. Also, an example of individual template-based longitudinal
non-uniformity intensity correction is depicted in Fig 4.

Scan-rescan dataset
The scan-rescan dataset should show no anatomical variability since the 4 MRI scans were
acquired during a week. Fig 5 shows the brain, ventricle and hippocampi volume changes (VC
and aVC) for the cross-sectional (CS) and the longitudinal techniques (IT, LIT, FS, SPM12 and
KNBSI) for the repeated sessions. For VC and aVC, the smallest structures present the highest
volume variability. The method variability ranking is similar across structures excepted for FS
and KNBSI, which show more variability for the lateral ventricles and the hippocampi
measures.

No significant bias was found when comparing the mean VC of the different methods, as
the mean VC values from all methods was centered on zero.
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When looking at the aVC, the longitudinal methods (IT and LIT) significantly reduce
(p<0.02) the variability for all the segmented structures compared to the cross-sectional (CS)
method. The longitudinal pre-processing and registration methods such as SPM12 and LIT
result in smaller variability between successive sessions compared to CS, IT, FS and KNBSI.
Furthermore, SPM12 and LIT methods significantly reduce the aVC for the ventricle segmen-
tation (p<0.02). The mean aVC respectively for the brain, ventricles and left/right hippocampi
with the LIT approach are (in percent change): 0.093 (±0.073), 0.355 (±0.387), 0.279 (±0.277)
and 0.416 (±0.432).

Longitudinal dataset
The identical cohort of subjects from ADNI-1 was used to evaluate the different methods, how-
ever, subjects scans failing during pipeline processing or absent at the time of method result

Fig 3. Individual LIT template segmentations of an AD subject from ADNI. Axial, sagittal and coronal slices are presented with from left to right: A) Linear
individual template, B) non-linear individual template, C) BEaST skull-stripped mask, D) brain mask, E) lateral ventricle mask and F) right (blue) and left
(green) hippocampus mask.

doi:10.1371/journal.pone.0133352.g003

Fig 4. Individual longitudinal template-based bias field correction of an AD subject from the ADNI database. From left to right: A) baseline time-point,
B) individual linear template, C) baseline time-point and individual template intensity difference image (or A-B), D) bias field of the difference image (C) and E)
the baseline image after correction of the longitudinal bias field (D). (Note the different ranges on the color bars.)

doi:10.1371/journal.pone.0133352.g004

Longitudinal Registration to a Subject-Specific 3D Template

PLOS ONE | DOI:10.1371/journal.pone.0133352 August 24, 2015 14 / 24



publication were removed from the analyses and the final number of subjects analysed is sum-
marized in Table 3

Smaller longitudinal variability should improve the statistical power to detect changes in an
individual, and facilitate detection of group differences (treatment effects) and thus reduce the
number of subjects required for analysis in a clinical trial. In Table 4, we provide estimates of
the different sample sizes required to detect a treatment effect that would reduce the annual
AD atrophy rate by 25% for the different structures and methods. Table 4 also shows the
annual atrophy rate for the different structures and methods. In general, amongst all methods
compared, the LIT method requires a smaller number of subjects per arm for all treatment
effect sizes for the brain and hippocampi measurements while KNBSI hold the smallest sample
size for the lateral ventricles.

Fig 6 shows the individual longitudinal whole brain, ventricular and hippocampi changes
(or cumulative atrophy) for each group (NC in blue and AD in red) and are described in more
detail in the following sections.

Whole brain measurements. With regard to the whole brain, the LIT method results in a
sample size of 98 to detect a 25% change in brain atrophy, versus 146 for IT and more than
1000 subjects required for the cross-sectional approach (CS). Furthermore, the LIT sample size
is smaller than KNBSI (117) and TBM (216 subjects per arm). The LIT sample size range (56–
135) overlaps with the following approaches: IT (127–199), KNBSI (95–149), QUARC (98–
529) and TBM (98–320), however, LIT and IT provide a stronger effect size (-0.29 and -0.34)
than these other methods.

Regarding the individual trajectories seen in the spaghetti plots in Fig 6, LIT provides a
more progressive and regular individual trend while preserving group differences. It is in-
teresting to note that the local constraints on the Jacobian over time result in a structure-wide
regularization. KNBSI and QUARCmeasurements show a reduced individual longitudinal var-
iability as well, compared to CS, FS, IT and TBM.

