
Identifying Reproducible Transcription Regulator
Coexpression Patterns with Single Cell
Transcriptomics
Alexander Morin1,2,3, Chingpan Chu1,2,3, Paul Pavlidis1,2,*

1. Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada

2. Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada

3. Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC,
Canada

* Corresponding author

Paul Pavlidis

177 Michael Smith Laboratories

2185 East Mall

University of British Columbia

Vancouver BC V6T1Z4

Canada

604 827 4157

paul@msl.ubc.ca

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.02.15.580581doi: bioRxiv preprint 

mailto:paul@msl.ubc.ca
https://doi.org/10.1101/2024.02.15.580581
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract
The proliferation of single cell transcriptomics has potentiated our ability to unveil
patterns that reflect dynamic cellular processes, rather than cell type compositional
effects that emerge from bulk tissue samples. In this study, we leverage a broad
collection of single cell RNA-seq data to identify the gene partners whose expression is
most coordinated with each human and mouse transcription regulator (TR). We
assembled 120 human and 103 mouse scRNA-seq datasets from the literature (>28
millions cells), constructing a single cell coexpression network for each. We aimed to
understand the consistency of TR coexpression profiles across a broad sampling of
biological contexts, rather than examine the preservation of context-specific signals. Our
workflow therefore explicitly prioritizes the patterns that are most reproducible across
cell types. Towards this goal, we characterize the similarity of each TR’s coexpression
within and across species. We create single cell coexpression rankings for each TR,
demonstrating that this aggregated information recovers literature curated targets on
par with ChIP-seq data. We then combine the coexpression and ChIP-seq information
to identify candidate regulatory interactions supported across methods and species.
Finally, we highlight interactions for the important neural TR ASCL1 to demonstrate how
our compiled information can be adopted for community use.
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Introduction
The widespread adoption of single cell genomic methodologies, particularly single
cell/nucleus RNA sequencing (herein, scRNA-seq), has significantly advanced our
ability to characterize dynamic cellular processes. Techniques like scRNA-seq reveal
heterogeneity within and across populations of cells, enabling the computational
clustering and human annotation of cells into discrete biological types. The scale with
which scRNA-seq data has been generated has created an unprecedented opportunity
to not only study cell types across tissues and conditions, but also to understand the
reproducibility of genomic patterns. This is important because, despite its power,
scRNA-seq data is sparse owing to both biological and technical factors (Heumos et al.,
2023).

Gene regulation is a field that stands to greatly benefit from the single cell era. A
primary objective is to learn the repertoire of gene targets that are functionally
influenced by proteins that control gene activity, such as transcription regulators (TRs).
The ultimate goal is to create a temporal and context-specific map of these interactions
across cell types, a task greatly assisted by single cell data. However, understanding
the sets of genes regulated by each TR — regardless of context — remains a
challenge. Despite the availability of genetic tools, linking TRs to direct gene targets is
hindered by multiple factors. These include the cost and difficulty of collecting
experimental data implicating direct regulation, such as TR binding information from
chromatin immunoprecipitation sequencing (ChIP-seq), and the inherent complexity of
the underlying biology, involving a multitude of possible interactions and the diverse
molecular modes through which TRs exert their activity (Lambert et al., 2018,
Rothenberg 2019).

A traditional and widely-adopted approach for predicting TR-target relationships
involves gene coexpression analysis, a method that calculates covariation between TR
and gene expression using transcriptomic data, albeit most often from bulk samples.
This analysis is often cast as generating a predicted gene regulatory network, where the
strength of covariation (such as Pearson’s correlation) between genes serves as edge
weights (Sonawane et al., 2019). The fundamental assumption is that if a TR protein
influences a gene’s transcription, the TR gene itself must also be expressed. However,
this assumption may be compromised when the dynamic expression of TRs and their
targets are uncoupled. Further, this co-variation does not implicate a causative
directionality (i.e., regulatory influence) between gene pairs. Despite these limitations,
coexpression analysis has been extensively applied as a cost-effective and
genome-wide strategy to investigate gene regulation.

As mentioned above, coexpression inference has relied on “bulk” transcriptomics
datasets due to their historical availability. The abundance of such data has facilitated
meta-analytic studies, demonstrating the existence of reproducible coexpression
patterns across diverse studies (Lee et al., 2004; Ballouz et al., 2015). However, bulk
coexpression analysis suffers from a critical confound that complicates the
characterization of dynamic processes like gene regulation. Bulk samples typically
comprise a mixture of cell types, each varying in proportions across samples.
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Consequently, variations in gene transcripts are often driven by differences in cell type
proportions across samples (McCall et al., 2016; Farahbod and Pavlidis, 2019;
Farahbod and Pavlidis, 2020; Zhang et al., 2021). Coexpression in bulk may then
primarily reflect differences in gene expression between cell types, rather than capturing
a coordinated regulatory process within cells of the same type.

The emergence of scRNA-seq has made it possible to address this limitation. By
treating cells of a defined type as a population, coordinated expression patterns can be
more directly attributed to cellular processes, reducing the influence of varying mixtures
of distinct cell types. Single cell coexpression has proliferated just like its bulk
counterpart, and is often used conjointly with other data modalities to refine predictions
of regulatory interactions (Aibar et al., 2017). However, caution in interpreting single cell
coexpression is still warranted due to technical concerns, especially the sparsity of the
data. This underscores the utility of meta-analytic approaches that seek to aggregate
coexpression networks in search of reproducible interactions (Lee et al., 2004; Mistry et
al., 2013; Ballouz et al., 2015).

Correspondingly, the benefits of this meta-analytic framework have been extended to
single cell coexpression (Crow et al., 2016; Crow and Gillis, 2018) and further applied to
answer biological questions. For example, Harris et al. (2021) aggregated scRNA-seq
coexpression networks across multiple datasets to characterize replicable coexpression
patterns in neurons. Their focus was on commonly expressed neuronal genes and the
preservation of the global network structure, rather than any specific gene coexpression
profile. Similarly, Suresh et al. (2023) built aggregate networks using middle temporal
gyrus scRNA-seq data from five primate species, demonstrating the conservation of
coexpression signals across primates and highlighting human-novel patterns. Lastly,
Werner and Gillis (2023) explored the commonalities and differences of single cell
coexpression in neural primary versus organoid tissues.

We drew inspiration from these works, as well as our experience in aggregating
ChIP-seq and TR perturbation studies to identify reproducible TR-target interactions
(Morin et al., 2023). This stemmed from the recognition that the evidence from various
lines of gene regulation methods often do not intersect, necessitating comprehensive
data compilation (Hu et al., 2007; Gitter et al., 2009; Cusanovich et al., 2014;
Garcia-Alonso et al., 2019; Kang et al., 2020). In this study, we adopt a “TR-centric”
approach towards aggregating single cell coexpression networks, with the primary goal
of learning reproducible TR interactions. Specifically, our focus was to assemble a
diverse range of scRNA-seq data to better understand the coexpression range of all
measurable TRs in mouse and human. Our key aim was to prioritize the genes that are
most frequently coexpressed with each TR, hypothesizing that this prioritization can
facilitate the identification of direct TR-target interactions.

Methods
All analyses were performed in the R statistical computing environment (R version 4.2.1
http://www.r-project.org). The associated scripts can be found at (Github link
forthcoming).
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Genomic tables

Gene annotations were based on NCBI RefSeq Select (mm10 and hg38)
(https://www.ncbi.nlm.nih.gov/refseq/refseq_select/). High-confidence one-to-one
orthologous genes were accessed via the DIOPT resource (V8; Hu et al. 2011), keeping
only genes with a score of at least five that were also reciprocally the best score
between mouse and human and excluding genes with more than one match. Cytosolic
L and S ribosomal genes were obtained from Human Genome Organization (groups
728 and 729; https://www.genenames.org/data/genegroup/#!/group/). This
encompassed 89 human genes, which we subset to the 82 genes with a one-to-one
mouse ortholog. Transcription regulator identities were acquired from Animal TFDB (V3;
Hu et al., 2019).

scRNA-seq data acquisition and preprocessing

We focused on datasets with count matrices that had cell identifiers readily matched to
author-annotated cell types. This was primarily sourced through two means: 1) From the
“Cell x Gene” database (https://cellxgene.cziscience.com/), which has pre-processed
and annotated data. When a single submission (“collection”) contained multiple
downloads (for example, different tissue lineages), we downloaded all and combined
them into a single dataset. When distinct collections contained an overlapping set of
cells (i.e., an integration of experiments) we excluded the identical cell IDs found in the
later collection. 2) Automated screening followed by human curation of the Gene
Expression Omnibus (GEO) database (Barrett et al., 2013). Here, we preserved the
author-annotated cell types, save for when a biologically-uninformative delimiter was
used (e.g., “Neuron-1” and “Neuron-2”), in which case we collapsed these cell types into
one to prevent overly-sparse cell-type populations. We further acquired two tissue-panel
datasets. The first was downloaded from the Human Protein Atlas (Uhlén et al., 2015;
https://www.proteinatlas.org/download/rna_single_cell_read_count.zip, June 2023),
covering 31 tissue-specific datasets which we collapsed into a single dataset and thus
treated as a single network. Similarly, we downloaded each of 20 tissue datasets from
the Tabula Muris (Consortium, 2018)
(https://figshare.com/articles/dataset/Robject_files_for_tissues_processed_by_Seurat/5
821263; July 2023), which were also combined as one dataset.

Following the advice of the Harvard Chan Bioinformatics Core
(https://hbctraining.github.io/scRNA-seq_online/lessons/04_SC_quality_control.html),
we uniformly applied relatively lenient filtering rules for all datasets. We required a
minimum cell count of 500 UMI (or equivalent) and 250 expressed genes, and a ratio of
the log10 count of genes over log10 UMI counts greater than 0.8 for all experiments, save
for SMART-seq assays, where the cutoff was relaxed to 0.6 as this technology can
result in greater read depth for select genes (Wang et al., 2021). We note that the Cell x
Gene datasets typically had already undergone filtering that was at least as stringent as
these requirements. All gene count matrices were fixed to the RefSeq Select protein
coding genes. We applied standard CPM library normalization on the raw counts of all
datasets (Seurat V4.1.1 NormalizeData “RC”), having observed that the log
transformation in other normalization schemes resulted in elevated correlation
reproducibility in our null comparisons.
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scRNA-seq network construction

Aggregate single cell coexpression networks were constructed as described by Crow et
al. (2016). Every dataset consists of a normalized gene by cell count matrix, where each
cell is associated to an annotated cell type. We fix genes to the RefSeq Select protein
coding genes, setting unreported genes to counts of 0. This was done so that every
resulting network had equal dimensionality.

For a given dataset, we performed the following steps for each cell type:

1. Subset the count matrix to only cells of the current cell type.
2. Set genes with non-zero counts in fewer than 20 cells to NA.
3. Calculate the gene-gene Pearson’s correlation matrix.
4. Set NA correlations resulting from NA counts to 0.
5. Make the correlation matrix triangular to prevent double ranking symmetric

elements.
6. Rank the entire correlation matrix jointly, using the minimum ties method.

The resulting rank matrices across cell types were then summed and rank-standardized
into the range [0, 1]. Higher values correspond to consistently positive coexpressed
gene pairs, and values closer to 0 represent more consistently negative pairs. Step 2 is
applied to ensure coexpression is not calculated from overly-sparse populations.
WGCNA (Langfelder and Horvath, 2012; V1.72-1) was used in Step 3 for its efficient
correlation implementation. Exploratory analyses using Spearman’s correlation instead
of Pearson’s gave similar results (not shown). The zero imputation in Step 4 is to ensure
the ranking procedure includes non-measured genes, placing them in between positive
and negative correlations.

