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The activity of voltage-gated sodium channels has long been linked to disorders of neuronal excitability such as epilepsy and

chronic pain. Recent genetic studies have now expanded the role of sodium channels in health and disease, to include autism,

migraine, multiple sclerosis, cancer as well as muscle and immune system disorders. Transgenic mouse models have proved

useful in understanding the physiological role of individual sodium channels, and there has been significant progress in the

development of subtype selective inhibitors of sodium channels. This review will outline the functions and roles of specific

sodium channels in electrical signalling and disease, focusing on neurological aspects. We also discuss recent advances in the

development of selective sodium channel inhibitors.
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Sodium channels

Structure and activity
The voltage-gated sodium channel (VGSC) gene family comprises

nine homologous members SCN1A to SCN11A, which encode the

sodium selective ion channels NaV1.1 to NaV1.9. Nax (SCN6A/

SCN7A), though structurally related to VGSCs, is not activated by

membrane depolarization, but rather by altered sodium

concentrations (Goldin et al., 2000). Each large �-subunit

(�260 kDa) contains four homologous domains DI–DIV, with each

domain containing six transmembrane segments. One �-subunit

alone is necessary and sufficient to form a functional channel; how-

ever �-subunits also associate with b-subunits (SCN1B to SCN4B),

which modulate channel biophysics and trafficking. At resting mem-

brane potentials, VGSCs are closed, requiring depolarization to be

activated. Upon activation they contribute to the upstroke of the

action potential in excitable cells (Fig. 1A and B). Channel opening
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Figure 1 Gating model and contribution of voltage-gated sodium channels to neuronal and cardiac action potential firing. Upper traces

depict a cartoon representation of a whole-cell current clamp recording from a typical neuron (A) or cardiac myocyte (B). Dotted line

indicates the resting membrane potential (Vm). Lower trace is temporally aligned to the upper trace and shows the change in sodium

current (INa) during an action potential. Note a downward deflection of the trace reflects an inward movement of sodium ions into the cell.

(1) At the resting membrane potential VGSCs are closed. A small depolarization of the neuronal membrane potential in response to

sensory input or receptor input depolarizes the neuronal membrane potential to the threshold for VGSC activation (��50 mV). (2) VGSCs

activate rapidly (�1 ms to peak) allowing the influx of sodium and depolarizing the membrane potential further, forming the upstroke of

the action potential. Note that the peak sodium current correlates with the peak of the action potential. (3) Following activation the

sodium channels inactivate resulting in a decrease in sodium current and repolarization of the neuronal membrane potential, contributing

to the downstroke of the action potential. Recovery from inactivation allows the channels to participate in the next action potential. (C)

Mechanism of voltage sensitive gating of VGSCs. The left channel represents a VGSC in a deactivated (closed) state. A small depolarization

of the membrane potential causes a movement of the positively charged S4 voltage-sensor domain (green) leading to a conformational

change in the protein and opening of the pore (middle channel). Following activation, the pore is rapidly occluded by the inactivation gate,

resulting in inactivation of the sodium channel (right channel).
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results in a rapid influx of sodium ions into the cell and further

depolarization of the membrane potential towards the equilibrium

potential for sodium (�+ 60 mV in most neurons). VGSCs close

within milliseconds of opening, a process called fast inactivation

that contributes to the downstroke of the action potential

(Fig. 1C). In many neurons, inactivation of VGSCs is incomplete,

resulting in a small persistent Na+ current, which inactivates over a

time period of tens of seconds. Functionally, the structure of the

VGSCs can be divided into two parts with the transmembrane do-

mains S1–S4 contributing to the voltage sensor and S5–S6 arranging

to form the sodium selective pore (Stuhmer et al., 1989; Catterall

et al., 2005). The molecular mechanism by which changes in mem-

brane voltage confer a conformational change on voltage-gated ion

channel proteins is through the movement of modular voltage sen-

sors contained within the S4 segment of domains I–IV (Fig. 1C)

(Alabi et al., 2007). The voltage sensors contain repeated motifs

of positively charged amino acids followed by hydrophobic residues

arranged in an �-helix with a linear array of positively charged

residues. Depolarization of the cell alters the electric field across

the cell membrane resulting in the rapid movement of the DI–III

S4 voltage sensors and a conformational change in the protein

which opens the ion channel pore. Inactivation follows activation

due to the intrinsically slower movement of the DIV voltage sensor

(Bosmans et al., 2008). The VGSC inactivation gate contains a trio

of amino acids (IFM) located in a highly conserved intracellular loop

connecting domains III and IV (West et al., 1992). Upon inactiva-

tion, the inactivation gate moves into the channel pore as shown by

the altered accessibility of antibodies targeted to this domain

(Vassilev et al., 1988, 1989), resulting in occlusion of the pore

often depicted as a ball and chain type block (Fig. 1C). The channels

remain in a refractory inactivated state until the cell membrane

potential repolarizes, normally facilitated by the delayed activation

of voltage-gated potassium channels.

Much of what is known about the molecular mechanism of

voltage sensing derives from studies on voltage-gated potassium

channels for which high-resolution crystal structures have been

obtained. Using X-ray crystallography the structure of the S4 volt-

age sensor in the Archaea voltage-dependent potassium channel

KvAP was modelled as a paddle (Jiang et al., 2003a, b). However,

recent modelling of the bacterial sodium channel NaChBac reveals

that the S4 voltage sensor segment is arranged in a 3(10) alpha

helical conformation that slides in a linear fashion through a

narrow groove formed by the S1, S2 and S3 segments

(Yarov-Yarovoy et al., 2012). Recently, the crystal structure of a

VGSC has been reported (Payandeh et al., 2011). Comparison

with the previous open potassium channel structures showed

that the voltage-sensor domains and the S4–S5 linkers dilate the

central pore by pivoting together around a hinge at the base of

the pore module (Payandeh et al., 2011). This newly described

crystal structure of a prokaryotic VGSC shows that the basis of ion

channel selectivity for Na + is different from potassium channels

(Corry and Thomas, 2012).

Persistent sodium currents
All the kinetically fast transient channels (NaV1.1–1.7) appear

quite similar in functional properties, but sodium channels

sometimes generate much longer openings as a result of incom-

plete or defective fast inactivation. NaV1.9 gives rise to a low-

threshold, persistent tetrodotoxin (TTX)-resistant Na + current in

sensory neurons (Baker et al., 2003). Persistent sodium currents

have also been recorded in cells that do not express NaV1.9,

including cardiac and skeletal muscle (Patlak and Ortiz, 1986;

Bohle and Benndorf, 1995), large diameter dorsal root ganglion

neurons (Baker and Bostock, 1997) and cortical pyramidal neurons

(Alzheimer et al., 1993; Schwindt and Crill, 1995). In some

voltage-clamp protocols the amplitude of persistent current is

just a few per cent of that of the transient current at the same

potentials but is still functionally important. For mammalian pri-

mary sensory neurons, persistent currents activate at more nega-

tive potentials than the associated transient currents. The

hyperpolarized voltage dependence of activation of persistent

sodium currents allows these channels to operate as amplifiers of

subthreshold depolarization, because their activation kinetics are

fast and they operate over a strategic subthreshold membrane

potential range with low potassium channel activation. Evidence

from muscle fibre recordings indicates that NaV1.4 can generate

persistent currents, and NaV1.6 generates such currents in cere-

bellar Purkinje neurons (Raman et al., 1997; Raman and Bean,

1997). The functional importance of persistent currents can be

seen from the effects of SCN8A mutations that change neuron

firing patterns and lead to ataxia in mice (Meisler et al., 2002,

2004). In addition, many epileptogenic mutations of SNC1A,

SCN2A and SCN3A exhibit increased persistent currents (Meisler

and Kearney, 2005). The implication of these findings is that spe-

cific blocking of channels with inactivation-defective gating might

be a useful way of controlling membrane excitability within the

nervous system (Lampl et al., 1998). In primary sensory neurons,

persistent currents are preferentially targeted by local anaesthetics

(Baker, 2000). Local anaesthetics can suppress ectopic firing in

damaged sensory neurons without altering action potential prop-

erties (Devor et al., 1992), probably because the block of persist-

ent currents takes the membrane potential further away from

firing threshold.

Resurgent sodium currents
Resurgent currents, first observed in cerebellar Purkinje neurons

(Raman and Bean, 1997) and present in dorsal root ganglion neu-

rons (Cummins et al., 2005), may arise following relief of

ultra-fast open-channel block (faster than pore block by the in-

activation gate) mediated by yet undetermined proteins. In some

neurons, sodium channels transiently open upon recovery from

inactivation when the membrane potential is repolarized. This

transient opening gives rise to a large inward tail current termed

‘resurgent current’ (Cannon and Bean, 2010). One possible mech-

anism for resurgent current involves the blockade of the channel

pore by the C-terminus of b4 subunit of sodium channels (Grieco

et al., 2005; Bant and Raman, 2010). Resurgent currents have

recently become an important topic in pain and myopathy re-

search as sodium channel mutations involved in these pathologies

were found to increase resurgent currents (Jarecki et al., 2010).

Mutations in NaV1.4, NaV1.5 and NaV1.7 that lead to paramyo-

tonia congenita, cardiac long QT syndrome/sudden infant death
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syndrome and paroxysmal extreme pain disorder, respectively, all

enhance resurgent currents, thereby affecting the firing properties

of the cells. Although resurgent current can be observed with

NaV1.4-, NaV1.5-, NaV1.6- and NaV1.7-based sodium channels

in expression studies, in vivo resurgent currents have only been

recorded from neurons and never from cardiac or skeletal muscle.

Many toxins affect sodium channel function by altering the

gating of these channels. The wasp venom b-pompilidotoxin

(b-PMTX) is able to produce resurgent currents through a molecu-

lar mechanism involving the slowing of sodium channel inactiva-

tion (Grieco and Raman, 2004). Another toxin, the Cn2 b-scorpion

peptide, shifts the activation of NaV1.2 and NaV1.6 towards more

hyperpolarized potentials by trapping the DII S4 voltage sensor in

the inactivated rather than the closed state. A b-scorpion toxin

also has the capability of producing resurgent currents by trapping

the voltage sensor of human NaV1.6 channels and VGSC in mouse

Purkinje cells (Schiavon et al., 2006). The data from these two

studies strongly suggest that an increased open probability of

sodium channels is a key requirement for the generation of resur-

gent currents. Very recently it has been suggested that the tran-

sient, resurgent and persistent phases of the sodium current in

cerebellar granule cells are all interlinked through the b4 subunit

(Bant and Raman, 2010). These results highlight the critical role

that toxins play in unravelling gating mechanisms of sodium

channels.