Fig 5. Brain, ventricle and left/right hippocampus percentage of volume change for the scan-rescan dataset for the different methods (CS, IT, LIT,
FS, SPM12 and KNBSI). The significant difference (p<0.01) computed with a match pairedWilcoxon sign-rank are represented by a *where the pairs are
represented by the thicker horizontal lines.

doi:10.1371/journal.pone.0133352.g005
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Lateral ventricle measurements. Among the different techniques tested, SPM12 and LIT
yield the best power to detect a 25% reduction in lateral ventricular enlargement with only 145
and 148 subjects required per arm, but SPM12 shows the tightest range (125–186 and 80–190,
respectively). The LIT effect size is stronger than SPM12 with a value of 1.30 versus 0.89 to dis-
criminate the ventricular growth rate change between AD and NC. The CS approach of our
pipeline yields better performance than the IT method (173 and 214 subjects, respectively), but
the LIT reduces this number to 148 subjects.

When looking at the segmented lateral ventricle volumes in Fig 6, the trend of the observed
ventricular enlargement is similar between the methods, but there is a net decrease of intra-
subject variability for the longitudinal methods (IT, LIT, FS, SPM12, KNBSI and QUARC), as
evidenced by spaghetti plots with more realistic, less chaotic changes over time. We can also
appreciate with Fig 6. that the lateral ventricle volume changes are the strongest but also the
more stable progression compared to other structures regardless of the method.

Table 4. Sample size per arm needed to detect a 25% reduction in the annualized rate of brain, ventricular and hippocampus volume change at
80% power for the different methods, while taking into account the normal rate of atrophy. The smallest detectable difference in the rate of change
between AD and NC (effect size) and the estimated annual atrophy rate for the different structures for normal controls (NC) and Alzheimer subjects (AD) are
also provided with the range representing the 95% confidence interval obtained from parametric bootstrapping of 1000 times.

Annual atrophy rate in % [95% CI]

Structure Method Sample size per arm[95% CI] Effect size in %/year[95% CI] NC AD

Brain

CS >1000 [––] -0.11 [-0.21–0.07] -0.78 [-1.14–0.43] -1.24 [-1.71–0.98]

IT 146 [127 199] -0.30 [-0.37–0.23] -0.68 [-0.90–0.58] -1.87 [-2.05–1.62]

LIT 98 [56 135] -0.29 [-0.34–0.25] -0.66 [-0.79–0.58] -1.84 [-2.00–1.71]

FS 367 [248 551] -0.17 [-0.19–0.13] -0.62 [-0.73–0.49] -1.29 [-1.38–1.11]

SPM12 312 [90 524] -0.09 [-0.11–0.06] -0.18 [-0.23–0.14] -0.53 [-0.61–0.47]

KNBSI 117 [95 149] -0.21 [-0.23–0.18] -0.70 [-0.76–0.57] -1.53 [-1.59–1.42]

QUARC 278 [98 529] -0.17 [-0.22–0.12] -0.61 [-0.71–0.47] -1.29 [-1.44–1.11]

TBM 216 [98 320] -0.14 [-0.16–0.11] -0.25 [-0.33–0.17] -0.79 [-0.87–0.73]

Lateral ventricles

CS 173 [127 271] 1.39 [1.05 1.56] 4.46 [3.78 5.39] 10.03 [8.81 10.80]

IT 214 [141 305] 1.18 [0.93 1.37] 3.90 [3.16 4.62] 8.64 [7.40 9.59]

LIT 148 [80 190] 1.30 [1.00 1.60] 3.86 [3.19 4.33] 9.04 [8.21 9.72]

FS 199 [108 287] 1.51 [1.12 1.84] 4.53 [3.68 5.64] 10.57 [9.66 11.51]

SPM12 145 [125 186] 0.89 [0.79 0.93] 2.36 [2.12 2.68] 5.93 [5.41 6.26]

KNBSI 199 [153 281] 1.50 [1.09 1.81] 4.46 [3.63 5.48] 10.47 [9.34 11.34]

QUARC 167 [23 225] 1.84 [1.54 2.39] 4.67 [3.15 6.05] 12.02 [11.47 13.44]

Right hippocampus

CS 240 [123 353] -0.58 [-0.68–0.49] -1.48 [-1.74–1.18] -3.81 [-4.19–3.39]