Gene profile similarity

Coexpression profiles may not have a full complement of measured genes, and thus
contain tied ranks corresponding to missing values. Consequently, metrics of similarity
that compare all of two lists, such as Spearman’s correlation, are inappropriate. We
calculated set overlap metrics between lists, Jaccard values after binarizing gene lists
by both the TopK and BottomK status, as well as AUC metrics, where one list is treated
as a score and the TopK genes of the other list as labels. While there was agreement
between these metrics of similarity, we favoured the interpretability of reporting the size
of the TopK and BottomK overlaps.

Aggregating TR profiles and the effect of gene measurement sparsity

We also explored various methods of aggregating TR profiles from distinct networks into
a single ordered list, and again found that they largely agreed. Opting for simplicity, we
averaged the rank-standardized values and used the resulting ordering as a TR’s
aggregate profile. Notably, we observed a correlation between a gene’s position in the
aggregate and the count of times that gene was measured, regardless of the
aggregation method used. Because each profile had variable measurement, there was
variable delineation between the positive coexpression values, the non-measured gene
pair ties, and negative coexpression values. Therefore, for a given TR’s set of profiles,
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we imputed all tied values to the median rank-standardized value across the profiles
before averaging. This imputation standardized the values of missing values and
alleviated the relationship between a gene's aggregate position and its measurement
count.

Literature curation evaluation

TR-target interactions supported by low-throughput experimental evidence were
collected from our prior study (Chu et al., 2021), which compiled information from other
resources (TRRUST: Han et al., 2018; InnateDB: Lynn et al., 2008; TFactS: Essaghir et
al., 2010; TFe: Yusuf et al., 2012; HTRIdb: Bovolenta et al., 2012; CytReg: Carrasco
Pro et al., 2018; ORegAnno: Lesurf et al., 2016; ENdb: Bai et al., 2019), and then
significantly expanded upon neurologically-relevant TRs. Since this publication, we have
further expanded this collection, to a total of 27,627 interactions encompassing 773 TRs
and 5,899 gene targets. For all analyses, we considered the presence of any
experiment (e.g., EMSAs, reporter assays) in this collection supporting an interaction as
a positive label. If a target gene was in the orthologous gene set, we allowed it to be
counted as a label for either species. We then used each TR’s aggregate profile’s
ranking as a score and its curated targets as labels, calculating AUC metrics using the
ROCR package (Sing et al., 2005; V1.0-11). We generated a null distribution of AUC
values for each aggregate TR profile, randomly sampling from the entire literature
curation corpus a number of targets equal to the count of curated targets for the given
TR, repeating this process 1000 times.

ChIP-seq data acquisition and summarization

All ChIP-seq data was downloaded from the Unibind database (Puig et al., 2021;
https://unibind.uio.no/downloads/; September 2022). For every TR experiment, we
scored gene binding intensity using the same approach as in Morin et al. (2023), based
on the exponential decay function introduced by Ouyang et al. (2009):

𝑆
𝑔

=  
𝑘=1

𝐾

∑ 𝑒
−

𝑑
𝑘

𝑑
0  

Where S is the binding score for a gene (g) in one TR experiment, K is the number of
peak summits within 1Mbp of the gene TSS, dk represents the absolute distance in bps
between the TSS and the peak summit, and d0 is the decay constant, set to 5,000 as in
the original publication. Unibind ChIP-seq experiments may be “duplicated,”
corresponding to TRs matched to multiple binding motifs. In such cases, we averaged
the duplicated binding scores. To alleviate batch/technical considerations, we bound all
de-duplicated gene binding vectors into a gene by experiment matrix, added 1, and
applied a log10 transformation followed by quantile normalization (preprocessCore R
package version 1.48). This process was done separately for each species'
experiments. To generate an aggregate binding profile, we averaged the gene binding
vectors specific to each TR.

ASCL1 binding region analysis
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GenomicRanges (Lawrence et al., 2013; V1.50.2) was used for all analyses. ASCL1
had duplicated ChIP-seq datasets in Unibind (see above), and so we took the union of
peaks for datasets with the same experiment ID. All peaks were resized to ~300 base
pairs, and a “consensus” list of bound regions was generated for all discrete bound
regions across datasets. We calculated the count of individual datasets that overlapped
this consensus set, and plotted these counts using igvR (Shannon 2023; V.1.22).

Results
Assembling a broad corpus of single cell RNA-seq data

To establish a diverse range of biological contexts for constructing single cell
coexpression networks, we acquired scRNA-seq data from public resources (Methods).
Our focus was strictly on datasets that included author-annotated cell type labels in the
metadata, and all identified datasets underwent consistent preprocessing. In total, we
analyzed 120 human datasets and 103 mouse datasets (Fig. 1A; Metadata in
Supplemental Table 1). This corpus spans a wide range of biological contexts,
scRNA-seq technologies, and counts of assayed cells. The median human dataset had
74,148 cells and 14 cell types; in mouse 36,755 cells and 12 cell types (Fig. 1B). There
was appreciable spread in these counts, with tissue atlas studies typically exhibiting the
broadest coverage. The complete dataset is over 2.8 x107 cells.

Given the emphasis on correlation patterns in this work, we imposed the requirement
that genes must exhibit non-zero read counts in a minimum of 20 cells within a cell type
to be considered “measured.” This condition aims to reduce the calculation of
correlations derived from excessively sparse data (Ballouz et al., 2015). Applying this
definition of gene measurement, a median human dataset measured 15,341 protein
coding genes, and for mouse 13,996 genes (Supplemental Fig. 1). Note that while a
gene may be “measured” in a dataset — and thus viable for coexpression analysis — it
might be only measured in a single cell type, while other genes are measured in
multiple cell types.

Constructing single cell coexpression networks

We constructed aggregated single cell coexpression networks for each dataset using
the approach outlined by Crow et al., 2016 (Methods). In brief, this entails generating a
gene-by-gene correlation matrix for each cell type within a dataset, ranking each cell
type correlation matrix, and consolidating them into a single network per dataset (Fig.
1C). The result can be conceptualized as a standard gene-by-gene coexpression
matrix, save that the elements represent the aggregated strength of pairwise transcript
covariation that was calculated separately for each cell type. Notably, unlike in Harris et
al. (2021), where information was consolidated across datasets for a single cell type, we
first aggregate across cell types within a dataset before aggregating across datasets. In
doing so, we explicitly prioritize signals shared across cell types. This strategy also
minimizes effects due to expression differences between cell types, which we consider
a separate question from “within cell” regulatory interactions (Farahbod and Pavlidis,
2020).
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Figure 1. Overview of study design. (A) Counts of datasets by source, technology, and species.
(B) Top panel: Counts of cells across the dataset corpus. Bottom panel: Counts of cell types. (C)
Schematic of the single cell coexpression aggregation framework and the interpretation of an
individual gene coexpression profile. (D, E) Examples of the most reproducible positively
coexpressed gene pairs. Each bar represents a dataset/network, and each point represents the
gene pair’s correlation in a cell type within the dataset. (F) Example of one of the most
reproducibly negative coexpression gene pairs.
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This procedure aims to rank coexpression partners, as illustrated in Fig. 1C, by ordering
from “top” to “bottom”: consistently high positive interactions across cell types;
mixed/specific positive interactions; weak-to-no coexpression; non-measured gene
pairs; and then the increasingly most reproducibly negative coexpressed pairs. From
this network, it is possible to extract a single gene column (herein, gene profile), such as
for a TR, with the relative ordering reflecting the strength of its aggregate transcript
covariation with all other genes.

While the focus of this study is on TRs, we first examined the globally most consistent
coexpressed gene pairs (Figs. 1D-F). Top examples include TRs that dimerize to form
the pleiotropic AP-1 complex, such as JUNB and FOS, as well as members of the
ribosomal complex. Given the known biological coexpression of ribosomal genes (Li et
al., 2016), we use a set of 82 large (L) and small (S) ribosomal genes that are highly
conserved between mouse and human as a positive control when examining TR-gene
coexpression in the following analyses (Methods). We also show the most consistently
negative coexpressed gene pair in human. Aligning with our prior observations (Lee et
al., 2004), the magnitudes of these values are smaller and less consistent than the
positive coexpression profiles, contributing to the complexity in identifying repressive
interactions (Discussion).

Similarity of TR-target profiles

Before prioritizing reproducible TR-gene interactions, we examined the concordance of
the TR coexpression profiles across datasets. We expected that distinct profiles
generated for the same TR and similar contexts would have elevated similarity relative
to mismatched contexts or gene profiles. At the same time, the underlying data we used
was from differing cell types, as datasets could be from different tissues. While we
expected this would affect the degree of similarity, a total absence of overlap between
profiles would raise questions about the efficacy of our framework in finding
reproducible interactions.

We considered multiple means of determining similarity (Methods), reporting here on
the size of the overlap (K) of the top positively coexpressed (TopK) or negatively
coexpressed (BottomK) genes between each pair of gene profiles. We examined a
range of K, from 200 — approximately the top 1% of protein coding genes — to 1000,
finding that our main conclusions were robust to this cut-off. To contextualize the
similarity between TR profiles, we generated null similarities, iteratively sampling TRs
across datasets and calculating the overlap of the shuffled TR profiles. We also report
the similarity of the set of 82 L/S ribosomal genes. Our analysis was restricted to TRs
measured in at least five networks.

First, for each TR we pairwise compared its profiles across studies. As expected, the
most similar pairs were supported by datasets investigating similar biological contexts.
For example, the best pairing in human (Top200 = 177/200) was between CENPA profiles
from two studies that, while not exactly sharing annotated cell types, both assayed the
developing human intestine (Fawkner-Corbett et al., 2021; Elmentaite et al., 2021). The
maximal human Bottom200 (158/200) belonged to the repressive nuclear receptor
NCOR1 in a comparison between profiles generated from tissue atlas resources (Uhlén
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et al., 2015; The Tabula Sapiens Consortium et al., 2022). The highest Mouse Top200
(150/200) was associated with E2f8, derived from two studies of the blood-brain barrier;
one of these datasets, in combination with a study on the aging brain, also contributed
to Elk3 having the highest Bottom200 score of 149/200 (Kaya et al., 2022; Posner et al.,
2022; van Lengerich et al,. 2023). The magnitude of the best ribosomal gene pairs was
comparable: the best global human ribosomal pairing (Top200 = 161/200) belonged to
RPS13, originating from two immune cell studies (Liu et al., 2021; Domínguez Conde et
al., 2022).

While these observations support the ability to find consistent coexpression patterns
within pairs of similar contexts, our ultimate aim was to combine information across
contexts. Seeking a more global summary of TR profile overlap, we calculated the mean
Top200 overlap for each TR profile across all unique pairs of networks measuring the TR.
We again use the similarities from the pairs of randomly sampled TRs and the 82
ribosomal genes as reference.

In Figs. 2A,B, we show the average Top200of shuffled TR pairs across 1000 iterations.
The typical null sample had an average Top200 value of 2.7/200 in human and 2.6/200 in
mouse. The ribosomal genes, approximating an empirical “upper bound,” averaged
61.1/200 in human and 44.2/200 in mouse. The distribution of average Top200 values
was highly skewed for TRs, with 69.2% of human TRs and 64.8% of mouse TRs having
an average Top200 value greater than the maximum value achieved across all of the null
samples (represented as red lines in Figs 2A, B). And while the best individual
ribosomal data pairs were equivalent in overlap size compared to the best individual TR
pairs, ribosomal genes typically had a much greater average Top200 than even the best
TR. This underscores the unusual uniformity of ribosomal protein gene coexpression
across distinct cellular contexts — it is an outlier. A similar comparison for the Bottom200
is provided in Supplemental Fig. 2.