Voltage-gated sodium channel
function and disease
association
The nine different VGSC �-subunits are differentially expressed

(Table 1), and disruption of VGSC function can lead to a broad

range of pathologies. The role of VGSCs in epilepsy and pain has

been well established; however, there is increasing evidence of a

role for VGSCs in other disorders including cancer, multiple scler-

osis, muscle and immune disorders, autism, neurodegeneration

and cardiovascular complications (Table 1). Human heritable dis-

orders can now be mapped with relative ease. A number of dis-

orders have been ascribed to mutations in genes encoding sodium

channels and further genetic insights have been provided by ana-

lysis of targeted sodium channel mutations and gene deletion in

mice (Table 1). The correlation between the clinical phenotype of

patients with channel mutations and channel biophysical proper-

ties and observations in mouse models will be discussed later.

NaV1.1 (SCN1A)
Broadly expressed in the CNS, NaV1.1 expression may be prefer-

entially expressed in inhibitory gamma-aminobutyric acidergic

(GABAergic) neurons (Yu et al., 2006). The majority of the

4700 associated SCN1A mutations are nonsense causing the

autosomal dominant disorder Dravet’s syndrome. In addition, ap-

proximately two dozen SCN1A mutations have been identified in

families with the milder disorder, generalized epilepsy with febrile

seizures plus, which is characterized by short-lasting tonic–clonic

seizures accompanied by fever (Meisler et al., 2010). Generalized

epilepsy with febrile seizures plus mutations change expression

and function of NaV1.1 channels due to both gain- and loss-of-

function mutations. For example, the D188V mutation leads to

impaired slow inactivation (Cossette et al., 2003), while the

T875M mutation enhances slow inactivation (Spampanato et al.,

2001). Both mutations lead to the same phenotype. Thus, the

relationship between the clinical phenotypes and the functional

defects is complex (reviewed in Ragsdale, 2008). Some linkage

between specific genetic abnormalities and phenotype has been

shown; SCN1A mutations are associated with early onset of febrile

seizures/febrile seizures plus while SCN1B mutations are associated

with later onset (Sijben et al., 2009).

The more detrimental severe myoclonic epilepsy of infancy (or

Dravet’s syndrome) is associated with haploinsufficiency for

SCN1A in 50–80% of severe myoclonic epilepsy of infancy pa-

tients caused by more deleterious nonsense and frameshift muta-

tions in NaV1.1 (De Jonghe, 2011). In contrast to generalized

epilepsy with febrile seizures plus, these mutations prevent

channel expression or severely impair channel function. While

loss-of-function mutations are common in Dravet’s syndrome, a

gain-of-function mutation in SCN1A (R865G) has also been found

(Volkers et al., 2011). SCN1A duplications and deletions are also

found in patients with Dravet’s syndrome (Marini et al., 2009).

More recently, de novo SCN1A mutations have been found in

patients with the severe early infantile onset syndrome of malig-

nant migrating partial seizures, also a severe epileptic encephalop-

athy (Carranza et al., 2011).

The severity of channel impairment has been suggested to

underlie the different efficacies of some anti-epileptic drugs in

treating either generalized epilepsy with febrile seizures plus or

severe myoclonic epilepsy of infancy, of which many act through

inhibiting VGSCs. For example, the sodium channel blocker lamo-

trigine is very effective for treating generalized epilepsy with fe-

brile seizures plus, while it aggravates symptoms in patients with

severe myoclonic epilepsy of infancy (Guerrini et al., 1998). The

efficacy of some frontline anti-epileptic drugs, which often work

through stabilizing channels in the inactive state, has been sug-

gested to be influenced by a polymorphism that modifies splicing

of NaV1.1 leading to altered inactivation (Fletcher et al., 2011).

Studies on Scn1a + /� mice have shown that deletion of NaV1.1

leads to impaired firing of GABAergic inhibitory hippocampal inter-

neurons (Catterall and Kalume, 2010) and cerebellar GABAergic

Purkinje neurons (Kalume et al., 2007). The impaired functioning

of inhibitory GABAergic neurons may contribute to seizures,

ataxia, spasticity and failure of motor coordination observed in

these mice.

It is interesting to note that targeting NaV1.1 to treat epilepsy is

not the only possible therapeutic strategy. Mice with haploinsuffi-

ciency for both NaV1.1 and NaV1.6 showed reduced susceptibility

to drug-induced seizures compared with NaV1.1 heterozygotes

(Martin et al., 2007). In contrast with NaV1.1, NaV1.6 is highly

expressed in excitatory neurons (Caldwell et al., 2000). Thus it

seems that the excitatory and inhibitory balance in the brain is

restored by NaV1.6 mutations that reduce firing of excitatory neu-

rons. Finally, NaV1.1 mutations are also associated with familial

hemiplegic migraine type 3 (Dichgans et al., 2005), an autosomal
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dominant severe subtype of migraine with aura characterized by

hemiparesis during the attacks. Genome-wide linkage analysis re-

vealed three families with the same missense mutation in SCN1A

(Q1489K). This mutation resulted in complex changes in channel

gating including a depolarizing shift in the voltage dependence of

inactivation, accelerated recovery from inactivation and increased

persistent current (Cestele et al., 2008). These biophysical changes

could cause either hyper- or hypoexcitability depending on the

firing frequency and resting membrane potential of the neuron.

More recently, whole exome sequencing has identified candidate

genes with de novo mutations, including SCN1A, in sporadic

autism spectrum disorders (O’Roak et al., 2011, 2012).

NaV1.2 (SCN2A)
NaV1.2 is abundantly expressed in the adult CNS, particularly in

the cortex and hippocampus (Westenbroek et al., 1989), where it

is primarily expressed in unmyelinated axons and dendrites (Boiko

et al., 2001). Early in development, NaV1.2 is highly expressed in

regions destined to become nodes of Ranvier and is replaced

during development by NaV1.6 (Boiko et al., 2001; Kaplan

et al., 2001). NaV1.2 knockout mice die perinatally from neuronal

apoptosis and hypoxia (Planells-Cases et al., 2000). In humans,

NaV1.2 mutations are associated with inherited epilepsy, mainly

benign familial neonatal-infantile seizures (Heron et al., 2002)

and less frequently with other forms of epilepsy such as general-

ized epilepsy with febrile seizures plus (Sugawara et al., 2001).

Benign familial neonatal-infantile seizure is an autosomal dominant

disorder characterized by afebrile seizures with onset within

4 months after birth and spontaneous remission within the first

year of life, without residual neurological deficits. Three separate

benign familial neonatal-infantile seizures causing mutations in

NaV1.2 resulted in reduced plasma membrane expression while

having varied effects on channel activation and inactivation

(Misra et al., 2008). Although there is little consensus over the

pathological mechanisms, studies have demonstrated that either

gain- or loss-of-function mutations of NaV1.2 are associated

with disease. A link between NaV1.2 and autism has been re-

ported at low frequency (1/229 autism families studied), resulting

in mutation of the calmodulin binding domain of NaV1.2 and

reduced calmodulin-binding affinity (Weiss et al., 2003).

De novo mutations revealed by whole-exome sequencing includ-

ing two independent nonsense mutations in SCN2A, are strongly

associated with autism (Sanders et al., 2012).

NaV1.3 (SCN3A)
NaV1.3 is widely expressed in the human brain and has a predom-

inantly somatodendritic expression pattern (Whitaker et al., 2001).

In contrast to many of the other VGSC genes, there are as yet no

clear monogenic diseases associated with SCN3A mutation.

However, a small study of patients with cryptogenic paediatric

partial epilepsy revealed a mutation in SCN3A (K354Q) that led

to an increase in persistent current and induced epileptiform

hyperexcitability in hippocampal neurons (Holland et al., 2008a;

Estacion et al., 2010). Animal studies have focused on a possible

role of NaV1.3 in neuropathic pain. Following axotomy and

inflammation in mice, NaV1.3 transcript levels increase in sensory

neurons (Waxman et al., 1994b; Dib-Hajj et al., 1999). Antisense

knockdown of NaV1.3 expression attenuates pain-related behav-

iour associated with spinal cord injury and chronic constriction

injury (Hains et al., 2004) but not allodynia in the spared nerve

injury model (Lindia et al., 2005). However, NaV1.3 knockout

mice, where the gene was deleted globally or selectively in noci-

ceptive neurons, showed normal pain behaviour and normal de-

velopment of neuropathic pain in the Chung model of neuropathic

pain (Nassar et al., 2006). Although several lines of investigation

have implicated NaV1.3 as a candidate drug target to treat neuro-

pathic pain, this study does not support an essential role for

NaV1.3 in neuropathic pain.

NaV1.4 (SCN4A)
NaV1.4 is responsible for the generation and propagation of action

potentials that initiate muscle contraction. Currently, five heredi-

tary sodium channelopathies of skeletal muscle involving NaV1.4

mutations have been identified, such as hyperkalaemic periodic

paralysis, hypokalaemic periodic paralysis, paramyotonia conge-

nita, potassium-aggravated myotonia and congenital myasthenic

syndrome (Jurkat-Rott et al., 2010). Hypokalaemic periodic par-

alysis and normokalaemic peridodic paralysis causing mutations

map to the NaV1.4 voltage sensor, resulting in ionic leak through

the gating pore allowing sustained inward sodium flux at negative

membrane potentials (Sokolov et al., 2010). In contrast, mutations

associated with paramyotonia congenita and hyperkalaemic peri-

odic paralysis are widespread in the NaV1.4 protein and either

enhance activation or impair inactivation resulting in hyperexcit-

ability. Mutations in KCNA1 and SCN4A have been found in a

patient with episodic ataxia and paramyotonia congenita. Coex-

istence of these two ion channelopathies in this patient raises the

possibility of a role of sodium channels in episodic ataxias (Raja-

kulendran et al., 2009).

NaV1.5 (SCN5A)
Several syndromes leading to sudden cardiac death have been

linked to NaV1.5. For example, over 80 SCN5A mutations have

been identified in patients with long QT syndrome type 3 (Zimmer

and Surber, 2008). These mutations mostly disrupt fast inactiva-

tion, thereby causing persistent sodium currents (Bennett et al.,

1995). Similarly, Brugada syndrome also leads to sudden cardiac

death that may account for up to 50% of all sudden cardiac

deaths in young individuals without structural heart disease.

SCN5A mutations were found in �20% of patients with

Brugada syndrome (Kapplinger et al., 2010) resulting in channel

loss-of-function through a number of different mechanisms includ-

ing expression of non-functional NaV1.5 (Valdivia et al., 2004;

Hsueh et al., 2009), decreased protein expression (Kyndt et al.,

2001), impaired membrane trafficking (Baroudi et al., 2001, 2002)

or defective channel inactivation (Hsueh et al., 2009). Although

NaV1.5 has been mainly linked to cardiac disease, a more recent

report shows a novel SCN5A mutation in a patient with idiopathic

epilepsy who died in sudden unexpected death in epilepsy

(SUDEP) (Aurlien et al., 2009)
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Interestingly, VGSC upregulation has been associated with sev-

eral strongly metastatic carcinomas, leading to the hypothesis that

VGSC upregulation may ‘switch’ the cancerous cell to a highly

invasive state (Onkal and Djamgoz, 2009). Some cancers express

embryonic/neonatal VGSC splice variants, for example, a neonatal

isoform of NaV1.5 (seven amino acid differences) is the predom-

inant (480%) VGSC in human metastatic breast cancer (Fraser

et al., 2005) as well as neuroblastoma (Ou et al., 2005).