IT 131 [14 205] -0.57 [-0.74–0.46] -1.09 [-1.28–0.83] -3.38 [-3.87–3.01]

LIT 70 [52 90] -0.65 [-0.73–0.57] -0.82 [-1.05–0.55] -3.43 [-3.62–3.18]

FS 191 [70 294] -0.71 [-0.91–0.52] -1.33 [-1.73–1.08] -4.17 [-4.93–3.60]

SPM12 >1000 [––] -0.04 [-0.10 0.02] -0.17 [-0.29 0.05] -0.35 [-0.56–0.01]

KNBSI 173 [67 280] -1.26 [-1.62–0.87] -0.68 [-6.43–4.90] -5.73 [-0.25 0.54]

QUARC 130 [93 166] -0.59 [-0.65–0.51] -0.98 [-1.16–0.76] -3.32 [-3.55–3.01]

Lefthippocampus

CS 219 [190 317] -0.62 [-0.68–0.47] -1.44 [-1.93–1.16] -3.94 [-4.27–3.41]

IT 91 [66 130] -0.60 [-0.69–0.45] -1.10 [-1.35–1.01] -3.48 [-3.83–3.10]

LIT 67 [43 88] -0.61 [-0.70–0.52] -0.93 [-1.18–0.77] -3.38 [-3.65–3.20]

FS 140 [71 167] -0.84 [-0.99–0.78] -1.10 [-1.30–0.78] -4.46 [-4.82–4.33]

SPM12 >1000 [––] 0.02 [-0.05 0.06] -0.16 [-0.37 0.10] -0.08 [-0.30 0.05]

KNBSI 194 [111 266] -1.07 [-1.28–0.01] -0.94 [-5.67–4.84] -5.23 [-0.07 0.35]

QUARC 133 [83 203] -0.51 [-0.60–0.37] -1.08 [-1.42–0.75] -3.12 [-3.32–2.73]

doi:10.1371/journal.pone.0133352.t004
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Hippocampus measurements. Among the different hippocampal methods tested, the LIT
technique yields the best power to detect a 25% reduction in atrophy, with 67 subjects (left side)
and 70 subjects (right side) required. When the temporal constraint is not applied to the deforma-
tions, the IT method requires 91 and 131 subjects (left and right side, respectively) to detect the
same change. The other methods require more than 100 subjects to detect the same potential
treatment effect. The estimation of the LME for SPM12 did not converge well enough to perform
power analyses. FS shows the stronger effect size (-0.71±0.20 and -0.84±0.15 for the right and left
hippocampi) but the effect size variability is much larger than for LIT (-0.65±0.08 and 0.61±0.09).

Fig 6 shows that the individual hippocampal trajectory variability is clearly decreased with
the longitudinal methods, and in particular with IT, LIT and QUARC.

Jacobian maps. The concatenation of the transformation allows us to assess the total
deformation between two specific time-points. Following this idea, Fig 7 shows the Jacobian of
the determinant of the deformations estimated for the longitudinal methods (IT and LIT) for
an AD patient. The IT Jacobian maps have multiple punctuate shrinking and enlarging regions
within the ventricles that are not consistent with the notion of gradual ventricular growth that
is relatively homogenous throughout the ventricle. By using a subject-specific template and the
4D regularization with the LIT methods (rightmost images), there are focal and consistent
deformations that overlap well with the anatomy that is assumed to change with AD. Indeed,
one can appreciate stronger temporal lobe atrophy detected with the LIT approach.

Discussion
In this article, we have presented a new approach for the estimation of individual longitudinal
changes using individual subject-specific templates and spatio-temporal regularization. We

Fig 6. Longitudinal individual and linear mixedmodel with confidence intervals for the NC (blue) and AD (red) groups. Brain, ventricular and left/right
hippocampi volume changes for CS, IT, LIT,FS, SPM12, KNBSI and TBM. Each thin full line represents an individual subject volume. Thicker lines represent
the LMEmodel for the respective groups while the shaded bands represent the 95% confidence interval on the mean model.

doi:10.1371/journal.pone.0133352.g006

Longitudinal Registration to a Subject-Specific 3D Template

PLOS ONE | DOI:10.1371/journal.pone.0133352 August 24, 2015 17 / 24



also provide an unbiased framework for analysing longitudinal data where every time-point is
processed with the same steps. A robust estimation of the deformations is obtained using
an individual template approach, minimizing deformations between subject time-points.
Meanwhile, a local spatio-temporal regularization is achieved with linear regression of the
deformation field and a spatial regularization of its Jacobian matrices. The regression of the
decomposition enables a temporal regularization at a local voxel level. Furthermore, we com-
pared our technique with a traditional cross-sectional approach, as well as recent powerful
methods, FS, SPM12, KNBSI, QUARC and TBM. Longitudinal image analysis bias was
assessed on a scan-rescan dataset, and power analysis to detect a potential treatment effect on
an Alzheimer cohort was chosen.