TRs with the highest mean Top200 values, indicative of the most consistent positive
coexpression profiles across studies, were often associated with fundamental cellular
housekeeping processes. For example, E2F8 led in human (mean Top200 40.4/200), with
mouse E2f8 similarly having one of the most consistent profiles (Figs. 2A,B). The E2F
family are well characterized regulators of the cell cycle, with E2F8 described as
contributing to a negative feedback loop of other E2F members in the later stages of the
mitotic cycle (Ly et al., 2017; Emanuele et al., 2020). Given its consistent positive
profile, it is perhaps counterintuitive that E2F8 traditionally has been considered a
repressive E2F member (Christensen et al., 2005) — although the delineation between
activating and repressive functionality within this family has been questioned (Lv et al.,
2017). We re-emphasize that coexpression does not necessarily imply a direct
regulatory relationship. However, the consistency and conservation of coexpression
partners does suggest shared biological functionality (Lee et al., 2020; Harris et al.,
2021).

Other E2F members also ranked high in both species, as did regulators involved in
early transcriptional response to environmental signals, such as AP-1 complex
members FOS and JUN. In mouse, the highest mean Top200 belonged to Mxd3, a
MYC-antagonist whose human ortholog also had elevated similarity. More broadly, there
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Figure 2. Similarity of TR profiles. (A) Inset: distribution of the mean Top200 overlaps for the null
background, 82 ribosomal genes, and 1,606 human TRs. The null was generated through 1000
iterations of sampling one TR profile from each of 120 human datasets and calculating the
average size of the Top200 overlap between every pair of sampled profiles. The ribosomal genes
represent a “base case” scenario. Main: The average Top200 overlap of all human TRs, with the
red line indicating the best null overlap. (B) Same as in A, save for 103 mouse experiments and
1,484 TRs. (C,D) The distribution of (C) Top200 and (D) Top1000overlaps between every pair of
PAX6 and NEUROD6 profiles in human, with ribosomal RPL32, TR E2F8, and a representative
null sample included for reference.
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was appreciable correlation between the 1,228 orthologous pairs of TRs analyzed in the
mean Top200 (Spearman’s correlation = 0.63) and Bottom200 (Spearman’s correlation =
0.75) lists (Methods; Supplemental Fig. 3). Examples of regulators with consistent
negative coexpression profiles in both species include the aforementioned NCOR1, the
histone methyltransferase-encoding KMT2C, nuclear factor NFAT5, and the dual RNA
and DNA-binding SON.

TRs with more context-restricted activity might be expected to exhibit relatively low
cross-dataset similarity in our broad corpus. However, this turns out to not necessarily
be the case. For example, the neural regulator NEUROD6 had one of the most
consistent TR profiles in human (Figs. 2C, D; mean Top200 rank 46th out of 1,606 TRs).
Notably, NEUROD6 was only measured in 22 of 120 datasets. This shows that
restricted expression does not preclude the identification of reproducible patterns. In
contrast, human PAX6 — necessary for the development and function of several
nervous and pancreatic tissues (Wen et al., 2009; Yeung et al., 2016) — had a mean
Top200 value negligibly greater than the null, improving marginally at K=1000. And, while
PAX6 can also be described as a context-restricted regulator, it was much more broadly
detected (n = 85/120) than NEUROD6. While the low average overlap of PAX6 profiles
does not exclude the existence of recurrent PAX6 targets within these comparisons, we
hypothesize that a more focused corpus would be beneficial for characterizing
reproducible coexpression patterns for this regulator.

Ranking aggregated coexpression to prioritize TR-target candidates

The preceding section demonstrated that similar TR profiles could be identified across
this biologically heterogeneous corpus, supporting the potential to find reproducibly
coexpressed gene pairs. We thus turned to our primary aim of prioritizing these
consistent interactions, generating a unified gene ranking for each TR using all
compiled data. This process involves aggregating information at two levels: first, across
cell types within a dataset (as in the previous section), and then, for each TR,
aggregating their profiles across datasets.

We explored multiple summarization strategies, opting for a straightforward approach
that reduced the influence of data sparsity. We ultimately averaged TR profiles across
networks, applying a minor imputation step for non-measured gene pairs to standardize
their “missing” status across profiles with variable gene measurement (Methods). This
approach aims to maintain the interpretability of an aggregate profile relative to a profile
from an individual network (Fig. 1C): the extremes represent the most consistent
positive and negative correlations, while the middle of the list encompasses weak and
non-measured coexpression gene pairs. We also considered an alternative prioritization
scheme that assigned each TR-gene pair the best rank achieved in any single network,
to emphasize specific interactions (Morin et al., 2023). However, we found that this
approach rewarded outlier behavior that was technical in nature. Nevertheless, we
include these rankings in our final summarizations.

As before, we used the set of 82 L/S ribosomal genes as a “sanity check” of our
workflow. We created an aggregate profile for each ribosomal gene, and then examined
their top 82 ranked coexpressed gene partners (Supplemental Fig. 4). In both mouse
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and human, we found that, on median, 71 out of the 82 top ranked partners were other
L/S ribosomal genes. Note that these values are slightly depressed by our choice to
limit the analysis to one-to-one orthologues; in most cases, additional ribosomal genes
are in the top 82. This validates the prioritization of known biological coexpression. The
notable exceptions fortuitously illustrate a point about tissue-specific patterns. One was
human RPL39L, a paralog of RPL39, which has been described for its involvement in
alternative ribosomal activity in the testes and spermatogenesis (Li et al., 2022). We
observed that the top ranked RPL39L coexpressed partner was PBK, also implicated in
testes function and spermatogenesis (Miki et al., 2020). Similarly, RPL3L, a heart and
skeletal muscle-specific paralog of RPL3 (Shiraishi et al., 2023) had only 2 out of 82 of
its top partners belonging to the L/S ribosomal set. Notably, the cardiac myosin genes
MYH7 and MYL2 ranked 5th and 6th, respectively, in RPL3L’s aggregate ranking of
coexpressed partners. These results show that while robust context-independent
coexpression patterns can be readily observed, context-specific patterns can also be
discovered in our data.

Recovery of literature-curated TR-target interactions

Equipped with a unified single cell coexpression profile for each human and mouse TR,
we wanted to assess the concordance of these rankings with an orthogonal line of
regulation evidence. We reasoned that, while coexpression is expected to prioritize both
direct and indirect regulatory interactions (the latter we would consider false positives),
the rankings should still demonstrate a greater ability to recover true direct interactions
relative to a null expectation.

In a previous study (Morin et al., 2023), we evaluated the utility of aggregating TR
perturbation and ChIP-seq experiments, using literature-curated low-throughput
interactions as positive labels and calculating area under the curve (AUC) metrics
(Marbach et al., 2012; Garcia-Alonso et al., 2019). We applied the same framework
here, using curated TR-target interactions we have collected (Chu et al., 2021, since
expanded) and assembled from other resources (Methods). We considered TRs that
had a minimum of five curated targets, resulting in 451 TRs analyzed in human (median
count of curated targets = 18) and 434 in mouse (median count = 17).

There are two important considerations to this benchmark. First, there is an imbalance
of curated targets (positive labels) for each TR, coupled with the absence of a definite
set of negative interactions — thus all genes lacking curation are treated as negatives.
Second, the precision-recall (AUPRC) and receiver operating characteristic (AUROC)
values, while typically better than random, are also small in magnitude (Fig. 3B). This
outcome is primarily due to the incomplete nature of the literature curation corpus (De
Smet and Marchal, 2010), and the inherent complexity of benchmarking gene
regulation, where no single line of evidence is exhaustively performant (Garcia-Alonso
et al, 2019). Hence, our focus is on evaluating performance relative to a null. And so
while not without caveats (Morin et al., 2023), this benchmark provides a relative sense
of the regulation information contained in the aggregate profiles.

We first examined the effectiveness of the aggregate profiles in recovering curated
targets relative to the individual TR profiles that compose the aggregate. We treated the
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Figure 3. Recovery of literature curated targets by aggregate rankings. (A) Schematic of
literature curation evaluation. (B) Distributions of the observed AUROCs for 451 human and 434
mouse aggregate TR coexpression profiles, along with the distribution of the median null
AUROCs generated for each profile. (C) Histograms of the AUROC and AUPRC coexpression
quantiles for human and mouse. (D) Scatter plot of the AUROC quantiles for the coexpression
and binding profiles of 253 human TRs that had binding data and at least five curated targets.
Green box indicates TRs for which both genomic methods were effective in the benchmark, grey
box for only one method, and red box for neither method being effective.
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AUCs obtained from the individual profiles as a distribution, and computed the observed
AUC quantile of the aggregate profile (Quant_aggregate). A Quant_aggregate value of
1 indicates that the aggregate ranking outperformed (better prioritized curated targets)
every individual TR profile. On average, the aggregate profiles moderately outperformed
the expected AUC value from an individual profile (Supplemental Fig. S5). The median
AUROC Quant_aggregate of human TRs was 0.76, with 116/451 (25.7%) having values
above 0.9. In mouse, these respective values were 0.78 and 150/434 (34.6%).
Therefore, aggregating the coexpression networks typically maintains or improves
performance on this benchmark.

Next, we evaluated the efficacy of the coexpression rankings in recovering curated
targets relative to a null distribution of AUCs (Quant_coexpression). This null was
created by size-matching and randomly sampling from the pool of curated targets from
the entire literature-curation corpus. The latter helps account for biases in the coverage
of targets in the low-throughput literature. ASCL1 is provided as an example of this
procedure for one TR in Fig. 3A. As illustrated in Fig. 3C, the coexpression aggregates
consistently exceeded the null AUCs, reflected by a median AUROC
Quant_coexpression of 0.95 in human and 0.93 in mouse. The pile-up of quantiles near
or equal to 1 indicates that, while not universal, a majority of TR single cell coexpression
rankings excelled in prioritizing matched curated targets over randomly sampled targets.
These observations strongly suggest that these aggregate rankings are capable of
prioritizing regulatory interactions that were identified through targeted biochemical
assays.

To further contextualize these performances, we conducted a similar null AUC analysis,
this time using aggregate ChIP-seq signals. In brief, we applied the same approach as
in Morin et al., 2023, scoring gene-level binding intensity for each ChIP-seq experiment,
then averaging these signals within each TR’s set of experiments to create a single
unified ranking of gene binding for each TR. In total, we considered 4,115 human
experiments for 253 TRs and 3,564 mouse experiments for 241 TRs from the Unibind
database (Puig et al., 2021, Methods) that had at least five curated targets. As with the
aggregate coexpression signal, we compared the unified binding ranking’s ability to
recover TR-specific curated targets relative to a null of sampled targets
(Quant_binding). We anticipated that TR ChIP-seq, as a more direct form of regulatory
inference, might outperform coexpression. However, in our hands the aggregate binding
evidence was on par with coexpression in its ability to predict known targets
(Supplemental Fig. 5), further motivating integration of both data types.

Among TRs with both binding and coexpression data, a notable fraction were effective
in the benchmark for both data types, as demonstrated for human TRs in Fig. 3D. In
human, 131 of 253 (51.8%) TRs had AUCs (AUPRC or AUROC) Quant_binding > 0.9
and Quant_coexpression > 0.9; in mouse 129 of 241 (53.5%). This signifies that, for
these specific regulators, aggregated coexpression and binding profiles both effectively
prioritize curated TR targets relative to sampled targets. This alignment highlights TRs
whose activity may be more readily identified through distinct data modalities. Further,
of the TRs performant in both lines of evidence, more than half did so in both species
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(human 85 of 131, mouse 85 of 129), suggesting convergence of evidence across not
only experiments, but also species.

This agreement of evidence encompassed broadly active TRs, such as those involved
in the AP-1 complex. However, it also included more specialized factors, such as the
neuronal-specifying ASCL1, and the aforementioned PAX6. This suggests that, even
though the average overlap of PAX6 profiles was weak, there was still a consensus of
recurrent curated PAX6 targets within these smaller intersects. We also find cases
where only one data type was performant. LEF1, for example, had an AUROC
Quant_coexpression value of 1 in both species but a Quant_binding value of 0 and 0.17
in human and mouse, respectively. Focusing on human, this corresponded to the
coexpression aggregate having 7 of 91 LEF1 curated targets within the top 500 of its
ranking, while the binding aggregate had only two curated targets at this same cut-off.
Conversely, examples of TRs whose binding, but not coexpression, profiles were
performant in both species include ARNTL, CLOCK, CREB1, MEF2D, MYC, MYCN,
and YY1.