NaV1.6 (SCN8A)
NaV1.6 is broadly expressed in the nervous system in a variety of

cells including Purkinje cells, motor neurons, pyramidal and gran-

ule neurons, glial cells and Schwann cells and is enriched at the

nodes of Ranvier (Caldwell et al., 2000; Kearney et al., 2002).

Mutation in SCN8A is not a common cause of human disease

although a patient with a heterozygous mutation in SCN8A has

been described with mental retardation, pancerebellar atrophy and

ataxia (Trudeau et al., 2006). This mutation caused a C-terminal

truncation of NaV1.6 resulting in predicted loss of channel func-

tion. Naturally occurring med mutant NaV1.6 knockout mice show

a range of movement disorders including tremor, ataxia, dystonia

and paralysis (Meisler et al., 2002, 2004). Mutant mice are also

reported to have disordered sleep patterns with a chronic impair-

ment of REM sleep and enhanced spatial memory (Papale et al.,

2010). In Purkinje cells of NaV1.6 knockout mice, resurgent cur-

rents are reduced and spontaneous and evoked firing was attenu-

ated (Raman et al., 1997). Recently a de novo pathogenic SCN8A

mutation with greatly increased persistent current was identified in

a case of SUDEP with infantile epileptic encephalopathy

(Veeramah et al., 2012). Persistent NaV1.6 activity can trigger

axonal injury within white matter axons during experimental auto-

immune encephalomyelitis, an animal model of multiple sclerosis

(Craner et al., 2004). In non-excitable cells such as macrophages,

NaV1.6 is expressed at an intracellular location on podosomes

(Carrithers et al., 2009a). In this study, inhibition of NaV1.6 with

TTX or by genetic ablation was effective at reducing invasion of

macrophages into melanoma. Similarly, a non-neuronal role for

NaV1.6 contributing to the invasiveness of cervical carcinomas

has been suggested (Hernandez-Plata et al., 2012). This suggests

that targeting NaV1.6 in non-neuronal tissue might have thera-

peutic potential to treat cancer or autoimmune disorders such as

multiple sclerosis (Carrithers et al., 2009b). However, the essential

role of NaV1.6 in many neurological functions may make this a

difficult task.

NaV1.7 (SCN9A)
NaV1.7 is expressed in peripheral sensory neurons innervating the

skin, viscera and orofacial region (dorsal root and trigeminal gang-

lia) as well as sympathetic neurons and olfactory epithelia

(Toledo-Aral et al., 1997; Weiss et al., 2011). A number of

human heritable pain disorders map to mutations in SCN9A, the

gene encoding NaV1.7 (Dib-Hajj et al., 2010). Dominant gain-of-

function mutations lead to inherited primary erythromelalgia,

which is characterized by bilateral burning pain of the feet/lower

legs and hands, elevated skin temperature of affected areas and

reddened extremities (Yang et al., 2004). Additionally, dominant

gain-of-function mutations can cause paroxysmal extreme pain

disorder which is characterized by episodic burning pain of the

rectum, ocular and mandibular regions (Fertleman et al., 2006).

Rare recessive loss-of-function conditions can cause an inability to

experience pain (Cox et al., 2006; Ahmad et al., 2007) and an-

osmia (Weiss et al., 2011).

Biophysical characterization of the NaV1.7 mutations present in

patients with erythromelalgia shows a significant hyperpolarizing

shift in voltage dependence of activation (Cummins et al., 2007),

resulting in gain-of-function. The NaV1.7 mutations underlying

paroxysmal extreme pain disorder, where mechanical stimulation

evokes excruciating pain (Fertleman et al., 2006), attenuate the

fast inactivation of NaV1.7 resulting in persistent sodium currents.

Such a deficit in inactivation is predicted to produce prolonged

bursts of action potentials leading to increased nociceptive signal-

ling. In mouse studies, selective knockout of NaV1.7 expression in

NaV1.8-positive nociceptors lead to a loss of acute noxious

mechanosensation and inflammatory pain (Nassar et al., 2004),

while deletion of NaV1.7 in all sensory neurons leads to additional

loss of noxious thermosensation (Minett et al., 2012). These data

suggest that NaV1.7 expressed within NaV1.8-positive sensory

neurons are important for acute noxious mechanosensation,

whilst NaV1.7 expressed within NaV1.8 negative dorsal root gan-

glion neurons are essential for acute noxious thermosensation.

Furthermore, no effect on neuropathic pain behaviour was

observed in mice that lack expression of NaV1.7 in NaV1.8-positive

sensory neurons (Nassar et al., 2005). This is also true for mice in

which NaV1.7 has been deleted from all dorsal root ganglion neu-

rons. In contrast, mice in which NaV1.7 is deleted from all sensory

neurons as well as sympathetic neurons show a dramatic reduction

in mechanical hypersensitivity following a surgical model of neuro-

pathic pain, demonstrating an important role for NaV1.7 in sym-

pathetic neurons in the development of neuropathic pain (Minett

et al., 2012). Overall, the role of NaV1.7 in human as well as

animal pain perception highlights NaV1.7 as an important anal-

gesic drug target.

NaV1.7 is not only implicated in pain perception. Weiss et al.

(2011) demonstrated that NaV1.7 is an essential requirement for

odour perception in both mice and humans. Surprisingly, NaV1.7 is

required for synaptic signalling from the primary olfactory neurons

to mitral cells, and the release of substance P from nociceptive

neurons has also been shown to be NaV1.7-dependent (Weiss

et al., 2011; Minett et al., 2012).

NaV1.8 (SCN10A)
NaV1.8 is a TTX-resistant sodium channel subtype that is ex-

pressed in nociceptive sensory neurons (Akopian et al., 1999)

and acts as a major contributor to the upstroke of action potentials

(Renganathan et al., 2001). NaV1.8 is essential in maintaining the

excitability of nociceptors at low temperatures (Zimmermann

et al., 2007), becoming the sole electrical impulse generator at

temperatures 510�C. This is caused by enhanced slow inactiva-

tion of TTX-sensitive channels in response to cooling, whereas

inactivation of NaV1.8 is cold resistant. Behavioural studies of

mice in which NaV1.8 expressing sensory neurons are ablated
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show loss of response to noxious cold and noxious mechanical

stimuli (Abrahamsen et al., 2008). Antisense studies have shown

an important role for NaV1.8 channels in inflammatory pain

(Khasar et al., 1998). Antisense oligonucleotides attenuate the

development and maintenance of neuropathic pain in rats (Lai

et al., 2002; Joshi et al., 2006) while small interfering RNA select-

ive knockdown of NaV1.8 reverses mechanical allodynia (Dong

et al., 2007). However, NaV1.8 knockout mice as well as

NaV1.7/1.8 double knockout mice show normal neuropathic

pain behaviour (Kerr et al., 2001; Nassar et al., 2005).

However, selective blockers of NaV1.8 such as A-803467 (Jarvis

et al., 2007) and ambroxol (Gaida et al., 2005) successfully

suppress various pain symptoms and neuropathic pain in rats.

A recent genome wide association study has identified a single

nucleotide polymorphism in NaV1.8 which was associated

with prolonged cardiac conduction (Chambers et al., 2010)

(longer P-wave duration, PR interval and QRS duration), thereby

providing evidence that NaV1.8 has a functional role in the heart,

probably through effects on innervation rather than cardiac

muscle.

NaV1.9 (SCN11A)
NaV1.9 is the most recently discovered VGSC subtype (Dib-Hajj

et al., 1998). It is a marker of primary nociceptors (Fang et al.,

2002) and is also expressed in the enteric nervous system (Rugiero

et al., 2003). NaV1.9 is a biophysically unique sodium channel

which generates TTX-resistant currents that have very slow

gating kinetics (Dib-Hajj et al., 2002). The current generated by

NaV1.9 is ‘persistent’ and can be activated at potentials close to

resting membrane potential (��60 mV). Although the activation

kinetics are too slow to contribute to the up-stroke of an action

potential, the channel acts as a modulator of membrane excitabil-

ity by contributing regenerative inward currents over a strategic

membrane potential range both negative to, and overlapping with

the voltage-threshold for other transient sodium channels.

While a selective blocker of NaV1.9 does not exist at present,

SCN11A knockout mice exhibit a clear analgesic phenotype (Priest

et al., 2005; Amaya et al., 2006), confirming NaV1.9 is an import-

ant player in generating hyperalgesia in inflammatory pain states.

This appears to be explicable by changes in the properties of distal

primary afferents. The response to inflammatory mediators is sup-

pressed in NaV1.9 knockout mice consistent with the immunocyto-

chemical localization of the channel at unmyelinated nerve

endings (Black and Waxman, 2002; Padilla et al., 2007), and

the remarkable functional plasticity of the current, known to be

under G-protein pathway control via protein kinase C (Baker

et al., 2003; Baker, 2005). Overall, therapeutically targeting

NaV1.9 may help regulate pain thresholds following inflammation

or injury.

b-Subunits of voltage-gated
sodium channels
b-Subunits of VGSCs belong to the immunoglobulin superfamily of

cell adhesion molecules and associate with �-subunits in two ways:

covalently in the case of b2 and b4 subunits and non-covalently

for b1 and b3 subunits (Patino and Isom, 2010). VGSC b-subunit

expression is widespread both in excitable and non-excitable

tissues (Patino and Isom, 2010). Although reported effect sizes

vary, b-subunits shift the voltage-dependent gating of VGSC in

heterologous expression systems (Zhao et al., 2011). In humans,

mutations in b-subunits have been linked to numerous cardiac and

epilepsy related diseases (Table 1). Heterozygous b1 mutations

have been identified in seven families with generalized epilepsy

with febrile seizures plus (Scheffer et al., 2007), (4–6% of

generalized epilepsy with febrile seizures plus patients) with

the most common mutation being C121W, which leads to

impaired trafficking of VGSC to the axon initial segment

(Wimmer et al., 2010). A human SCN1B epilepsy-related mutation

(G257R) unique to a splice variant of b1BA has been proposed to

contribute to epilepsy through a mechanism that includes intracel-

lular retention b1 resulting in aberrant neuronal path-finding

(Patino et al., 2011). Mice heterozygous for b1 (C121W) dis-

played behavioural arrest at elevated core temperatures and

enhanced axon initial segment excitability, which is proposed to

be due to a hyperpolarized shift in the voltage dependence of

activation of VGSC expressed at the axon initial segment

(Wimmer et al., 2010). Mutations in all four b-subunits have

been linked to cardiac pathologies including Brugada syndrome

(b1 and b3), atrial fibrillation (b1, b2 and b3), ventricular fibrilla-

tion (b3) and long QT syndrome (b4) (Table 1). Mutations in b3

and b4 have also been linked to sudden infant death syndrome

(found in 1% of cases) due to reduced peak sodium current

through NaV1.5 and enhanced ‘late sodium current’ (Tan et al.,

2010).