Longitudinal image analyses can be subject to bias in particular due to non-linear registra-
tion when an arbitrary reference image is chosen [6] or due to interpolation asymmetry [57].
4D Hammer [58] or non-linear registration such as Diffeomorphic Demons [13, 59] and
ANTs [60] require a reference image to be defined, therefore introducing possible bias. Sym-
metric interpolation and registration might not be sufficient to correct for bias when there are
more than 2 time-points. The use of an individual template, as suggested by Reuter et al. [16]

Fig 7. Longitudinal deformation fields.Deformation fields from baseline to the 12 month time-point for the longitudinal approaches (IT and LIT) where red
represent growth and blue atrophy for a randomly chosen AD subject.

doi:10.1371/journal.pone.0133352.g007
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showed no bias and our approach exploits this strength and adds non-linear registration to
obtain a more accurate anatomical correspondence between time-points.Then, the individual
template can be used to segment brain structures directly and not only to initialize the segmen-
tation as it is done in FS. Here, we divided the estimation of a linear and a non-linear individual
template, but other approach for group-wise registration have proposed to estimate more com-
plex deformation models such as free-from deformations where both linear and non-linear
deformations are combined into a single model [61].

By definition, our approach, using a longitudinal pre-processing to remove interpolation
bias and an individual template for non-linear registration, is symmetric and transitive as it is
similar to a “half-way” space registration approach [62]. Indeed, the longitudinal pre-process-
ing applies the same number of interpolations and removes the intensity inter-visit non-unifor-
mity. Furthermore, the non-linear registration is performed towards a common target,
producing unbiased deformation fields that can be combined to obtain robust and transitive
non-linear deformations between time-points. The individual template estimation depends of
the current set of the subject’s time-points, thus the addition of new time-points will require a
re-estimation of the individual template. This could limit its use in clinical settings where inter-
mediate results are expected before the MRI acquisition of the final time-point.Future work
should focus on the longitudinal measurement stability when an additional time-point is pre-
processed and registered to the specific template previously estimated separately.

In our experiments, we have demonstrated that the LIT method provides a more robust lon-
gitudinal measure on a scan-rescan dataset where no changes are expected. We have also
found that by using individual subject-specific templates (IT, LIT, FS and SPM12), structure
volume variability is decreased compared to the cross-sectional approaches like CS that use a
single common template (e.g., the ICBM152 model) for all subjects. Among the three longitu-
dinal methods tested, the LIT and SPM12 demonstrated the least bias and the smallest variabil-
ity in structure volumes which is expected since both methods apply a longitudinal
regularization and therefore minimize the temporal variability.

Experiments on ADNI data reveal increased stability in estimating individual changes over
time compared to standard cross-sectional approaches. Indeed, the cross-sectional approach was
chosen as a reference method and allowed us to show an important improvement in the mea-
surement of longitudinal change thanks to the longitudinal pre-processing (IT) and temporal
regularization constraint (LIT). However, other strictly cross-sectional approaches with indepen-
dent time-point measures have showed to perform better in a similar study such as FS in Holland
et al. [47]. Furthermore, the longitudinal approaches exploiting the full study length (4 time-
points) allowed to improve the power when compared to pair-wise (2 time-points) approaches
suggesting that the improvement could be related to the additional time-points themselves.