Lastly, we re-evaluated the coexpression benchmark, reversing the ranks to prioritize
negative coexpression for scoring. Our goal was to identify any TRs that performed
poorly using positive coexpression (AUCs Quant_coexpression < 0.5) but displayed
improved performance using negative coexpression (Quant_reverse > 0.9), with the aim
of uncovering repressive interactions. These reversed rankings were much less
performant as a group (Supplemental Fig. 5), consistent with the observation that the
literature corpus is enriched for activating interactions (Chu et al., 2021). We did,
however, identify 26 TRs in human and 22 in mouse that exhibited enhanced
performance upon reversing the rankings, with 9 of these factors occurring in both
species. Moreover, 13 of these 26 human TRs and 8 of the 22 mouse TRs also had
performant binding aggregations (Quant_binding > 0.9), and three were common to
both species: MAX, NRF1, and YY1. Collectively, these observations may point to TRs
with more readily identifiable repressive activity: their negative, but not positive,
coexpression profiles are able to retrieve their curated targets relative to sampled
targets, and these curated targets are also associated with elevated binding signal in
the respective TR ChIP-seq experiments.

Identification of orthologous interactions

It has been observed that, despite the high evolutionary turnover of regulatory DNA
sequences, TR-target relations exhibit relatively high conservation (Yue et al., 2014).
Coexpression analysis provides an attractive means to uncover common and divergent
interactions. Prior studies have explored the preservation of coexpression network
structure between mouse and human (Monaco et al., 2015) and across 14 species
using bulk data (Lee et al., 2020), as well as investigated common and human-novel
single cell coexpression signals across primate brains (Suresh et al., 2023). Here, our
specific aim was to identify the extent to which individual TR aggregate coexpression
profiles were preserved between mouse and human. In the following analyses, we
subset each species' set of rankings to include only 16,699 one-to-one orthologous
protein coding genes between mouse and human (Methods), encompassing 1,228
orthologous TRs.
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Figure 4. Preservation of mouse and human single cell coexpression profiles. (A) Distribution of
coexpression agreement between the aggregate single cell coexpression profiles of 1,228
orthologous TRs. Black lines indicate the median value for the TRs, grey lines indicate the
median of null values generated by shuffling pairs of orthologous TRs. (B) Top: Schematic of the
ortholog retrieval workflow, adapted from Suresh et al., 2023. Bottom: Scatterplot of the
resulting ortholog retrieval scores (C) Scatter plot of the ASCL1 Top200overlaps.
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The distribution of Spearman correlations between the orthologous rankings indeed
suggests a degree of preservation (Fig. 4A). The median correlation was 0.71, albeit
with appreciable spread. While there are TRs with low correlation between species, we
are cautious in interpreting this as species-specific regulatory rewiring, given the
relatively modest effect size and the absence of an exact match in cellular contexts
covered across both species.

Given our emphasis on reproducible interactions, we focused on the overlap at the
extremes of these species rankings (Figs. 4B,C). To quantify the specificity of this
overlap, we applied a slightly modified framework of the TopK overlap used in this study,
consistent with prior studies (Patel et al., 2012; Suresh et al., 2023) and illustrated in
Fig. 4B. For each TR and species, we selected the top 200 coexpressed partners
(Top200). We next calculated the overlap of this gene set with the Top200 gene set of
every TR in the other species, treated the mismatched TR overlaps as a distribution,
then determined the quantile of the observed Top200 for the matched ortholog TR. This
procedure was then repeated for the reciprocal species. The result is a pair of ortholog
retrieval scores for each TR: how well a human TR’s ranking recovered its mouse
ortholog relative to all other mouse TRs (human in mouse), and the recovery of the
mouse ranking across human TRs (mouse in human).

As demonstrated in Fig. 4C, there was considerable preservation of single cell
aggregate TR coexpression profiles between mouse and human. The median ortholog
retrieval score for human was 0.972, with 173/1,228 (14.1%) TRs having a perfect value
of 1; in mouse these values were 0.976 and 171/1,228 (13.9%), respectively. These
relative values correspond to a median Top200overlap of 15 genes, with CENPA and
HMGB2 each having a maximal Top200 of 154 genes (Fig. 4A). Logically, many of these
highly preserved TRs also had similar profiles within species, and those that were
weakly preserved generally lacked consistency within species (Fig. 2; Supplemental
Fig. 6). These findings collectively contribute to characterizing the extent to which each
TR can be defined by a set of coexpressed gene partners, facilitating inferences into
their biological roles. While the most preserved TRs were led by regulators of
housekeeping processes such as cell division, we also observe this preservation among
more specific TRs, such as NEUROD6 (human in mouse and mouse in human = 1,
Top200= 51).

In Fig. 4C we illustrate this overlap procedure for ASCL1, another context-restricted TR
that showed agreement between species. Of the 200 genes that were most consistently
coexpressed with human ASCL1, 30 of their mouse orthologs were also in the mouse
Ascl1 Top200 set. This marked the largest overlap human ASCL1 had with any mouse TR
(human in mouse = 1). In the reciprocal comparison, where mouse Ascl1 was queried
against all human TRs, human ASCL1 ranked 35st (mouse in human = 0.97). The 34
human TRs with a greater overlap with mouse Ascl1 did not have a sizable overlap in
the reciprocal comparison, save for HMGB3. Conversely, TRs other than ASCL1 with
elevated overlap across species included the ASCL1 curated targets INSM1, HES6,
and DLX5 (Castro et al., 2006; Nelson et al., 2009; Kito-Shingaki et al., 2014). Other
TRs are well-characterized for operating in a regulatory network with ASCL1 — though
not necessarily as direct downstream targets — such as DLX1/2/6, GSX1/2, SP8, and
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OLIG2 (Wang et al., 2013; Al-Jaberi et al., 2015; Liu et al., 2017; Aslanpour et al.,
Lunden et al., 2019; 2020).

Examination of the Bottom200 also suggested a degree of specificity in the preservation
of negative coexpression partners, albeit attenuated compared to the reproducible
positive interactions (median Bottom200human in mouse = 0.89; mouse in human =
0.93; Supplemental Fig. 6). Consistent with our prior comparisons (Supplemental Fig.
2D), we observed a higher magnitude of baseline overlap in the bottom of the lists
(median Bottom200 = 30). While this may in part be a byproduct of our analysis
approach, 21 TRs still achieved a perfect Bottom200ortholog retrieval score for both
species, with ZNF532 having the largest overlap of this set (Bottom200 = 108). A further
five TRs — SOX17, SOX18, SUB1, THRA, and GLMP — also achieved a perfect Top200
ortholog retrieval score between species.

Combining single cell coexpression and aggregated binding reveals numerous
reproducible interactions

Up to this point, we have presented evidence supporting the existence of recurrent
single cell TR-gene coexpression patterns within (Fig. 2) and across species (Fig. 4),
demonstrating that this information can prioritize curated experimental interactions (Fig.
3). One of our primary motivations is to prioritize the direct gene targets of TRs (Morin et
al., 2023). However, the correlation of TR-gene transcripts serves as an indirect form of
gene regulation evidence — it does not confer information about the causative
directionality of this co-variation. We thus now turn to identifying interactions
corroborated by TR binding evidence, using the same aggregated Unibind ChIP-seq
data examined in the literature curation evaluation. We reasoned that, as in our earlier
work, knowledge of binding can help focus attention on expression patterns more likely
to reflect direct regulatory relations.

We present two straightforward strategies for prioritizing reproducible interactions,
acknowledging the use of relatively arbitrary cut-offs for the sake of reporting. All
summarized rankings are made available for researchers interested in conducting their
own exploration. We first combined the single cell coexpression and binding profiles into
a final ordered ranking for TRs with ChIP-seq data, using the common rank product
summary (Breitling et al., 2004; Morin et al., 2023). This was done separately for each
species (317 TRs in human, 305 in mouse), as well as across species for orthologous
TRs with available data (216 TRs). This establishes convenient lists that order the
protein coding genes most associated with each TR based on their aggregated single
cell coexpression and binding profiles.

Recognizing that a gene may be prioritized (have a better rank product) if ranked
exceptionally well in one data type or species only, we introduce a second scheme for
more balanced consideration across lines of evidence. For each TR, genes are
categorized into tiers by their status across the rankings, as illustrated in the inset of
Figure 5A. This collection provides examples of regulatory interactions supported by
both binding and single cell coexpression evidence.
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Figure 5. Count of interactions supported across methods and species. (A) Inset: criteria used
to group interactions into tiers. Bar chart: Count of unique interactions gained in each
orthologous tier (Stringent, Elevated, and Mixed-Species) for the 216 TRs with binding data in
both species. (B) Count of Species-Specific interactions for 317 TRs in human (top) and 305
TRs in mouse (bottom). TRs are split by those with ChIP-seq data in one species only (left), and
thus are ineligible for consideration in the orthologous interactions, and those with ChIP-seq
data in both species (right). Grey bars indicate the count of interactions already found in the
Stringent and Elevated sets, coloured bars indicate the count of Species-Specific interactions.
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Fig. 5A shows the counts of unique orthologous interactions gained in each tier of
evidence for the available TRs. The Stringent level, representing the most reproducible
interactions across both species and genomic methods, contains 541 TR-gene pairs
corresponding to 102 TRs and 355 unique genes. These genes were unevenly
distributed among TRs, with 82 of 355 occurring in more than one TR’s Stringent
collection. For example, three genes — TRIB1, TNFAIP3, and MCL1 — each appeared
across nine TR’s Stringent sets: ATF3, CEBPB, CEBPD, FOS, FOSL1, FOSL2, JUN,
JUNB, JUND, NFKB1, BHLHE40, IRF4, and REL. This suggests that these three genes
are common terminal end points of AP-1 functionality.

Consistent with these observations, the TRs with the largest Stringent collection
featured multiple AP-1 members, led by FOSL1 with 30 genes, along with immunity TRs
such as STAT1, STAT2, and IRF1. More specialized TRs also had among the largest
Stringent sets, such as the hematopoietic factors SPI1 (n = 27), GATA1 (n = 16) and
GATA2 (n = 11), and the hepatic HNF4A (n = 8). This once again suggests conservation
of many regulatory interactions, although it is essential to note that this observation is
highly influenced by the limited coverage of ChIP-seq data across biological contexts.

The Elevated collection relaxes the criteria to allow orthologous genes reaching the
cut-off in three of the four rankings. This resulted in 3,165 Elevated TR-gene pairs, with
211 of the 216 available TRs having at least one gene in its set (median = 10). TRs with
the largest Elevated collection closely overlapped with those having the largest
Stringent sets, reinforcing the notion of preserved target genes among these TRs. The
Species-specific level encompasses two groups of TRs: those that have ChIP-seq data
in both species and those in only one. This is reflected in Fig. 5B, where we show the
count of reproducible interactions for each group. The left panels display TRs with
ChIP-seq in only one species, and were thus ineligible for consideration in the Stringent
or Elevated tiers. In human, this corresponded to 101 TRs with a median of 11
interactions. TFDP1 led with 93 genes supported by both aggregated single cell
coexpression and binding evidence. In mouse, all 89 available TRs were associated
with at least one gene (median = 18), with the interferon TR Irf8 having a maximum of
91 genes, including numerous immunity-associated genes such as Mpeg1, Ctss,
Cd180, Xcr1, and Trim30a.