Expression levels of VGSC b-subunits vary in different patho-

logical conditions (nerve injury, pain, Huntington’s disease) and

knockout models of VGSC b-subunits display pain, epilepsy and

ataxia phenotypes (Patino and Isom, 2010), suggesting that the

range of VGSC b-subunit roles in pathological conditions may be

wider than known. Interestingly, recent reports also show that the

affinity and efficacy of VGSC inhibitors can be dramatically altered

by changing b-subunit expression levels (Uebachs et al., 2010;

Wilson et al., 2011) and that b-subunit expression levels change

during diseases such as Huntington’s disease (mouse model)

(Oyama et al., 2006) and after nerve injury (Pertin et al., 2005).

It remains to be seen whether this altered pharmacology of �-�

complexes can be utilized to produce VGSC blockers with higher

selectivity and efficacy in vivo.

VGSC b-subunits also interact with the extracellular matrix as

well as the cytoskeleton and intracellular signalling molecules

(Isom, 2002; Brackenbury and Isom, 2011). Enzymatic cleavage

leads to production of a soluble ectodomain and membrane

bound C-terminal fragment, which have been implicated in the

regulation of cell–cell contact and neurite outgrowth (Wong

et al., 2005). The b4-subunit was recently identified as a novel

substrate of the b-secretase, BACE1, an enzyme implicated in the

pathogenesis of Alzheimer’s disease (Huth et al., 2011). In BACE1

knockout mice, the decay of the resurgent sodium current re-

corded from Purkinje cells was found to be slowed and could be

modelled as a decrease in open pore block consistent with pro-

teolytic modification of b4.
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Sodium channel trafficking
and disease
The pivotal role of sodium channels in electrical signalling requires

targeting of VGSCs to the correct cellular location. High channel

densities of VGSCs can be found at the axon initial segment and

nodes of Ranvier as part of complex protein aggregates (Hedstrom

and Rasband, 2006). Cytoplasmatic proteins regulate expression

and function of VGSCs through binding to the intracellular

domain of VGSCs, that are, in contrast to the extracellular

domain, relatively divergent (Wood et al., 2004). To date, several

studies have focused on identifying VGSC-associated proteins of

which some are involved in trafficking (Diss et al., 2004; Shao

et al., 2009; Leterrier et al., 2010). For example NaV1.8 requires

the expression of the annexin p11 subunit, which binds to the

N-terminal region of the channel to facilitate cell-surface expres-

sion of the channel (Okuse et al., 2002). Nerve growth factor

upregulation of functional NaV1.8 expression, important in

inflammatory pain appears to be indirectly mediated through

enhanced p11 expression and trafficking (Okuse et al., 2002;

Poon et al., 2004). In addition, the interaction of the

N-terminus of NaV1.6 with microtubule-associated protein

Map1b facilitates trafficking of NaV1.6 to neuronal surfaces

(O’Brien et al., 2012).

A variety of protein kinases have been shown to regulate the

trafficking of VGSCs to the cell membrane or to specialized mem-

brane domains, such as lipid rafts (reviewed in Shao et al., 2009).

Stimulation of the b2-adrenergic receptor leads to localization of

cardiac NaV1.5 to caveolin-enriched membrane domains resulting

in increased function and thereby possibly promoting cardiac ar-

rhythmias (Yarbrough et al., 2002). Moreover, trafficking of intra-

cellular pools of the sensory neuron-specific VGSCs NaV1.8 and

NaV1.9 has been implicated in enhanced pain sensitivity (Dib-Hajj

et al., 2010).

The co-factors required for NaV1.9 expression have not been

defined, but this channel can only be functionally expressed in

dorsal root ganglion neurons where it rescues the expression of

persistent current in NaV1.9 knockout neurons (Ostman et al.,

2008).

A number of VGSC mutants found in several human diseases

have been found to be trafficking-deficient and may give insights

into key protein regions/domains important for the regulation of

VGSC trafficking (Table 1). Trafficking defects may arise due to

improper protein folding or altered binding to essential chaperones

within the endoplasmic reticulum, ultimately leading to endoplas-

mic reticulum retention and/or protein degradation. Alternatively,

VGSC domains that are crucial for binding to associated proteins

regulating VGSCs localization/functioning may be affected. An

important family of scaffolding proteins, ankyrins, is responsible

for the localization of structurally diverse membrane-associated

and cytosolic protein, including VGSCs. Ankyrin-G is important

in clustering NaV1.2 and NaV1.6 into nodes of Ranvier and axon

initial segments (Jenkins and Bennett, 2001; Garrido et al., 2003).

A nine-residue motif has been characterized in the DII–III loop that

is critical for ankyrin-G binding. This sequence is highly conserved

within all VGSC isoforms and is almost identical between NaV1.2,

NaV1.5 and NaV1.6 (Lemaillet et al., 2003). Mutation of the

ankyrin-G binding site of NaV1.6 prevents clustering at the axon

initial segments (Gasser et al., 2012). A mutation associated with

Brugada syndrome has been found within this ankyrin-G-binding

motif of NaV1.5. This mutation (E1053K) abolished ankyrin-G

binding resulting in a loss of membrane expression in cardiac

myocytes (Mohler et al., 2004). Other Brugada syndrome muta-

tions in NaV1.5 have been shown to be associated with defective

trafficking/surface localization emphasizing the importance of cor-

rect targeting of this protein for cardiac function (Baroudi et al.,

2001, 2002; Kyndt et al., 2001; Valdivia et al., 2002; Bezzina

et al., 2003; Herfst et al., 2003; Ruan et al., 2010).

In patients with long QT syndrome, mutations in NaV1.5-

associated genes have been found, such as ankyrin-B and

SCN4B (Saenen and Vrints, 2008). b-Subunits regulate the surface

density and the biophysical properties of the channel complex

(Shao et al., 2009) and knockout mice lacking b2 subunit show

reduced VGSC surface expression (Chen et al., 2002). Moreover,

a recent report showed that a loss-of-function mutation of the

SCN3B-encoded channel b3 subunit (Navb3–V54G) is associated

with a case of idiopathic ventricular fibrillation. This mutation

caused a trafficking defect of NaV1.5 to the plasma membrane

(Valdivia et al., 2010). Conversely, b-subunits have also been

shown to rescue a trafficking-defective NaV1.1 mutant (Rusconi

et al., 2007).

Four mutations in the SCN1B gene have been described that

lead to an inherited generalized epilepsy with febrile seizures plus.

Both mutations occur in a domain of the b1 subunit that is im-

portant for the regulation of the subcellular localization of VGSCs

within neurons (Wimmer et al., 2010). An epilepsy causing SCN1A

loss-of-function mutation within the region of the C-terminal cyto-

plasmatic domain (M1841T) that is involved in interactions with

accessory subunits has been identified as trafficking defective.

Importantly, trafficking of this mutant could be rescued by mod-

ulatory proteins, such as b-subunits, calmodulin or G protein b2�3

and the anti-epileptic drug phenytoin (Rusconi et al., 2007).

However, phenytoin cannot be used therapeutically as it also

blocks channel function.

The broadly expressed 20 amino acid IQ motif also found in

VGSCs binds to the ubiquitously expressed Ca2 + -sensing protein

calmodulin. Mutation of the NaV1.4 calmodulin-binding IQ motif

showed that this domain is indispensable for normal channel

expression and functioning (Biswas et al., 2008). A mutation of

SCN2A that reduced affinity for calcium-bound calmodulin was

observed in a patient with autism (Weiss et al., 2003). Finally, a

recent study has identified two novel non-truncating missense mu-

tations in families with congenital insensitivity to pain that were

mapped within the pore domain of SCN9A. These mutations cause

complete loss-of-function as well as membrane expression of the

channel (Cox et al., 2010).

There are no effective drugs in use that target trafficking of

VGSC. However, some reports have shown that mexiletine, a

drug used to inhibit persistent sodium current and to shorten

QT interval, rescues trafficking in defective SCN5A mutants

(Valdivia et al., 2002; Ruan et al., 2010). The rescue of trafficking

of these mutants, however, counteracts the effectiveness of the

drug as the increased trafficking may exacerbate the QT
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prolongation due to increased expression of the mutant protein. In

contrast, phenytoin not only rescues a trafficking-defective SCN1A

mutant but also blocks the channel (Rusconi et al., 2007). Thus,

drugs that can act as folding chaperones to rescue mutant protein,

but do not block channel function, are required.

Although effective drugs have yet to be designed to modulate

VGSC expression by interfering with the trafficking pathway, some

promising results have been obtained with the anti-epileptic and

anti-nociceptive drug gabapentin and its derivatives. These drugs

exert their effect primarily via inhibition of trafficking of the

voltage-gated �2�2 calcium channel subunit (Heblich et al.,

2008; Hendrich et al., 2008) indicating that drugs targeting traf-

ficking may be useful in VGSC-related pathologies.

Toxins as useful tools to
understand voltage-gated
sodium channel function
and pharmacology
Toxins have been useful in understanding the structural and mo-

lecular determinants of VGSC gating through their modifying ac-

tions on the gating of VGSCs (Catterall et al., 2007). At least six

toxin-binding sites (sites 1–6) for toxins have been localized to

specific regions of sodium channels. The site of interaction of a

number of more recently characterized toxins, including the inhibi-

tory mO-conotoxins and spider toxins, remains to be fully charac-

terized. Binding to these sites affects channel ion conduction or

gating, and sequence differences in the residues involved contrib-

ute to subtype specificity (Catterall, 2000). Site 1 toxins such as

TTX and the mO-conotoxins inhibit current, while most site 2–6

toxins enhance sodium current through effects on channel gating.

While channel enhancers have helped to characterize gating and

inactivation mechanisms of sodium channels, and the allosteric

interactions between toxin binding sites, these classes of toxins

invariably produce toxic effects at all doses.

The usefulness of toxins as clinically relevant drugs is limited in

part by their high molecular weights and lack of subtype specifi-

city. However, a peptide derived from tarantula venom, peptide

ProTx-II is two orders of magnitude more selective for NaV1.7

compared with other heterologously expressed VGSCs and

blocked action potential propagation in nociceptors (Schmalhofer

et al., 2008a). Moreover, a mO-conotoxin selectively blocks

NaV1.8 currents and chronic pain behaviour in animal models

(Ekberg et al., 2006).