The longitudinal regularization of the deformation at a local level reduces the longitudinal
noise in volume estimation at the global/structural level, while the hierarchical iterative process
produces a robust individual template that allows for better anatomical matching across time
in an individual. An important aspect of longitudinal clinical and research studies is the cost of
recruiting subjects and scanning them at multiple time-points. The proposed longitudinal anal-
ysis techniques will allow for better power to detect differences between groups, and thus will
lead to the reduction of the number of subjects required for research and for clinical trials.
Compared to the literature, where similar ADNI cohorts of AD and NC were used, our power
analysis shows similar sample sizes required to detect treatment effects for the FS, KNBSI,
QUARC and TBM approaches [47]. The proposed temporal constraint (LIT), reduces the sam-
ple sized by a factor by approximately 50% for brain, 70% for the lateral ventricles and 50% for
hippocampi when compared to the similar longitudinal pre-processing without spatio-tempo-
ral regularization (the ID approach). The temporal constraint from SPM12, developed to
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optimize longitudinal VBM, produces unbiased results on the scan-rescan dataset but might be
over regularizing the longitudinal deformation to detect structural change on the ADNI cohort
in this experiment. Indeed, it is important to mention that smoothing the temporal fluctuation
could remove temporal artefacts, while it could also smooth real signal fluctuations. Within LIT,
the linear longitudinal constraint is only applied at a voxel level, i.e., the displacement of a point
in the brain is constrained to move in a linear fashion over time. But the volume of the structure
is not explicitly constrained to continuously increase or decrease. This constraint results in glob-
ally more continuous volume changes, which are not the result of an explicit constraint on the
volume. Indeed, the increase in statistical power to detect group difference using LIT suggests a
reduction of the longitudinal variability but not at the expense of small changes detection.

With more time-points and longer studies, the regularization could be adapted to fit other
models to capture the potential longitudinal changes (ie. exponential or polynomial regressor).
Similarly, in the context of patient classification using Support Vector Machine (SVM), spatial
and anatomical regularization techniques (Sobolev, LASSO. . .) have shown to improve the
classifier accuracies in the presence of noise [63, 64].

Another interesting finding is that longitudinal pre-processing and individual template cre-
ation does not affect the longitudinal measurements of anatomical structures in the same man-
ner. Indeed, structures such as the lateral ventricles, with high contrast and less sensitive to bias
field and distortion, resulted in a similar sample size for both longitudinal and cross-sectional
approaches. However, the spatio-temporal regularization is able to decrease the longitudinal
variability of such structures and therefore reduce the sample size.

We limited our comparison to publicly available methods and/or results on the ADNI-1
cohort, but other methods have been developed and applied on real longitudinal data. The
complexity and/or the computational cost of these methods [10, 14, 65] may limit the applica-
tion to large databases such as ADNI. Wu et al. [14] aligned all longitudinal images of a popula-
tion toward a hidden common space equivalent to a template and it can be applied to a single
subject. The individual longitudinal deformations or “temporal fibers” are estimated without
any priors but regularized with a Gaussian kernel to preserve the continuity of the longitudinal
deformation field. Similarly, Lorenzi et al. [13] proposed to fit a linear model to constrain the
longitudinal velocity fields of the subjects time-points in the Demons’ framework with the
baseline image used as a reference. Despite the fact that their approaches aremore general in
modelling the deformations, the usual small number of time-points might limit the longitudi-
nal continuity.

Finally, the main focus of this article was to compare longitudinal regularization versus longi-
tudinal pre-processing and cross-sectional approaches. Although we focused on whole brain, lat-
eral ventricles and hippocampi, any other structures can be analyzed longitudinally as far as the
individual template can be segmented. The longitudinal Jacobian determinant maps show inter-
esting results to measure voxel-wise deformation individually with the spatio-temporal regulari-
zation. The deformation maps present plausible anatomical atrophies such as in gray matter and
in temporal lobes as well as a uniform ventricular enlargement. The results are encouraging and
hold the potential of voxel-wise longitudinal DBM of neurodegenerative diseases.

Finally, the proposed longitudinal pipeline will be made available online (https://www.
mcgill.ca/bic/software/tools-data-analysis/anatomical-mri/) and relies on the publicly available
MINC tools and library (https://www.mcgill.ca/bic/software/minc).

Conclusion
This study evaluated a longitudinal framework with spatio-temporal regularization of defor-
mation fields and the creation of an individual 3D template through non-linear registration in
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the context of longitudinal neuroimaging studies. The experiments were carried out on scan-
rescan and ADNI datasets. In comparison with freely available and popular methods, the spa-
tio-temporal regularization (LIT) shows competitive results in regard to robustness, power and
stability while reducing the number of subjects required to show statistical differences between
groups. In addition, the LIT approach showed promising results for longitudinal DBM analysis
and can be easily adapted to investigate specific anatomical biomarkers.
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