Highlighting ASCL1

We conclude by focusing on ASCL1, an essential pioneer nervous system regulator that
is also studied for its involvement in cancer. We emphasize that this exploration of
ASCL1 regulatory targets is just one example made possible by the information we
have summarized and made available for community use.

In Fig. 6A we present the genes in each tier of evidence for ASCL1, along with their
curation status from the 39 available ASCL1 targets in the literature corpus. Human
ASCL1 was measured in 61 of 120 scRNA-seq datasets, and in mouse 65 of 103. We
further note that ASCL1 was variably co-measured (and thus eligible for calculating
coexpression) with other genes among these datasets, with 10,645 co-measured in at
least 90% of all 61 datasets. Regarding ASCL1 binding data, there were 10 ChIP-seq
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datasets in human — largely in cancer cell lines — as well as 10 in mouse, mostly in
neuronal and embryonic contexts.

Two genes fit the Stringent criteria used for this report: the literature-curated ASCL1
target and Notch signalling ligand DLL3 (Henke et al., 2009), and the cell cycling
phosphatase CDC25B, which was not in the literature collection but is nevertheless
discussed elsewhere as a target of ASCL1 (Castro et al., 2006). The Elevated set
consisted of 26 genes, with 6 narrowly missing the Stringent criteria (indicated by lighter
shading in Figure 6A). Among them are well-described and literature-curated ASCL1
targets, such as the Notch effector HES6 (Nelson et al., 2009) and the neuroendocrine
regulator INSM1 (Jacob et al., 2009; Jia et al., 2015). ASCL1 and INSM1 serve as
markers for neuroendocrine tumours, such as for small cell lung carcinoma (SCLC;
Zhong et al., 2022). Another Elevated ASCL1 gene, CKB, has upregulated expression
in both SCLC (Borromeo et al., 2016; Qu et al., 2022) and ASCL1-high atypical
teratoid/rhabdoid tumours (Tamrazi et al., 2019), suggesting an ASCL1 interaction with
oncogenic potential across various contexts. We additionally draw attention to the BAF
chromatin remodeler BCL7A, for which we found no ASCL1 connection in the literature,
and which is also associated with diverse cancers (Baliñas-Gavira et al., 2020; Liu et
al., 2021).

Other Elevated interactions help characterize ASCL1 as a regulator of both neuronal
and oligodendrocyte lineages. This includes the cell cycle regulator GADD45G (Huang
et al., 2010), the neuronal tubulin TUBB2B (Mazurier et al., 2014; Lin et al., 2017), and
acetylcholine receptor subunit CHRNA4 (Ueno et al., 2012). PPP1R14B and ASCL1
expression was used to define a primitive oligodendrocyte progenitor population (Weng
et al., 2019). We were unable to find (from a low-throughput study or otherwise) a direct
connection between ASCL1 and the neuronal adhesion ADGRG1 (Simão et al., 2018),
the cortical-marker and calcium-binding regulator KCNIP3 (Ragazzini et al., 2023), or
the neuronal splicing factor CELF3 (Yu et al., 2017), although the latter is used as a
neuroendocrine marker to characterize ASCL1-high SCLC subtypes (Zhang et al.,
2018). Finally, we highlight REPIN1, an Elevated gene that lacked any ASCL1
connection in the literature that is also generally understudied.

The next tier, of Species-Specific sets, each comprised 19 genes. PRDX2, for example,
is a neuronal-enriched mitochondrial gene that has been shown to enhance
ASCL1-induced astrocyte-to-neuron reprogramming (Russo et al., 2021). HEPACAM2 is
another gene implicated in cancer (Deprez et al., 2020; Yamada et al., 2022) that we
could not find a direct ASCL1 association in the literature. TMEM61, lacking a 1:1
mouse ortholog, was only eligible for consideration in the Human-specific set, while the
reciprocal applied to the mouse Nbl1. Of the 27 genes in the final tier, the
Mixed-Species set, we highlight CXXC5. This zinc finger TR was initially characterized
as a bone morphogenic-responsive regulator of Wnt signaling in neural stem cells
(Andersson et al., 2009), and has been further described as a signal integrator in
development and homeostasis with tumour suppressive qualities (Xiong et al., 2019).
These examples collectively illustrate the diverse roles of essential TRs, such as
ASCL1, in development and disease.
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Figure 6. Reproducible ASCL1 interactions. (A) Heatmap representing the tiered evidence for
ASCL1 candidate targets. (B, C) Distribution of Pearson’s correlations for ASCL1-DLL3 in (B)
human and (C) mouse, as in Fig. 1E-G. (D, E) Scatterplot of the CPM values for ASCL1 and
DLL3 for the cells belonging to the cell type that had the highest correlation in the entire corpus
for (D) human and (E) mouse. (F, G) Genome track plots centered on DLL3 (yellow boxes) in (F)
human and (G) mouse, where the base of the red bars indicates ASCL1 binding regions, and
the height indicates the count of ASCL1 ChIP-seq datasets with a peak in the region.
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Lastly, we summarize the compiled evidence for the Notch ligand encoding DLL3, a
well-established and curated ASCL1 target (Henke et al., 2009) that was present in the
Stringent collection. DLL3 ranked fourth in the ASCL1 coexpression rankings in both
species, making it one of ASCL1’s most reproducible coexpression partners. Figs. 6B,C
illustrates the distribution of Pearson’s correlations for the 238 annotated cell types from
54 human datasets in which ASCL1 and DLL3 were co-measured (275 cell types in 61
datasets for mouse). Notably, despite being one of the most reproducible ASCL1
coexpressions, this association is not universal across all cell types. Figs. 6D,E shows
the scatter plots of the individual cell types in which the greatest correlation was found:
in human, annotated as “neural cells” (r = 0.54; Garcia-Alonso et al., 2022), and in
mouse, “GABAergic INs” (interneurons) (r = 0.63, Hamed et al., 2022). Given the
importance of ASCL1 regulation of Notch signalling in neuronal cells (Castro et al.,
2006; Casto et al., 2011; Lampada and Taylor, 2023), these collective observations
support that our resource can still prioritize specific interactions.

In Figs. 6F,G, we demonstrate the ASCL1-DLL3 binding evidence; DLL3 was ranked
493rd in the human aggregate binding profile and 81st in mouse. In human, this
corresponded to 83 discrete bound regions (Methods) within 500Kb of either direction of
the DLL3 TSS, and 25 within 100Kb; in mouse 73 regions within 500Kb and also 25
within 100Kb. We calculated which regions were most frequently bound by ASCL1
across datasets, reasoning that this may help prioritize functional ASCL1-DLL3
enhancers (while being cognizant of biasing factors like open promoters). Using the
500Kb cut-off in human, we found that 20 sites were bound in more than one dataset,
and that a region approximately 775 base pairs upstream of the DLL3 TSS had a
maximum count of 6. In mouse, 28 regions were bound across multiple datasets, with
the most frequently bound region (nine of ten datasets) occurring approximately 400
base pairs upstream of the DLL3 TSS.

Discussion
In this study we pursued two main objectives. First, we aimed to understand the
behavior of the meta-analytic strategy of aggregating single cell coexpression networks
(Crow et al., 2016), applying this methodology across a large and broad corpus of
scRNA-seq studies. We believe this technique holds great potential in uncovering
robust gene coexpression patterns free from the confounding effect of cellular
composition. However, before considering specific cell types or conditions, we sought to
calibrate expectations using a large collection of heterogeneous data. This objective
aligned with our second aim of identifying reproducible transcription regulator
coexpression patterns. We wished to assess how well this information aligns with other
lines of regulation evidence, and to provide an organized summary of this information as
a community resource (Data link forthcoming).

While prior work has nominated TR-target interactions across a large and
context-independent corpus of data (Garcia-Alonso et al., 2019; Keenan et al., 2019;
Müller-Dott et al., 2023), to our knowledge ours is the first to do so using a broad range
of single cell transcriptomics. Our literature curation benchmark strongly supports the
ability of this resource to prioritize curated targets, and we further find numerous
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examples of reproducible and conserved coexpressed TR-gene partners also supported
by ChIP-seq evidence. Collectively, this suggests that this information can help prioritize
interactions when direct experimental evidence is lacking, or at least help identify other
regulatory factors that commonly participate in the same regulatory networks. Our
findings additionally provide insight into the TRs whose activity is more challenging to
uncover, given the considered genomics data.

Our workflow explicitly prioritizes the interactions that are most common across
contexts, akin to our prior study (Morin et al., 2023). This comes with notable caveats:
the data coverage of biological contexts, the variability of a TR’s functional gene targets
across these contexts, and the ability of transcriptomics to identify the dynamics of
these interactions. We also do not equate reproducibility as an absolute metric of
biological importance. It is possible that a developmentally critical interaction has a
positive association in one cell type and a negative association in another, which would
tend to be de-prioritized by aggregation. Furthermore, we emphasize that reproducibility
does not imply universality, as exemplified by the ASCL1-DLL3 interaction (Figs. 6B,C).

It is not surprising that the most reproducible interactions tend to correspond to
fundamental cellular processes. This may not solely be a result of the breadth of the
contributing data: prior work has shown that highly expressed genes tend to have
stronger coexpression (Crow et al., 2016). Additionally, it is logical that the dynamics of
processes like the cell cycle are more readily captured by changing transcript levels.
What is perhaps surprising is that we still find evidence for highly context-specific
interactions. This is still, however, sensible: if a TR’s expression is highly restricted to
one context, then our aggregation framework will only draw information from that
context, and as long as there is enough supporting data such patterns can emerge.
Conversely, if a TR’s activity is highly pleiotropic, our framework will only prioritize the
targets shared across data.

Repression is difficult to infer with coexpression for multiple reasons. Consistent with
our prior observations in bulk data (Lee et al., 2004) and work in single cell data (Van
De Sande et al., 2020), negative correlations tend to be smaller in magnitude and less
consistent than positive values (Fig. 1F). A predicted positive interaction means that a
TR and gene are both detected across samples, but lack of coexpression can occur
when a gene is present and the TR absent, necessitating a differential expression
framework to ensure the TR’s presence. Additionally, it is possible that a TR strongly
represses a target, resulting in the target having zero expression and thus no variation
to calculate coexpression. Similarly, differential interactions are more difficult to
characterize than those that are reproducible, requiring evidence of absence. While
these considerations motivated our focus on the top reproducible coexpression
patterns, the data we have organized can help potentiate the discovery of evolutionary
divergent regulatory interactions.

Single cell coexpression is often cast as a problem of gene regulatory network
reconstruction. Numerous methods have been developed for this task, and multiple
benchmarks have concluded that no algorithm dominates (Chen and Mar, 2018;
Pratapa et al., 2020; Nguyen et al., 2021; McCalla et al., 2023). Where there is
consensus, however, is that it is beneficial to integrate data modalities beyond
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expression, as employed by methods such as SCENIC (Aibar et al., 2017; Van de
Sande et al., 2023). More fundamentally, Skinnider and coauthors (2019) benchmarked
metrics of similarity applied to scRNA-seq data, highlighting the performance of
measures of proportionality. Yet, as noted by Harris et al., 2021, these performances
were often similar across the board, and in their hands the computationally efficient
Pearson’s correlation (as used in this study) resulted in aggregate networks consistent
with those constructed using proportionality. Indeed, we feel that the most important
ingredient in the analysis is the aggregation of data, because the sparsity of the data is
difficult to address otherwise. Nevertheless, a comprehensive assessment of the
stability of reproducible interactions across various metrics and data normalization
procedures, although computationally demanding, could be worthwhile.

While data sparsity affects every level of our handling of the data, we highlight its
interaction with the aggregation strategy. A prior application of this approach focused on
networks comprising well-measured genes in a specific cell type (Harris et al., 2021). In
contrast, our goal was to compare global patterns, prompting us to retain the full
complement of protein coding genes. This necessitated two imputation steps, which we
emphasize were done not to interpolate missing observations, but to better reflect their
“missingness” during the ranking procedures (Methods). While these steps alleviated
the positive relationship between a gene pair’s sparsity and its aggregate ranking,
further improvements may involve selecting a prior that more effectively mitigates the
impact of uneven gene coverage across datasets.