Mechanisms of drug binding to
voltage-gated sodium channels
VGSCs, like other voltage-gated ion channels, can be differentially

modulated by compounds that bind selectively to distinct con-

formational states of the channels. Upon changes in membrane

potential, VGSCs undergo voltage-dependent gating that consists

of a succession of conformational transitions: non-conducting

closed states upon depolarization adopt an activated conducting

open state followed by open-state inactivation in which the flow

of ions through the channel pore is blocked by the movement of a

molecular ‘ball’ into the cytoplasmic side of the newly opened

pore (Armstrong and Hille, 1998) (Fig. 1). Repolarization of the

membrane leads to another conformational transition, the deacti-

vation gate (Kuo and Bean, 1994), which consists in a brief open-

ing of the channel before reaching the closed states again. Other

conformational states of VGSCs include closed-state inactivation

(Armstrong, 2006), slow inactivation and for some VGSCs the

‘resurgent current’ gate. Closed-state inactivation is engaged

upon small depolarizations (these allow the movement of the S4

voltage sensors in domains III and IV only, which is enough for the

inactivation particle to move into the pore before the channel

opens). Slow inactivation is reached during prolonged

depolarizations.

Extensive mutagenesis studies of VGSCs have identified the local

anaesthetic binding site as the intracellular surface of the S6 heli-

ces (Ragsdale et al., 1994, 1996), binding to which causes occlu-

sion of the pore. The modulated receptor hypothesis (Hille, 1977)

first predicted that the local anaesthetic binding site could be ac-

cessed via two distinct mechanisms: a hydrophilic pathway requir-

ing binding of the drug from the intracellular side during channel

opening and a hydrophobic pathway whereby local anaesthetics

can access the water filled pore directly. Indeed, the recent crystal

structure of the Arcobacter butzleri VGSC NavAb confirmed the

existence of hydrophobic fenestrations within the protein lipid

interface composed of fatty acyl chains (Payandeh et al., 2011,

2012). These observations suggest a molecular mechanism for

closed state and use/frequency-dependent inhibition of VGSCs.

Highly hydrophilic local anaesthetics have limited access to the

hydrophobic pathway and instead require opening of VGSCs,

allowing access of local anaesthetics to the pore and promoting

binding of local anaesthetics in the inactivated state. In this case

cumulative block occurs with high-frequency opening when dis-

sociation from the local anaesthetic binding site occurs with a time

constant slower than the association rate. This results in accumu-

lation of inhibition and makes potency dependent on opening fre-

quency. By contrast, neutral or hydrophobic local anaesthetics can

access the local anaesthetic binding site through both the hydro-

phobic pathway when the channel is in the closed state and the

hydrophilic pathway during channel opening, resulting in a com-

bination of tonic and use-dependent blocking properties. In add-

ition, quaternary amines such as QX-222 or QX-314 may have

restricted access to the local anaesthetic binding site in accordance

with the guarded receptor hypothesis (Starmer and Hollett, 1985),

which may also contribute to use-dependent block. Many neuro-

logical pathological conditions result from neurons firing action

potentials at higher frequencies than normal, which lead to

these cells displaying a tonically depolarized membrane potential.

Therefore, voltage-dependent compounds that exhibit frequency-

dependent inhibition of VGSCs are desirable as they will tend to

only target VGSCs in affected areas, leaving healthy tissues safe.

The voltage dependence of VGSC ligands along with their phar-

macokinetic properties (on and off rates) is critical in determining

the mode of action of these compounds. Chemical entities with

affinity for the resting state of VGSCs, like TTX, simply bind to the
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extracellular regions of VGSCs, block the passage of ions and

cannot be removed by either changing the membrane voltage

or the gating of the channel. On the contrary, compounds with

affinity for the open-inactivated state need channel opening, and

therefore membrane depolarization, to bind to the inner pore of

VGSCs. The pharmacokinetic properties of these ligands determine

the optimal frequency at which blockade is strongest: slow dissoci-

ation rates promote use-dependent block at low frequencies,

whereas fast off rates favour block at high frequencies. In other

words, voltage-dependent drugs that dissociate quickly from

VGSCs when the membrane potential is returned to resting

values upon action potential repolarization, such as anti-epileptic

VGSC blockers, are best at affecting high-frequency firing as

observed in epileptic conditions. On the contrary, voltage-

dependent compounds that dissociate more slowly, such as

anti-arrhythmic and local anaesthetic VGSC blockers, tend to be

more effective in blocking low-frequency firing.

Sodium channel targeted drugs

Voltage-gated sodium channel blockers
as local anaesthetics
Cocaine was one of the first topical anaesthetics used by humans.

Although cocaine is well known as a serotonin–norepinephrine–

dopamine reuptake inhibitor, it also has VGSC blocking properties

(Ruetsch et al., 2001). Over the years, novel VGSC blockers that

can be used as local anaesthetics have been synthesized that

target VGSC more specifically, have higher efficacy and have

fewer side-effects. Currently, many different VGSC blockers are

used as local anaesthetics such as lidocaine, bupivacaine and ropi-

vacaine (Ruetsch et al., 2001). Local anaesthetics are weak bases

that require to be injected as hydrochloride salts in acid solution to

be dissolved. At the site of injection, where the pH is higher, local

anaesthetics dissociate according to their pKa and release a free

base. The free base is able to cross the nerve cell membrane and

once inside the nerve, it becomes re-ionized due to the lower

cytoplasmic pH and is unable to diffuse out of the cell (ion

trapping).

The most common systemically applied local anaesthetics are

lidocaine and mexiletine, which have been demonstrated to be

effective drugs in treating neuropathic pain in controlled clinical

studies (Challapalli et al., 2005). These anti-nociceptive effects of

local anaesthetics can be observed even at plasma concentrations

that would be too low to physiologically block nerve conduction.

However, these low concentrations of local anaesthetics are still

sufficient to block/attenuate impulse generation/ectopic dis-

charges that cause pain while nerve conduction is unaffected

(Mao and Chen, 2000). Importantly, the anti-inflammatory as

well as anti-nociceptive effects of local anaesthetics cannot be

explained solely by their action on VGSCs (Hollmann and

Durieux, 2000; Mao and Chen, 2000). For example, systemic lido-

caine enhances spinal inhibitory glycinergic neurotransmission in-

dependent of VGSC inhibition (Muth-Selbach et al., 2009).

Subtype selective blockers to treat pain
NaV1.7 and NaV1.8 have expression patterns restricted predomin-

antly to the PNS and are both essential for normal pain transmis-

sion. Selective antagonists (Table 2) of these channels therefore

make attractive targets for the treatment of pain due to the

reduced chance of CNS or cardiac side-effects (although NaV1.8

may play a role in cardiac conduction). A-803467 is a NaV1.8

selective small molecule showing selective block of both recom-

binant and native NaV1.8 currents (Jarvis et al., 2007). In vitro

studies performed on isolated small-diameter dorsal root ganglion

neurons have demonstrated that A-803467 blocks NaV1.8 currents

in a voltage-dependent manner and inhibits action potential firing.

A-803467 shows efficacy in alleviating acute mechanical pain,

inflammatory thermal hyperalgesia and neuropathic pain in

rodents (Jarvis et al., 2007). These behavioural data are consistent

with data showing systemic injection of A-803467 decreases both

mechanically evoked and spontaneous firing of spinal neurons in

nerve-injured rats (McGaraughty et al., 2008). The identification

of this compound provides an important proof of concept that it is

possible to develop isoform-specific blockers of sodium channels

that are analgesic. Following the development of the NaV1.8

selective blocker A-830467, Abbott Labs have succeeded in

developing an orally active preparations based on a modified

structure of A-830467 that is effective in rodent models of neuro-

pathic pain (Drizin et al., 2008). These compounds generally

inhibited NaV1.8 with IC50s in the sub-micromolar range and

had some selectivity for NaV1.8 over other Nav isoforms with

the best compound displaying a 5-fold and 20-fold greater po-

tency for NaV1.8 over NaV1.2 and NaV1.5, respectively.

Importantly, this class of drugs shows improved effects after oral

application and better safety profiles than currently clinically used

sodium channel blockers such as mexiletine and lamotrigine (Drizin

et al., 2008).

NaV1.7 blockers have also been developed, but the benzazepi-

none structures have equipotent actions on Nav 1.2 and 1.5, sug-

gesting that side-effects may be an issue (Williams et al., 2007).

Currently, specific NaV1.7 blockers are being tested by a

number of companies in human trials. For example, Convergence

Pharmaceuticals are evaluating a NaV1.7 inhibitor in phase II trials

of trigeminal neuralgia.

A selective small molecule NaV1.7 blocker (BZP) is an example

of an approach to facilitate inhibition of peripherally expressed

VGSCs by designing compounds that poorly penetrate the CNS

(McGowan et al., 2009). BZP was demonstrated to have

anti-nociceptive effects in animal models of inflammatory and

neuropathic pain after oral administration, while inducing fewer

CNS-related side-effects compared to mexiletine.

State-dependent acting agents to
treat pain
Biophysical characterization of rare gain-of-function mutations af-

fecting pain signalling has provided us with invaluable insight into

the way various sodium channel blocking drugs differentially

modulate the transition between the states of VGSCs. NaV1.7

mutations in primary erythromelalgia and paroxysmal extreme

Voltage-gated sodium channels Brain 2012: 135; 2585–2612 | 2595



T
ab

le
2

Is
o
fo

rm
-s

el
ec

ti
ve

co
m

p
o
u
n
d
s

C
o
m

p
o
u
n
d

St
ru

ct
u
re

IC
5
0

M
o
d
e

o
f

ac
ti

o
n

In
vi

vo
ef

fe
ct

s
R

ef
er

en
ce

s

A
-8

0
3
4
6
7

N
av

1
.8

:
8

n
M

N
av

1
.2

,
N

a v
1
.3

,

N
av

1
.5

,
an

d
N

av
1
.7

:

5
1
mM

V
o
lt
ag

e-
d
ep

en
d
en

t
b
lo

ck
;

h
yp

er
p
o
la

ri
zi

n
g

sh
if
t

in
st

ea
d
y-

st
at

e
in

ac
ti
va

ti
o
n
;

n
o

fr
eq

u
en

cy
-d

ep
en

d
en

t
b
lo

ck
o
b
se

rv
ed

A
tt

en
u
at

es
n
eu

ro
p
at

h
ic

an
d

in
fl
am

m
at

o
ry

p
ai

n
in

ra
ts

(J
ar

vi
s

e
t

a
l.

,
2
0
0
7
;

M
cG

ar
au

g
h
ty

e
t

a
l.