We believe that the organized information we provide will be a valuable community
resource. Beyond lists of genes plausibly regulated by each TR, the interactions
identified in this study can assist studies examining the conservation of regulatory
interactions, or the chromatin factors commonly coexpressed with each TR. Highly
ranked interactions could be used for benchmarking predictive methods, or further
dissected towards our understanding of the chromatin and sequence features that are
characteristic of reproducible interactions. Future work may find it fruitful to construct
context-specific aggregations to contrast against this heterogeneous collection, or to
further integrate this resource with other lines of regulation evidence, as we did with the
ChIP-seq data.

Data Availability
All summarized rankings and the scored ChIP-seq experiments are made available in
the Borealis data repository (Data link forthcoming). The identifiers and associated data
links of the analyzed scRNA-seq experiments are found in Supplemental Table 1. The
code to reproduce the analysis is located at (Github link forthcoming).
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Bottom K versus Top K similarity comparison
In an attempt to identify candidate repressive factors, we examined if any TRs had more
consistent negative correlation profiles than positive correlation profiles, relative to the
respective nulls (Supplemental Figs. 2,3). We subset TRs to those with an average TopK
value that was less than the average null TopK value, indicating TRs with weak
cross-dataset similarity. We then plotted the mean BottomK values of these TRs
compared to the mean BottomK values across the null iterations.

Using K=200 did not reveal any convincing examples of TRs with such a divergence
(Supplemental Fig. 3). However, using K=1000 did provide examples of TRs whose
negative, but not positive, coexpression profiles exhibited greater overlap than shuffled
profiles. A leading example in human was the Ikaros zinc finger IKZF5, a hematopoietic
TR implicated in platelet deficiency and which is reported to be understudied relative to
other Ikaros genes (Lentaigne et al., 2019).
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Commentary on tiered evidence
MAFB, a TR implicated in hematopoiesis, had the largest Elevated set (n = 29) of TRs
lacking any genes in their Stringent collection. Of these 29 Elevated MAFB genes, 24
had a Top500 coexpression ranking in both species and binding evidence in mouse, but
not human (Supplemental Fig. 7). Further, none of these 24 genes had a human binding
ranking that was particularly close to the cut-off. Determining if this signifies true
species-specific differential binding of MAFB among these genes — while still
preserving their correlation of transcripts — or reflects imbalanced ChIP-seq coverage
between species is beyond the scope of this study. Nevertheless, this led us to examine
if a single data type or species was more frequently the “absent” ranking across the
Elevated collection (Supplemental Fig. 7). We generally see a split between species,
while the binding rankings tended to be more frequently absent.

For TRs with ChIP-seq data in both species, genes that are gained beyond the
Stringent and Elevated levels (right panels Fig. 5B) could either make the reporting
cut-offs exclusively in one species, or lack a one-to-one orthologous match between
species. Regarding the latter, our findings indicate that genes added in the
Species-specific collections were seldom due to their lack of an orthologous match,
save for a few immune TRs (Supplemental Fig. 7). It is therefore possible that the
interactions with highly differential rankings between species may be enriched for
candidates of evolutionary-divergent gene regulation. However, this comparison is
greatly complicated by the uneven biological coverage of the binding data between
species, and in this study we prioritized reporting on the reproducible interactions.
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Supplemental Figures

Supplemental Figure 1. Gene measurement coverage. (A) Binary heatmap indicating whether
(blue) or not (black) a gene had non-zero counts in at least 20 cells in at least one cell type in a
dataset, for 19,213 human protein coding genes and 120 datasets. (B) Mouse: 20,971 protein
coding genes and 103 experiments.
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Supplemental Figure 2. Similarity of negative correlation TR profiles across datasets. (A) Top
panel: Histogram of 1000 iterations of sampling one TR profile from each of 120 human
datasets and calculating the average size of the Bottom200 overlap between every pair of
sampled profiles, representing a null background setting. Note the difference in X-axis scale
across the panels. Middle panel: Histogram of the average Bottom200 overlap of all dataset pairs
for each of 82 ribosomal genes representing a “best case” scenario. Bottom panel: Histogram of
the average Bottom200 overlap of all dataset pairs for 1,606 human TRs. Note that all three
panels have different axis scales. (B) The average Bottom200 overlap of all human TRs, with the
red line indicating the average null overlap. (C,D) Same as in A,B, save for 103 mouse
experiments and 1,484 TRs.
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Supplemental Figure 3. (A, B) Preservation of the consistency of positive and negative profiles
between mouse and human for 1,228 orthologous TR at (A) K=200 and (B) K=1000. (C, D)
Examples of TR profiles with consistent negative but not positive profiles.
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Supplemental Figure 4. L/S ribosomal gene aggregate profiles prioritize other ribosomal genes
in (A) human and (B) mouse.
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Supplemental Figure 5. Literature curated target recovery. (A) Histograms of the observed
AUC quantiles for 451 human and 434 mouse aggregate TR coexpression profiles, relative to
the corresponding individual TR profiles. A value of 1 indicates that an aggregate profile had an
AUC greater than all individual profiles. (B) Distributions of the observed AUC quantiles for the
253 human and 241 mouse TRs that had binding and coexpression data. (C) Histograms of the
difference between the raw AUC values between coexpression and binding aggregates. Positive
values indicate that coexpression was better able to recover curated targets, negative values
indicate binding data was better.
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Supplemental Figure 6. Comparison of single cell coexpression across species. (A, B)
Scatterplots of the Top200 overlap between orthologous TRs versus the average Top200 between
every unique pair of individual TR profiles in (A) human and (B) mouse. (C) Scatterplot of the
quantiles of each TRs observed Bottom200 overlap with its ortholog, relative to all other TRs. (D)
Scatterplot of the Top200 and Bottom200 quantiles, where each point represents the average of
Quant_human and Quant_ortho.
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Supplemental Figure 7. (A) MAFB tiered evidence. (B) Related to Fig. 5B: Genes gained in the
Species-Specific set for TRs with ChIP-seq data in both species may have made the cut-off in
one species only, or lack an orthologous match. Barcharts show the count of interactions gained
in the former scenario (coloured) or the latter (grey) for 216 TRs in human and mouse. (C, D)
The Elevated collection required a gene to make the cut-off in three of four rankings. For each of
216 TRs, we tallied which rankings failed to make the cut-off among the Elevated genes, and
represented this as a proportion. MAFB, for example, had 29 Elevated genes, 25 of which did
not make the cut-off in the human rankings (binding or coexpression), thus its Proportion
Missing in human was 0.86. In (C) we show the distributions of these values by species. In (D)

we show the breakdown by the individual rankings.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.02.15.580581doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.580581
http://creativecommons.org/licenses/by-nc-nd/4.0/


Citations
(1) Aibar, S.; González-Blas, C. B.; Moerman, T.; Huynh-Thu, V. A.; Imrichova, H.;
Hulselmans, G.; Rambow, F.; Marine, J.-C.; Geurts, P.; Aerts, J.; van den Oord, J.; Atak,
Z. K.; Wouters, J.; Aerts, S. SCENIC: Single-Cell Regulatory Network Inference and
Clustering. Nature Methods 2017, 14 (11), 1083–1086.
https://doi.org/10.1038/nmeth.4463.
(2) Al-Jaberi, N.; Lindsay, S.; Sarma, S.; Bayatti, N.; Clowry, G. J. The Early Fetal
Development of Human Neocortical GABAergic Interneurons. Cerebral Cortex 2015, 25
(3), 631–645. https://doi.org/10.1093/cercor/bht254.
(3) Andersson, T.; Södersten, E.; Duckworth, J. K.; Cascante, A.; Fritz, N.; Sacchetti, P.;
Cervenka, I.; Bryja, V.; Hermanson, O. CXXC5 Is a Novel BMP4-Regulated Modulator of
Wnt Signaling in Neural Stem Cells. J Biol Chem 2009, 284 (6), 3672–3681.
https://doi.org/10.1074/jbc.M808119200.
(4) Aslanpour, S.; Rosin, J. M.; Balakrishnan, A.; Klenin, N.; Blot, F.; Gradwohl, G.;
Schuurmans, C.; Kurrasch, D. M. Ascl1 Is Required to Specify a Subset of Ventromedial
Hypothalamic Neurons. Development 2020, dev.180067.
https://doi.org/10.1242/dev.180067.
(5) Bai, X.; Shi, S.; Ai, B.; Jiang, Y.; Liu, Y.; Han, X.; Xu, M.; Pan, Q.; Wang, F.; Wang, Q.;
Zhang, J.; Li, X.; Feng, C.; Li, Y.; Wang, Y.; Song, Y.; Feng, K.; Li, C. ENdb: A Manually
Curated Database of Experimentally Supported Enhancers for Human and Mouse.
Nucleic Acids Research 2020, 48 (D1), D51–D57. https://doi.org/10.1093/nar/gkz973.
(6) Baliñas-Gavira, C.; Rodríguez, M. I.; Andrades, A.; Cuadros, M.; Álvarez-Pérez, J. C.;
Álvarez-Prado, Á. F.; de Yébenes, V. G.; Sánchez-Hernández, S.; Fernández-Vigo, E.;
Muñoz, J.; Martín, F.; Ramiro, A. R.; Martínez-Climent, J. A.; Medina, P. P. Frequent
Mutations in the Amino-Terminal Domain of BCL7A Impair Its Tumor Suppressor Role in
DLBCL. Leukemia 2020, 34 (10), 2722–2735. https://doi.org/10.1038/s41375-020-0919-5.
(7) Ballouz, S.; Verleyen, W.; Gillis, J. Guidance for RNA-Seq Co-Expression Network
Construction and Analysis: Safety in Numbers. Bioinformatics 2015, btv118.
https://doi.org/10.1093/bioinformatics/btv118.
(8) Barrett, T.; Wilhite, S. E.; Ledoux, P.; Evangelista, C.; Kim, I. F.; Tomashevsky, M.;
Marshall, K. A.; Phillippy, K. H.; Sherman, P. M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang,
N.; Robertson, C. L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: Archive for
Functional Genomics Data Sets--Update. Nucleic Acids Res. 2013, 41 (Database issue),
D991-995. https://doi.org/10.1093/nar/gks1193.
(9) Borromeo, M. D.; Savage, T. K.; Kollipara, R. K.; He, M.; Augustyn, A.; Osborne, J. K.;
Girard, L.; Minna, J. D.; Gazdar, A. F.; Cobb, M. H.; Johnson, J. E. ASCL1 and
NEUROD1 Reveal Heterogeneity in Pulmonary Neuroendocrine Tumors and Regulate
Distinct Genetic Programs. Cell Rep 2016, 16 (5), 1259–1272.
https://doi.org/10.1016/j.celrep.2016.06.081.
(10) Bovolenta, L. A.; Acencio, M. L.; Lemke, N. HTRIdb: An Open-Access Database for
Experimentally Verified Human Transcriptional Regulation Interactions. BMC Genomics
2012, 13 (1), 405. https://doi.org/10.1186/1471-2164-13-405.
(11) Breitling, R.; Armengaud, P.; Amtmann, A.; Herzyk, P. Rank Products: A Simple, yet
Powerful, New Method to Detect Differentially Regulated Genes in Replicated Microarray
Experiments. FEBS Lett. 2004, 573 (1–3), 83–92.
https://doi.org/10.1016/j.febslet.2004.07.055.
(12) Carrasco Pro, S.; Dafonte Imedio, A.; Santoso, C. S.; Gan, K. A.; Sewell, J. A.;
Martinez, M.; Sereda, R.; Mehta, S.; Fuxman Bass, J. I. Global Landscape of Mouse and