,
2
0
0
8
)

Im
id

az
o
p
yr

id
in

es
cl

as
s

C
o
m

p
o
u
n
d

4
:

h
N

av
1
.7

:
8
0

n
M

h
N

av
1
.8

:
2
7
0

n
M

St
at

e-
d
ep

en
d
en

t
(i
n
ac

ti
ve

)
ch

an
n
el

b
lo

ck
R

ev
er

sa
l
o
f

n
eu

ro
p
at

h
ic

p
ai

n
as

w
el

l
as

in
fl
am

m
a-

to
ry

p
ai

n
in

ra
ts

(L
o
n
d
o
n

e
t

a
l.

,
2
0
0
8
)

1
-B

en
za

ze
p
in

-
2
-o

n
e

cl
as

s
(C

o
m

p
o
u
n
d
s

1
–9

):
h
N

av
1
.5

:

2
0
0
–5

0
0
0

n
M

h
N

av
1
.7

:
2
7
0
–5

1
0

n
M

h
N

av
1
.8

:
1
3
0
–

4
1
0
0
0
0

n
M

St
at

e-
d
ep

en
d
en

t
(i
n
ac

ti
ve

)
ch

an
n
el

b
lo

ck
O

ra
le

ffi
ca

cy
in

ra
t

m
o
d
el

o
f

n
eu

ro
p
at

h
ic

p
ai

n
(H

o
yt

e
t

a
l.

,
2
0
0
7
;

W
ill

ia
m

s
e
t

a
l.

,
2
0
0
7
)

Su
cc

in
am

id
e

d
er

iv
at

iv
e

B
P
B

T
S

N
av

1
.2

:
1
4
0

n
M

N
av

1
.5

:
8
0

n
M

N
av

1
.7

:
1
5
0

n
M

P
re

fe
re

n
ti
al

b
in

d
in

g
to

o
p
en

an
d

in
ac

ti
va

te
d

st
at

es
;

vo
lt
-

ag
e-

an
d

u
se

-d
ep

en
d
en

t
b
lo

ck
;

co
n
ce

n
tr

at
io

n
-d

ep
en

d
en

t
h
yp

er
p
o
la

ri
zi

n
g

sh
if
t

in
st

ea
d
y-

st
at

e
in

ac
ti
va

ti
o
n

A
tt

en
u
at

es
n
o
ci

ce
p
ti
ve

b
e-

h
av

io
u
r

in
fo

rm
al

in
te

st
(P

ri
es

t
e
t

a
l.

,
2
0
0
4
)

C
yc

lo
p
en

ta
n
e

d
ic

ar
b
o
xa

m
id

e
cl

as
s

C
o
m

p
o
u
n
d

5
4

(C
D

A
5
4
):

h
N

av

1
.2

:
4
3
0

n
M

h
N

av
1
.5

:
1
5
0

n
M

h
N

av
1
.7

:
2
5
0

n
M

h
N

av
1
.8

:
1
8
0

n
M

H
yp

er
p
o
la

ri
zi

n
g

sh
if
t

o
f

st
ea

d
y-

st
at

e
in

ac
ti
va

ti
o
n
;

u
se

-d
ep

en
d
en

t
b
lo

ck

In
h
ib

it
io

n
o
f

p
er

ip
h
er

al
n
er

ve
in

ju
ry

-i
n
d
u
ce

d
sp

o
n
ta

n
eo

u
s

n
eu

ro
n
al

fi
ri
n
g
.

A
tt

en
u
at

es
n
eu

ro
-

p
at

h
ic

p
ai

n
in

ra
ts

(S
h
ao

e
t

a
l.

,
2
0
0
5
;

B
ro

ch
u

e
t

a
l.

,
2
0
0
6
)

(c
o
n
ti
n
u
ed

)

2596 | Brain 2012: 135; 2585–2612 N. Eijkelkamp et al.



T
ab

le
2

C
o
n
ti

n
u
ed

C
o
m

p
o
u
n
d

St
ru

ct
u
re

IC
5
0

M
o
d
e

o
f

ac
ti

o
n

In
vi

vo
ef

fe
ct

s
R

ef
er

en
ce

s

Fu
ra

n
p
ip

er
az

in
es

h
N

av
1
.8

:
3
0
–3

0
0

n
M

h
N

av
1
.2

:
1
0
0
–1

1
0
0

n
M

h
N

av
1
.5

:
1
0
0
–4

6
0
0

n
M

V
o
lt
ag

e-
d
ep

en
d
en

t
b
lo

ck
an

d
h
yp

er
p
o
la

ri
zi

n
g

sh
if
ts

in
st

ea
d
y-

st
at

e
in

ac
ti
va

ti
o
n

cu
rv

e;
n
o

fr
eq

u
en

cy
-d

ep
en

d
en

t
b
lo

ck
o
b
se

rv
ed

A
n
al

g
es

ic
ef

fe
ct

in
a

ra
t

m
o
d
el

o
f

n
eu

ro
p
at

h
ic

p
ai

n

N
o

ad
ve

rs
e

ef
fe

ct
s

o
n

C
N

S
ca

rd
io

va
sc

u
la

r

sy
st

em

(D
ri
zi

n
e
t

a
l.

,
2
0
0
8
)

5
-A

ry
l-

2
-f

u
rf

u
ra

m
id

es
h
N

av
1
.8

:
8

n
M

h
N

av
1
.3

:
4

3
0
0
0

n
M

V
o
lt
ag

e-
an

d
st

at
e-

d
ep

en
d
en

t
(p

re
fe

re
n
ti
al

af
fi
n
it
y

fo
r

th
e

in
ac

ti
va

te
d

st
at

es
)

D
o
se

-d
ep

en
d
en

t
re

d
u
ct

io
n

o
f

p
ai

n
-r

el
at

ed
b
eh

av
io

u
r

in
ra

t
m

o
d
el

s
o
f

n
eu

ro
-

p
at

h
ic

an
d

in
fl
am

m
at

o
ry

p
ai

n

(K
o
rt

e
t

a
l.

,
2
0
0
8
)

T
T
X

m
et

ab
o
li

te
4
,9

-a
n
h
yd

ro
-T

T
X

N
av

1
.2

:
1
.2

6
mm

o
l

N
av

1
.3

:
3
4
1

n
m

o
l

N
av

1
.4

:
9
8
8

n
m

o
l

N
av

1
.5

:
7
8
.5
mm

o
l

N
av

1
.6

:
7
.8

n
m

o
l

N
av

1
.7

:
1
2
7
0

n
m

o
l

N
av

1
.8

:
4

3
0
0
mm

o
l

H
yp

er
p
o
la

ri
zi

n
g

sh
if
t

in
th

e
vo

lt
ag

e-
d
ep

en
d
en

ce
o
f

st
ea

d
y-

st
at

e
in

ac
ti
va

ti
o
n

N
o
t

te
st

ed
(R

o
sk

er
e
t

a
l.

,
2
0
0
7
)

A
m

b
ro

xo
l

T
T
X

r:
3
5
.2
mM

to
n
ic

b
lo

ck

T
T
X

r:
2
2
.5
mM

p
h
as

ic
b
lo

ck

T
T
X

s:
1
1
1
.5

mM
to

n
ic

b
lo

ck

T
T
X

s:
5
7
.6

mM
p
h
as

ic
b
lo

ck

U
se

-d
ep

en
d
en

ce
o
f

b
lo

ck
;

n
o

fr
eq

u
en

cy
-d

ep
en

d
en

t
b
lo

ck
o
b
se

rv
ed

;
h
yp

er
p
o
la

ri
zi

n
g

sh
if
t

in
th

e
vo

lt
ag

e
d
ep

en
d
en

ce
o
f

st
ea

d
y-

st
at

e
in

ac
ti
va

ti
o
n

R
el

ie
ve

s
p
ai

n
as

so
ci

at
ed

w
it
h

so
re

th
ro

at
(F

is
ch

er
e
t

a
l.

,
2
0
0
2
;

W
ei

se
r

an
d

W
ils

o
n
,

2
0
0
2
)

R
al

fi
n
am

id
e

T
T
X

r:
1
0
mM

T
T
X

s:
2
2
mM

V
o
lt
ag

e-
an

d
st

at
e

d
ep

en
d
en

t;
u
se

-
an

d
fr

eq
u
en

cy
-

d
ep

en
d
en

t
b
lo

ck
;

h
yp

er
p
o
-

la
ri
zi

n
g

sh
if
t

in
th

e
st

ea
d
y-

st
at

e
in

ac
ti
va

ti
o
n

A
n
ti
-a

llo
d
yn

ic
in

ra
t

m
o
d
el

s
o
f

n
eu

ro
p
at

h
ic

(c
h
ro

n
ic

co
n
st

ri
ct

io
n

in
ju

ry
)

an
d

in
fl
am

m
at

o
ry

(c
o
m

p
le

te
Fr

eu
n
d

ad
ju

va
n
t

an
d

fo
r-

m
al

in
)

p
ai

n

(V
en

er
o
n
i
e
t

a
l.

,
2
0
0
3
;

St
u
m

m
an

n
e
t

a
l.

,
2
0
0
5
)

T
h
is

ta
b
le

su
m

m
ar

iz
es

ex
am

p
le

s
o
f

V
G

SC
is

o
fo

rm
-s

el
ec

ti
ve

co
m

p
o
u
n
d
s

th
at

h
av

e
b
ee

n
in

ve
st

ig
at

ed
in

an
ap

p
ro

ac
h

to
id

en
ti
fy

p
o
te

n
ti
al

ly
th

er
ap

eu
ti
ca

lly
u
se

fu
l
d
ru

g
s.

T
T
X

r
=

T
T
X

-r
es

is
ta

n
t;

T
T
X

s
=

T
T
X

-s
en

si
ti
ve

.

Voltage-gated sodium channels Brain 2012: 135; 2585–2612 | 2597



pain disorder exhibit gain-of-function. Interestingly, patients with

paroxysmal extreme pain disorder respond favourably to carba-

mazepine treatment, while carbamazepine is generally ineffective

in patients with inherited primary erythromelalgia (Dib-Hajj et al.,

2007; Fertleman et al., 2007). Paroxysmal extreme pain disorder

mutations enhance recovery from inactivation and mutant chan-

nels can give rise to persistent and enhanced resurgent currents

(Dib-Hajj et al., 2008; Jarecki et al., 2008; Theile et al., 2011).

Carbamazepine specifically targets these deficits by shifting

the voltage dependence of fast inactivation towards more hyper-

polarized potentials and targets persistent currents while leaving

normal currents relatively unaffected. In contrast, in most patients

with inherited primary erythromelalgia, negative shifts in the

voltage dependence of activation are observed. These altered

properties of the channel are not affected by carbamazepine.