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.02.15.580581doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.580581
http://creativecommons.org/licenses/by-nc-nd/4.0/


Human Cytokine Transcriptional Regulation. Nucleic Acids Res. 2018, 46 (18),
9321–9337. https://doi.org/10.1093/nar/gky787.
(13) Castro, D. S.; Martynoga, B.; Parras, C.; Ramesh, V.; Pacary, E.; Johnston, C.;
Drechsel, D.; Lebel-Potter, M.; Garcia, L. G.; Hunt, C.; Dolle, D.; Bithell, A.; Ettwiller, L.;
Buckley, N.; Guillemot, F. A Novel Function of the Proneural Factor Ascl1 in Progenitor
Proliferation Identified by Genome-Wide Characterization of Its Targets. Genes Dev 2011,
25 (9), 930–945. https://doi.org/10.1101/gad.627811.
(14) Castro, D. S.; Skowronska-Krawczyk, D.; Armant, O.; Donaldson, I. J.; Parras, C.;
Hunt, C.; Critchley, J. A.; Nguyen, L.; Gossler, A.; Göttgens, B.; Matter, J.-M.; Guillemot,
F. Proneural bHLH and Brn Proteins Coregulate a Neurogenic Program through
Cooperative Binding to a Conserved DNA Motif. Developmental Cell 2006, 11 (6),
831–844. https://doi.org/10.1016/j.devcel.2006.10.006.
(15) Chen, S.; Mar, J. C. Evaluating Methods of Inferring Gene Regulatory Networks
Highlights Their Lack of Performance for Single Cell Gene Expression Data. BMC
Bioinformatics 2018, 19 (1), 232. https://doi.org/10.1186/s12859-018-2217-z.
(16) Christensen, J.; Cloos, P.; Toftegaard, U.; Klinkenberg, D.; Bracken, A. P.; Trinh, E.;
Heeran, M.; Di Stefano, L.; Helin, K. Characterization of E2F8, a Novel E2F-like
Cell-Cycle Regulated Repressor of E2F-Activated Transcription. Nucleic Acids Res 2005,
33 (17), 5458–5470. https://doi.org/10.1093/nar/gki855.
(17) Crow, M.; Gillis, J. Co-Expression in Single-Cell Analysis: Saving Grace or Original
Sin? Trends in Genetics 2018. https://doi.org/10.1016/j.tig.2018.07.007.
(18) Crow, M.; Paul, A.; Ballouz, S.; Huang, Z. J.; Gillis, J. Exploiting Single-Cell
Expression to Characterize Co-Expression Replicability. Genome Biology 2016, 17, 101.
https://doi.org/10.1186/s13059-016-0964-6.
(19) Cusanovich, D. A.; Pavlovic, B.; Pritchard, J. K.; Gilad, Y. The Functional
Consequences of Variation in Transcription Factor Binding. PLoS Genet. 2014, 10 (3),
e1004226. https://doi.org/10.1371/journal.pgen.1004226.
(20) De Smet, R.; Marchal, K. Advantages and Limitations of Current Network Inference
Methods. Nat Rev Microbiol 2010, 8 (10), 717–729. https://doi.org/10.1038/nrmicro2419.
(21) Deprez, M.; Zaragosi, L.-E.; Truchi, M.; Becavin, C.; Ruiz García, S.; Arguel, M.-J.;
Plaisant, M.; Magnone, V.; Lebrigand, K.; Abelanet, S.; Brau, F.; Paquet, A.; Pe’er, D.;
Marquette, C.-H.; Leroy, S.; Barbry, P. A Single-Cell Atlas of the Human Healthy Airways.
Am J Respir Crit Care Med 2020, 202 (12), 1636–1645.
https://doi.org/10.1164/rccm.201911-2199OC.
(22) Domínguez Conde, C.; Xu, C.; Jarvis, L. B.; Rainbow, D. B.; Wells, S. B.; Gomes, T.;
Howlett, S. K.; Suchanek, O.; Polanski, K.; King, H. W.; Mamanova, L.; Huang, N.; Szabo,
P. A.; Richardson, L.; Bolt, L.; Fasouli, E. S.; Mahbubani, K. T.; Prete, M.; Tuck, L.;
Richoz, N.; Tuong, Z. K.; Campos, L.; Mousa, H. S.; Needham, E. J.; Pritchard, S.; Li, T.;
Elmentaite, R.; Park, J.; Rahmani, E.; Chen, D.; Menon, D. K.; Bayraktar, O. A.; James, L.
K.; Meyer, K. B.; Yosef, N.; Clatworthy, M. R.; Sims, P. A.; Farber, D. L.; Saeb-Parsy, K.;
Jones, J. L.; Teichmann, S. A. Cross-Tissue Immune Cell Analysis Reveals
Tissue-Specific Features in Humans. Science 2022, 376 (6594), eabl5197.
https://doi.org/10.1126/science.abl5197.
(23) Elmentaite, R.; Kumasaka, N.; Roberts, K.; Fleming, A.; Dann, E.; King, H. W.;
Kleshchevnikov, V.; Dabrowska, M.; Pritchard, S.; Bolt, L.; Vieira, S. F.; Mamanova, L.;
Huang, N.; Perrone, F.; Goh Kai’En, I.; Lisgo, S. N.; Katan, M.; Leonard, S.; Oliver, T. R.
W.; Hook, C. E.; Nayak, K.; Campos, L. S.; Domínguez Conde, C.; Stephenson, E.;
Engelbert, J.; Botting, R. A.; Polanski, K.; Van Dongen, S.; Patel, M.; Morgan, M. D.;
Marioni, J. C.; Bayraktar, O. A.; Meyer, K. B.; He, X.; Barker, R. A.; Uhlig, H. H.;
Mahbubani, K. T.; Saeb-Parsy, K.; Zilbauer, M.; Clatworthy, M. R.; Haniffa, M.; James, K.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.02.15.580581doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.580581
http://creativecommons.org/licenses/by-nc-nd/4.0/


R.; Teichmann, S. A. Cells of the Human Intestinal Tract Mapped across Space and Time.
Nature 2021, 597 (7875), 250–255. https://doi.org/10.1038/s41586-021-03852-1.
(24) Emanuele, M. J.; Enrico, T. P.; Mouery, R. D.; Wasserman, D.; Nachum, S.; Tzur, A.
Complex Cartography: Regulation of E2F Transcription Factors by Cyclin F and Ubiquitin.
Trends Cell Biol 2020, 30 (8), 640–652. https://doi.org/10.1016/j.tcb.2020.05.002.
(25) Essaghir, A.; Toffalini, F.; Knoops, L.; Kallin, A.; van Helden, J.; Demoulin, J.-B.
Transcription Factor Regulation Can Be Accurately Predicted from the Presence of Target
Gene Signatures in Microarray Gene Expression Data. Nucleic Acids Research 2010, 38
(11), e120–e120. https://doi.org/10.1093/nar/gkq149.
(26) Farahbod, M.; Pavlidis, P. Differential Coexpression in Human Tissues and the
Confounding Effect of Mean Expression Levels. Bioinformatics 2019, 35 (1), 55–61.
https://doi.org/10.1093/bioinformatics/bty538.
(27) Farahbod, M.; Pavlidis, P. Untangling the Effects of Cellular Composition on
Coexpression Analysis. Genome Res. 2020, 30 (6), gr.256735.119.
https://doi.org/10.1101/gr.256735.119.
(28) Fawkner-Corbett, D.; Antanaviciute, A.; Parikh, K.; Jagielowicz, M.; Gerós, A. S.;
Gupta, T.; Ashley, N.; Khamis, D.; Fowler, D.; Morrissey, E.; Cunningham, C.; Johnson, P.
R. V.; Koohy, H.; Simmons, A. Spatiotemporal Analysis of Human Intestinal Development
at Single-Cell Resolution. Cell 2021, 184 (3), 810-826.e23.
https://doi.org/10.1016/j.cell.2020.12.016.
(29) Garcia-Alonso, L.; Holland, C. H.; Ibrahim, M. M.; Turei, D.; Saez-Rodriguez, J.
Benchmark and Integration of Resources for the Estimation of Human Transcription
Factor Activities. Genome Res 2019, 29 (8), 1363–1375.
https://doi.org/10.1101/gr.240663.118.
(30) Garcia-Alonso, L.; Lorenzi, V.; Mazzeo, C. I.; Alves-Lopes, J. P.; Roberts, K.;
Sancho-Serra, C.; Engelbert, J.; Marečková, M.; Gruhn, W. H.; Botting, R. A.; Li, T.;
Crespo, B.; Van Dongen, S.; Kiselev, V. Y.; Prigmore, E.; Herbert, M.; Moffett, A.;
Chédotal, A.; Bayraktar, O. A.; Surani, A.; Haniffa, M.; Vento-Tormo, R. Single-Cell
Roadmap of Human Gonadal Development. Nature 2022, 607 (7919), 540–547.
https://doi.org/10.1038/s41586-022-04918-4.
(31) Hamed, A. A.; Kunz, D. J.; El-Hamamy, I.; Trinh, Q. M.; Subedar, O. D.; Richards, L.
M.; Foltz, W.; Bullivant, G.; Ware, M.; Vladoiu, M. C.; Zhang, J.; Raj, A. M.; Pugh, T. J.;
Taylor, M. D.; Teichmann, S. A.; Stein, L. D.; Simons, B. D.; Dirks, P. B. A Brain Precursor
Atlas Reveals the Acquisition of Developmental-like States in Adult Cerebral Tumours.
Nat Commun 2022, 13 (1), 4178. https://doi.org/10.1038/s41467-022-31408-y.
(32) Han, H.; Cho, J.-W.; Lee, S.; Yun, A.; Kim, H.; Bae, D.; Yang, S.; Kim, C. Y.; Lee, M.;
Kim, E.; Lee, S.; Kang, B.; Jeong, D.; Kim, Y.; Jeon, H.-N.; Jung, H.; Nam, S.; Chung, M.;
Kim, J.-H.; Lee, I. TRRUST v2: An Expanded Reference Database of Human and Mouse
Transcriptional Regulatory Interactions. Nucleic Acids Research 2018, 46 (D1),
D380–D386. https://doi.org/10.1093/nar/gkx1013.
(33) Harris, B. D.; Crow, M.; Fischer, S.; Gillis, J. Single-Cell Co-Expression Analysis
Reveals That Transcriptional Modules Are Shared across Cell Types in the Brain. Cell
Systems 2021. https://doi.org/10.1016/j.cels.2021.04.010.
(34) He, P.; Lim, K.; Sun, D.; Pett, J. P.; Jeng, Q.; Polanski, K.; Dong, Z.; Bolt, L.;
Richardson, L.; Mamanova, L.; Dabrowska, M.; Wilbrey-Clark, A.; Madissoon, E.; Tuong,
Z. K.; Dann, E.; Suo, C.; Goh, I.; Yoshida, M.; Nikolić, M. Z.; Janes, S. M.; He, X.; Barker,
R. A.; Teichmann, S. A.; Marioni, J. C.; Meyer, K. B.; Rawlins, E. L. A Human Fetal Lung
Cell Atlas Uncovers Proximal-Distal Gradients of Differentiation and Key Regulators of
Epithelial Fates. Cell 2022, 185 (25), 4841-4860.e25.
https://doi.org/10.1016/j.cell.2022.11.005.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.02.15.580581doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.580581
http://creativecommons.org/licenses/by-nc-nd/4.0/