In addition, sodium channel inhibitors such as riluzole that

effectively target persistent currents and accelerate the rate of

inactivation display enhanced efficacy towards inhibiting

Navb4-peptide-mediated resurgent currents and also paroxysmal

extreme pain disorder mutant currents (Theile et al., 2011). In

agreement with this view, it was recently demonstrated that

patients with primary erythromelalgia with a (V400M) mutation

in SCN9A also display a modified VGSC fast inactivation and

can be successfully treated with carbamazepine (Fischer et al.,

2009).

The local anaesthetics mexiletine and lidocaine are effective in

some cases of primary erythromelalgia (Iqbal et al., 2009; Kuhnert

et al., 1999). Importantly, the effectiveness of these drugs can be

affected by the causative mutation. For example, a specific pri-

mary erythromelalgia causing mutation (V872G) can lead to

increased use-dependent block of this mutant channel, indicating

some patients might have a favourable response to mexilitine

(Choi et al., 2009). On the contrary, another primary erythrome-

lalgia mutation (N395K) has been found to cause a loss in lido-

caine sensitivity and this was associated with ineffectiveness of

treatment with Las (Sheets et al., 2007).

Lacosamide is a novel amino acid derivative with anti-

convulsant activity that is also effective as an analgesic (Stohr

et al., 2006) in several animal models of neuropathic pain

(Beyreuther et al., 2006, 2007a) and as a therapy for painful dia-

betic neuropathy (Doty et al., 2007). Lacosamide selectively en-

hances sodium channel slow inactivation with no effects on fast

inactivation (Errington et al., 2008) as demonstrated on recombin-

ant NaV1.3, NaV1.7 and neuronal NaV1.8 currents (Sheets et al.,

2008). Slow inactivation is induced under conditions of sustained

depolarization and repeated firing, conditions relevant for the

pathophysiology of chronic pain. The difference in affinity of laco-

samide for binding inactivated channels rather than channels in

the resting state was much higher than that for carbamazepine

or lidocaine. Recently, it has been shown that lacosamide mediates

some actions on VGSC through binding to collapsin response

mediator protein 2 (now known as DPYSL2) and this interaction

with collapsin response mediator protein 2 results in lacosamide-

induced slowing of inactivation (Wang et al., 2010b). This

novel class of VGSC blockers, which targets VGSC channels in

specific conformations associated with certain pathologies, opens

a new avenue of drug development that may lead to blockers

of ‘pathological’ VGSCs. Recently, it has been shown that

uncoupling of collapsin response mediator protein 2 from

N-type voltage-gated calcium channels also suppresses inflam-

matory and neuropathic pain (Brittain et al., 2011). However,

the relative importance of lacosamide effects on VGSC and

voltage-gated calcium channels is uncertain (Wang and Khanna,

2011).

Alternative modes of action to treat pain
To limit the side-effects of VGSC blockers, one possibility is to

develop compounds that target VGSCs to the desired tissue only

(Clare, 2010). One example of such a drug is cyclopentane dicar-

boxamide CDA54, a non-selective VGSC blocker developed by

Merck (Shao et al., 2005). Oral administration of CDA54 is ef-

fective at reducing pain responses in models of inflammatory and

neuropathic pain (Shao et al., 2005; Brochu et al., 2006).

Importantly, after oral administration of CDA54 into rats, brain

homogenate concentrations were found to be 33-fold lower

than plasma concentrations, thus reducing the likelihood of side

effects caused by actions within the CNS. In addition, compound

54 showed less cardiotoxicity than mexiletine (Brochu et al.,

2006).

Transdermal drug application may be an advantageous way of

targeting the PNS. The effectiveness of this administration route

has been demonstrated by the success of lidocaine patches.

Lidocaine patches are approved for the relief of pain associated

with post-herpetic neuralgia and have proved efficacious in the

treatment of peripheral neuropathies, lower back pain, myofascial

pain, osteoarthritis, leg ulceration, erythromelalgia and carpal

tunnel syndrome (Nalamachu et al., 2006).

One often undesired effect of classic VGSC blockers such as

lidocaine and its derivatives is that they block action potential

firing not only in nociceptive neurons after perineural injection

but also in other neurons, thereby inhibiting tactile and mechanical

sensation as well as motor function. Thus, targeting derivates of

lidocaine specifically to nociceptive neurons, while leaving tactile

and mechanical sensation unaffected, is an attractive strategy to

treat pain. One strategy for selectively inhibiting nociceptors is

cell-specific targeting of the quaternary lidocaine-derivative

QX-314 to nociceptive neurons. QX-314 produces a long-lasting

non-selective neuronal block with a slow onset (Lim et al., 2007).

The slow onset of neuronal block is most probably linked to the

low membrane permeability of QX-314 reducing the capacity of

QX-314 to reach the intracellular blocking site of VGSCs. How-

ever, the transient receptor potential cation channel (TRPV1)

agonist capsaicin facilitates the selective cellular entry of QX-314

into nociceptive sensory neurons through TRPV1, which is select-

ively expressed in nociceptors (Binshtok et al., 2007). By combin-

ing QX-314 with other TRPV1 agonists such as lidocaine itself or

protons (lowering pH), similar effects can be achieved (Binshtok

et al., 2009; Liu et al., 2011; Roberson et al., 2011). One report

also showed that QX-314 itself acts as a TRPV1 agonist

(Rivera-Acevedo et al., 2011). Unfortunately, intrathecal applica-

tion of QX-314 causes serious irritation and death (Schwarz et al.,

2010) and is twice as toxic as lidocaine when applied systemically

in mice (Cheung et al., 2011). Activation of TRPV1 results in
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intense pain and does therefore not appear to be the most ap-

pealing route to affect analgesia through the use of sodium chan-

nel blockers.

Biologicals as the next
generation of analgesics
Over recent years, biological compounds such as peptides and

antibodies have begun to feed into drug discovery programmes

for many disease indications including pain. These include anal-

gesic peptides based on venom toxins, which interact with VGSC.

The perceived advantage of venom peptides over conventional

small molecule inhibitors is that the toxins are often highly

potent and efficacious (low nanomolar IC50s) and have a greater

potential for selectivity due to their larger drug target interface.

Subsequent mutagenesis of the wild-type toxin can then further

improve potency and strive to improve selectivity for a given

VGSC isoform. ProTx-II is a venom toxin from the tarantula

Thrixopelma prurient and has been reported to block NaV1.7

channels (IC50 = 0.3 nM) with 4100-fold selectivity over other

Nav isoforms (Middleton et al., 2002; Priest et al., 2007;

Schmalhofer et al., 2008a). ProTx-II was effective at reducing

C-fibre action potential firing frequency in an isolated skin nerve

preparation in which the nerve had been de-sheathed

(Schmalhofer et al., 2008b); however, no effect of ProTx-II was

observed with an intact nerve sheath indicating that this peptide

cannot access sodium channels in intact tissues. Intravenously

applied ProTx-II was also ineffective at reducing complete

Freund’s adjuvant-induced mechanical hyperalgesia. These data

confirm that targeting NaV1.7 with a potent selective inhibitor is

sufficient to dampen peripheral nociceptive drive (reduce firing of

C fibres); however, due to the low permeability of ProTx-II, it is

ineffective as an analgesic. Future toxin-derived analgesics tar-

geted to peripherally expressed proteins must therefore overcome

this limitation. Importantly, it is possible to use a herpes viral

vector to specifically deliver biologicals to sensory neurons of the

dorsal root ganglion (Fink et al., 2011).

Monoclonal antibodies targeted to essential pain pathway pro-

teins also have the potential to revolutionize analgesic drug dis-

covery due to their potential for high selectivity, high affinity

(femtomolar range), low cardiotoxicity and long half-life (monthly

subcutaneous injections are achievable). Monoclonal antibodies

targeted against nerve growth factor (e.g. tanezumab, Pfizer)

have successfully been used to treat chronic joint pain in osteo-

arthritic patients (Cattaneo, 2010). Polyclonal antibodies targeted

against the second or third extracellular loop of ion channels have

been successfully used as isoform selective channel blockers of

TRP channels (Klionsky et al., 2006; Naylor et al., 2008), VGSCs

(Chioni et al., 2005) and voltage-gated calcium channels (Liao

et al., 2008). However, to date there are no published records

of a therapeutically useful monoclonal antibody with ion channel

blocking function, although a patent has been filed (US2011/

0135662 A1) which describes a NaV1.7 (E3 loop) targeted rabbit

antibody which inhibits NaV1.7 currents in a frequency-dependent

manner, indicating that this approach may be valid.

Voltage-gated sodium channel
blockers in neurological
diseases

Voltage-gated sodium channel blockers
as anti-epileptic drugs
Phenytoin and carbamazepine are the most widely used com-

pounds to treat epilepsy. Both these drugs act in a

state-dependent manner and slow the recovery from inactivation,

thereby reducing the availability of channels for subsequent open-

ing (Rogawski and Loscher, 2004). Phenytoin and carbamaze-

pine are both effective in combating partial and generalized

tonic–clonic seizures in humans and in animal models of these

conditions (Perucca and Tomson, 2011). However, phenytoin

and carbamazepine do not show efficacy against absence seizures

(very brief generalized epileptic seizures of sudden onset and

termination) both in humans and in the animal models of this

condition (Dreifuss, 1983; Mantegazza et al., 2010). Phenytoin

is most effective at depolarized membrane potentials and

high-frequency action potential firing. The state dependence of

phenytoin causes minimal effects on cognitive functions

(low-frequency firing). Carbamazepine displays the same

pharmacological properties as phenytoin (VGSC specificity, volt-

age and state dependence). However, carbamazepine binds

VGSCs less effectively, but with a much faster rate than pheny-

toin, rendering carbamazepine more effective in blocking high-

frequency firing (Mantegazza et al., 2010). These differences in

properties might explain why some epileptic patients respond

better to one or the other drug if they carry different VGSC

mutations.

Lamotrigine, like phenytoin and carbamazepine, is effective

against partial and generalized tonic–clonic seizures and also

shows efficacy for the treatment of absence seizures and

Lennox–Gastaut syndrome, a rare and intractable form of child-

hood epilepsy associated with learning difficulties. The mode of

action of lamotrigine on VGSCs is similar to that of phenytoin and

carbamazepine (voltage and use dependence). However, lamotri-

gine also acts on other molecular targets, such as the

hyperpolarization-gated cationic current Ih in dendrites of pyram-

idal neurons (Poolos et al., 2002), N- and P-type voltage-gated

Ca2 + channels in cortical neurons (Stefani et al., 1996) and neo-

cortical potassium currents (Zona et al., 2002). Therefore, the

anti-epileptic action of lamotrigine may have a different biophys-

ical basis to carbamazepine and phenytoin.

Topiramate, a sulphamate derivative of the naturally occurring

sugar D-fructose, is another broad-spectrum anti-epileptic drug

prescribed in cases of partial and generalized tonic–clonic seizures.

It blocks both VGSCs and voltage-gated Ca2 + channels and en-

hances potassium channel activity (Shank and Maryanoff, 2008).

Interestingly, the action of topiramate on VGSCs consists of slow-

ing down the opening of the channels and protein kinase C acti-

vation limits the effect of topiramate of blocking persistent sodium

currents (Curia et al., 2004).
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Introduced as an anti-epileptic drug in 1962, valproate has an

even more extensive range of pharmacological actions, being ef-

fective against partial and generalized tonic–clonic seizures, ab-

sence seizures, and myoclonic seizures. Valproate is a widely

prescribed anti-epileptic drug, in both adults and children, and

its success is likely to be due to modes of actions different from

blocking VGSCs. However, valproate selectively inhibits persistent

sodium currents over transient ones in neocortical and sympathetic

neurons (Taverna et al., 1998; Lamas et al., 2009), although the

exact mechanism remains unknown. In part, its therapeutic effects

are caused by increases in the turnover of GABA, inhibition of

NMDA (N-methyl-D-aspartic acid) receptors and reduction in

gamma-hydroxybutyrate release (Maitre, 1997).

Riluzole was first developed as an anti-epileptic drug but is now

used as the first-in-line drug for treatment of amyotrophic lateral

sclerosis. It has neuroprotective effects due to blockade of VGSCs

on presynaptic terminals and enhancing glutamate uptake by

astrocytes thereby inhibiting glutamatergic transmission. Addition-

ally, riluzole has been demonstrated recently to protect against

cardiac ischaemia and reperfusion injury by inhibiting persistent

sodium currents and is now being tested as a possible treatment

for psychiatric disorders (Pittenger et al., 2008; Weiss et al.,

2010).

Voltage-gated sodium channel blockers
for the treatment of migraine
Migraine is thought to originate from the activation of meningeal

and blood vessel nociceptive fibres, in conjunction with neuro-

genic inflammation and a change in central pain modulation

(Kalra and Elliott, 2007). In common with epilepsy, migraine is

characterized by recurrent episodes of nervous system dysfunction

with a return to baseline between attacks. Rare forms of familial

migraine are caused by mutation of SCN1A (Dichgans et al.,

2005; Vahedi et al., 2009). Migraine is treated with a

wide range of drugs, including tryptans that, through their agonist

effects on serotonin receptors, block the release of vasoactive

neuropeptides such as CGRP. Other treatments include the use

of non-steroidal anti-inflammatory drugs, anti-depressants and

calcium channel blockers (Bolcskei et al., 2009). Epilepsy is a

co-morbid condition of migraine. Several anti-epileptic drugs

targeting VGSCs have been tested for efficacy in migraine con-

ditions. Anti-epileptic compounds, such as valproate, topiramate

and lamotrigine, which act through VGSC, have been shown to

be effective at reducing the frequency of migraine attacks.

However, these drugs all act on other targets as well and there-

fore their therapeutic effect may be unrelated to their effect on

VGSCs (Calabresi et al., 2007). It is important to note that

use-dependent selective VGSC blockers, such as phenytoin and

carbamazepine, have not been documented to be efficacious

against migraine attacks (Rogawski and Loscher, 2004). Finally,

intranasal application of the local anaesthetic and anti-arrhythmic

compound lidocaine was reported to be an effective treatment

for some refractory migraines (Kudrow et al., 1995; Bolcskei

et al., 2009).

Voltage-gated sodium channel blockers
in neurodegenerative disorders and
neuroinflammation
Multiple sclerosis is a condition that may be linked to an autoim-

mune reaction. However, drug treatment to suppress immune

responses is of limited effectiveness. Neurodegeneration as a

consequence of progression of multiple sclerosis also involves

the activation of VGSCs (Smith, 2007). In particular, demyelination

of axons that occurs in patients with multiple sclerosis leads

to ectopic action potential firing that is caused by slow

sodium-dependent membrane potential oscillations (Kapoor

et al., 1997).

VGSCs have also been implicated in anoxia/injury-induced

neurodegeneration. Energy loss leads in part to persistent

sodium currents that cause an increase in axonal intracellu-

lar sodium leading to membrane depolarization and further

activation of VGSCs. These events promote the reversal of

Na +/Ca2 + exchanger and overload of axonal calcium (Stys,

2004).

VGSC blockers such as TTX, lidocaine, procaine, mexiletine,

phenytoin and carbamazepine protect against white matter

axonal damage in multiple sclerosis models (Waxman et al.,

1994a; Carter, 1998; Hewitt et al., 2001; Kapoor et al., 2003;

Black and Waxman, 2008). These protective effects can be

observed at concentrations that do not compromise the conduc-

tion of action potentials. Lidocaine and flecainide can also protect

axons from nitric oxide-triggered degeneration (Kapoor et al.,

2003). However, withdrawal of phenytoin or carbamazepine in

experimental autoimmune encephalomyelitis, a mouse model for

multiple sclerosis, resulted in increased inflammatory infiltrate,

worsening of symptoms and high incidence of mortality, leading

to the suspension of clinical trials (Black and Waxman, 2008). In

other trials, lamotrigine did not positively affect clinical outcome

measures of patients with secondary progressive multiple sclerosis

(Kapoor et al., 2010).

Other clinical trials involving a combined therapy with interferon

b1a and topiramate, riluzole and lamotrigine, respectively, are still

ongoing (Conway and Cohen, 2010). Thus, whether VGSC block-

ers will ultimately provide an effective new strategy for the treat-

ment of multiple sclerosis is unclear.

Effects of VGSC blockers might also occur through inhibition of

phagocytic functions of microglia. Expression of NaV1.6 is

upregulated in activated microglia and inhibition of VGSC reduces

their phagocytic capacity and reduces inflammatory cells infiltra-

tion in brain tissue of mice with experimental autoimmune en-

cephalomyelitis (Craner et al., 2005)

NaV1.5 is present in late endosomes of human macrophages,

which play an important role in phagocytosis. NaV1.6 is also ex-

pressed in macrophages where it associates with the cytoskeleton,

possibly aiding macrophage motility (Carrithers et al., 2007).

VGSCs were also shown to have a role in T-lymphocyte motility

(Fraser et al., 2004). However, given the possible side-effects, the

value of VGSC blockers to modulate immune responses is unclear

(Roselli et al., 2006).
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Voltage-gated sodium channel blockers
in neuromuscular disorders
Currently, 12 channelopathies affecting skeletal muscle have been

described. All five VGSC channelopathies affecting skeletal muscle

are found in SCN4A/NaV1.4 (Jurkat-Rott et al., 2010). These

channelopathies, as described earlier, are classified as potassium-

aggravated myotonia, paramyotonia congenita, hyperkalaemic

periodic paralysis, hypokalaemic periodic paralysis and a form of

congenital myasthenic syndrome. Depending on the functional

consequence of the mutation (gain- or loss-of-function), treat-

ment options are to either use VSGC blockers to directly

block the channel or to reduce the fraction of inactivated chan-

nels by restoring the skeletal muscle membrane potential

(Jurkat-Rott et al., 2010). Pharmacological treatment in myotonia

is aimed at decreasing muscle stiffness by mitigating the invol-

untary action potential bursts without blocking voluntary

high-frequency muscle stimulation (Jurkat-Rott et al., 2010).

VGSC blockers reduce muscle stiffness in potassium-aggravated

myotonia and paramyotonia congenita by promoting the inacti-

vated state of NaV1.4 by inducing a hyperpolarized shift in

steady-state inactivation and by prolonging recovery time from

inactivation. VSGC blockers such as mexiletine, flecainide and

other lidocaine analogues can reduce repetitive firing of action

potential because of their use-depended properties, a mechan-

ism that leads to a preferential action on channels with patho-

genic gain-of-function mutations (Mohammadi et al., 2005).

Symptoms of muscle weakness are often caused by other

pathogenic factors and cannot be treated sufficiently with

VGSC blockers. However, influencing potassium concentration

or blocking potassium channels have been proven to be beneficial

(Jurkat-Rott et al., 2010). Burge and Hanna (2012) performed a

more detailed analysis of mechanisms and therapeutic options in

neuromuscular disorders.

Voltage-gated sodium channel
blockers in non-neurological
diseases

Voltage-gated sodium channel blockers
as anti-arrhythmic drugs
VGSCs are important therapeutic targets in the management of

cardiac arrhythmias. According to the Singh Vaughan Williams

classification (Walker, 2006), the group of anti-arrhythmic

drugs is subdivided into four categories depending on

whether they block VGSCs, b-adrenergic receptors, potassium

channels or Ca2 + channels. Class I anti-arrhythmics are

primarily VGSC blockers that are further subdivided into three

subclasses (Nattel, 1993), based upon their effect on the

length of the action potential. VGSCs blockers as anti-arrhythmic

drugs have been discussed extensively previously (Ganjehei

et al., 2011)

Potential dangers of voltage-gated
sodium channel blockers on human
development
A missense mutation in the SCN9A gene encoding NaV1.7 has been

linked to abnormal limb development (Hoeijmakers et al., 2012).

Some VGSC blockers may have teratogenic effects. Anti-epileptic

medication during pregnancy might elevate the risk for congenital

malformations, particularly when the treatment involves multiple

compounds and/or valproate (Morrow et al., 2006). Anti-epileptic

treatment with valproate during pregnancy was also linked to sig-

nificantly lower intelligence in children (Bromley et al., 2009).

Lacosamide is not used in young children because it was demon-

strated to interact with the collapsin response mediator protein 2,

which is involved in neuronal differentiation and control of axonal

growth (Beyreuther et al., 2007b; Wang et al., 2010b).

Conclusions and future
directions
Sodium channel blockers originally derived from cocaine, such as

lidocaine, have been in clinical use for more than a century.

Progress in understanding the molecular basis of channel activity

and the mechanisms of action of some analgesic drugs that have

been found to act on sodium channels have provided a clear

framework in which to pursue medicinal chemistry approaches.

Toxins also provide important models for the development of

novel analgesic families, based on natural peptides or on organic

peptidomimetics. Recent advances in the development of orally

active small molecule-specific NaV1.8 blockers will eventually be

followed by antagonists of NaV1.7 and NaV1.9. In the meantime

the state-dependent blocker lacosamide looks set to join the

broad-spectrum sodium channel blockers already in clinical use

in Europe. While pain control and epilepsy are still the major

focus of interest in terms of sodium channel drug development,

it remains possible that indications ranging from autism to immune

disorders may be modulated by compounds targeted at sodium

channel activity. Manipulation of VGSCs in particular cell types is

desirable for many of these indications, as global channel blocking

is likely to have deleterious consequences. Topical application, tar-

geted delivery or drugs that lower functional channel expression

are all potential future approaches to these problems.
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