(35) Henke, R. M.; Meredith, D. M.; Borromeo, M. D.; Savage, T. K.; Johnson, J. E. Ascl1
and Neurog2 Form Novel Complexes and Regulate Delta-Like3 (Dll3) Expression in the
Neural Tube. Dev Biol 2009, 328 (2), 529–540.
https://doi.org/10.1016/j.ydbio.2009.01.007.
(36) Heumos, L.; Schaar, A. C.; Lance, C.; Litinetskaya, A.; Drost, F.; Zappia, L.; Lücken,
M. D.; Strobl, D. C.; Henao, J.; Curion, F.; Single-cell Best Practices Consortium; Schiller,
H. B.; Theis, F. J. Best Practices for Single-Cell Analysis across Modalities. Nat Rev
Genet 2023, 24 (8), 550–572. https://doi.org/10.1038/s41576-023-00586-w.
(37) Hu, H.; Miao, Y.-R.; Jia, L.-H.; Yu, Q.-Y.; Zhang, Q.; Guo, A.-Y. AnimalTFDB 3.0: A
Comprehensive Resource for Annotation and Prediction of Animal Transcription Factors.
Nucleic Acids Research 2019, 47 (D1), D33–D38. https://doi.org/10.1093/nar/gky822.
(38) Hu, Y.; Flockhart, I.; Vinayagam, A.; Bergwitz, C.; Berger, B.; Perrimon, N.; Mohr, S.
E. An Integrative Approach to Ortholog Prediction for Disease-Focused and Other
Functional Studies. BMC Bioinformatics 2011, 12, 357.
https://doi.org/10.1186/1471-2105-12-357.
(39) Huang, H. S.; Kubish, G. M.; Redmond, T. M.; Turner, D. L.; Thompson, R. C.;
Murphy, G. G.; Uhler, M. D. Direct Transcriptional Induction of Gadd45gamma by Ascl1
during Neuronal Differentiation. Mol Cell Neurosci 2010, 44 (3), 282–296.
https://doi.org/10.1016/j.mcn.2010.03.014.
(40) Jacob, J.; Storm, R.; Castro, D. S.; Milton, C.; Pla, P.; Guillemot, F.; Birchmeier, C.;
Briscoe, J. Insm1 (IA-1) Is an Essential Component of the Regulatory Network That
Specifies Monoaminergic Neuronal Phenotypes in the Vertebrate Hindbrain. Development
2009, 136 (14), 2477–2485. https://doi.org/10.1242/dev.034546.
(41) Jia, S.; Wildner, H.; Birchmeier, C. Insm1 Controls the Differentiation of Pulmonary
Neuroendocrine Cells by Repressing Hes1. Dev Biol 2015, 408 (1), 90–98.
https://doi.org/10.1016/j.ydbio.2015.10.009.
(42) Kang, Y.; Patel, N. R.; Shively, C.; Recio, P. S.; Chen, X.; Wranik, B. J.; Kim, G.;
McIsaac, R. S.; Mitra, R.; Brent, M. R. Dual Threshold Optimization and Network
Inference Reveal Convergent Evidence from TF Binding Locations and TF Perturbation
Responses. Genome Res. 2020, 30 (3), 459–471. https://doi.org/10.1101/gr.259655.119.
(43) Kaya, T.; Mattugini, N.; Liu, L.; Ji, H.; Cantuti-Castelvetri, L.; Wu, J.; Schifferer, M.;
Groh, J.; Martini, R.; Besson-Girard, S.; Kaji, S.; Liesz, A.; Gokce, O.; Simons, M. CD8+ T
Cells Induce Interferon-Responsive Oligodendrocytes and Microglia in White Matter
Aging. Nat Neurosci 2022, 25 (11), 1446–1457.
https://doi.org/10.1038/s41593-022-01183-6.
(44) Keenan, A. B.; Torre, D.; Lachmann, A.; Leong, A. K.; Wojciechowicz, M. L.; Utti, V.;
Jagodnik, K. M.; Kropiwnicki, E.; Wang, Z.; Ma’ayan, A. ChEA3: Transcription Factor
Enrichment Analysis by Orthogonal Omics Integration. Nucleic Acids Res. 2019, 47 (W1),
W212–W224. https://doi.org/10.1093/nar/gkz446.
(45) Kito-Shingaki, A.; Seta, Y.; Toyono, T.; Kataoka, S.; Kakinoki, Y.; Yanagawa, Y.;
Toyoshima, K. Expression of GAD67 and Dlx5 in the Taste Buds of Mice Genetically
Lacking Mash1. Chemical Senses 2014, 39 (5), 403–414.
https://doi.org/10.1093/chemse/bju010.
(46) Lambert, S. A.; Jolma, A.; Campitelli, L. F.; Das, P. K.; Yin, Y.; Albu, M.; Chen, X.;
Taipale, J.; Hughes, T. R.; Weirauch, M. T. The Human Transcription Factors. Cell 2018,
172 (4), 650–665. https://doi.org/10.1016/j.cell.2018.01.029.
(47) Lampada, A.; Taylor, V. Notch Signaling as a Master Regulator of Adult
Neurogenesis. Front. Neurosci. 2023, 17, 1179011.
https://doi.org/10.3389/fnins.2023.1179011.
(48) Langfelder, P.; Horvath, S. Fast R Functions for Robust Correlations and Hierarchical
Clustering. J. Stat. Soft. 2012, 46 (11). https://doi.org/10.18637/jss.v046.i11.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.02.15.580581doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.580581
http://creativecommons.org/licenses/by-nc-nd/4.0/


(49) Lawrence, M.; Huber, W.; Pagès, H.; Aboyoun, P.; Carlson, M.; Gentleman, R.;
Morgan, M. T.; Carey, V. J. Software for Computing and Annotating Genomic Ranges.
PLoS Comput Biol 2013, 9 (8), e1003118. https://doi.org/10.1371/journal.pcbi.1003118.
(50) Lee, H. K.; Hsu, A. K.; Sajdak, J.; Qin, J.; Pavlidis, P. Coexpression Analysis of
Human Genes across Many Microarray Data Sets. Genome Res 2004, 14, 1085–1094.
(51) Lee, J.; Shah, M.; Ballouz, S.; Crow, M.; Gillis, J. CoCoCoNet: Conserved and
Comparative Co-Expression across a Diverse Set of Species. Nucleic Acids Res. 2020,
48 (W1), W566–W571. https://doi.org/10.1093/nar/gkaa348.
(52) Lesurf, R.; Cotto, K. C.; Wang, G.; Griffith, M.; Kasaian, K.; Jones, S. J. M.;
Montgomery, S. B.; Griffith, O. L.; Open Regulatory Annotation Consortium. ORegAnno
3.0: A Community-Driven Resource for Curated Regulatory Annotation. Nucleic Acids
Res. 2016, 44 (D1), D126-132. https://doi.org/10.1093/nar/gkv1203.
(53) Li, H.; Huo, Y.; He, X.; Yao, L.; Zhang, H.; Cui, Y.; Xiao, H.; Xie, W.; Zhang, D.; Wang,
Y.; Zhang, S.; Tu, H.; Cheng, Y.; Guo, Y.; Cao, X.; Zhu, Y.; Jiang, T.; Guo, X.; Qin, Y.; Sha,
J. A Male Germ-Cell-Specific Ribosome Controls Male Fertility. Nature 2022, 612 (7941),
725–731. https://doi.org/10.1038/s41586-022-05508-0.
(54) Li, X.; Zheng, Y.; Hu, H.; Li, X. Integrative Analyses Shed New Light on Human
Ribosomal Protein Gene Regulation. Sci Rep 2016, 6. https://doi.org/10.1038/srep28619.
(55) Lin, H.; Zhu, X.; Chen, G.; Song, L.; Gao, L.; Khand, A. A.; Chen, Y.; Lin, G.; Tao, Q.
KDM3A-Mediated Demethylation of Histone H3 Lysine 9 Facilitates the Chromatin
Binding of Neurog2 during Neurogenesis. Development 2017, 144 (20), 3674–3685.
https://doi.org/10.1242/dev.144113.
(56) Liu, C.; Martins, A. J.; Lau, W. W.; Rachmaninoff, N.; Chen, J.; Imberti, L.;
Mostaghimi, D.; Fink, D. L.; Burbelo, P. D.; Dobbs, K.; Delmonte, O. M.; Bansal, N.; Failla,
L.; Sottini, A.; Quiros-Roldan, E.; Han, K. L.; Sellers, B. A.; Cheung, F.; Sparks, R.; Chun,
T.-W.; Moir, S.; Lionakis, M. S.; NIAID COVID Consortium; COVID Clinicians; Rossi, C.;
Su, H. C.; Kuhns, D. B.; Cohen, J. I.; Notarangelo, L. D.; Tsang, J. S. Time-Resolved
Systems Immunology Reveals a Late Juncture Linked to Fatal COVID-19. Cell 2021, 184
(7), 1836-1857.e22. https://doi.org/10.1016/j.cell.2021.02.018.
(57) Liu, J.; Gao, L.; Ji, B.; Geng, R.; Chen, J.; Tao, X.; Cai, Q.; Chen, Z. BCL7A as a
Novel Prognostic Biomarker for Glioma Patients. J Transl Med 2021, 19 (1), 335.
https://doi.org/10.1186/s12967-021-03003-0.
(58) Liu, Y.-H.; Tsai, J.-W.; Chen, J.-L.; Yang, W.-S.; Chang, P.-C.; Cheng, P.-L.; Turner,
D. L.; Yanagawa, Y.; Wang, T.-W.; Yu, J.-Y. Ascl1 Promotes Tangential Migration and
Confines Migratory Routes by Induction of Ephb2 in the Telencephalon. Sci Rep 2017, 7
(1), 42895. https://doi.org/10.1038/srep42895.
(59) Lunden, J. W.; Durens, M.; Phillips, A. W.; Nestor, M. W. Cortical Interneuron
Function in Autism Spectrum Condition. Pediatr Res 2019, 85 (2), 146–154.
https://doi.org/10.1038/s41390-018-0214-6.
(60) Lv, Y.; Xiao, J.; Liu, J.; Xing, F. E2F8 Is a Potential Therapeutic Target for
Hepatocellular Carcinoma. J Cancer 2017, 8 (7), 1205–1213.
https://doi.org/10.7150/jca.18255.
(61) Lynn, D. J.; Winsor, G. L.; Chan, C.; Richard, N.; Laird, M. R.; Barsky, A.; Gardy, J.
L.; Roche, F. M.; Chan, T. H. W.; Shah, N.; Lo, R.; Naseer, M.; Que, J.; Yau, M.; Acab, M.;
Tulpan, D.; Whiteside, M. D.; Chikatamarla, A.; Mah, B.; Munzner, T.; Hokamp, K.;
Hancock, R. E. W.; Brinkman, F. S. L. InnateDB: Facilitating Systems-Level Analyses of
the Mammalian Innate Immune Response. Mol Syst Biol 2008, 4 (1).
https://doi.org/10.1038/msb.2008.55.
(62) Marbach, D.; Costello, J. C.; Küffner, R.; Vega, N. M.; Prill, R. J.; Camacho, D. M.;
Allison, K. R.; Consortium, T. D.; Kellis, M.; Collins, J. J.; Stolovitzky, G. Wisdom of

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.02.15.580581doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.580581
http://creativecommons.org/licenses/by-nc-nd/4.0/


Crowds for Robust Gene Network Inference. Nature Methods 2012.
https://doi.org/10.1038/nmeth.2016.
(63) Mazurier, N.; Parain, K.; Parlier, D.; Pretto, S.; Hamdache, J.; Vernier, P.; Locker, M.;
Bellefroid, E.; Perron, M. Ascl1 as a Novel Player in the Ptf1a Transcriptional Network for
GABAergic Cell Specification in the Retina. PLoS One 2014, 9 (3), e92113.
https://doi.org/10.1371/journal.pone.0092113.
(64) McCall, M. N.; Illei, P. B.; Halushka, M. K. Complex Sources of Variation in Tissue
Expression Data: Analysis of the GTEx Lung Transcriptome. The American Journal of
Human Genetics 2016, 99 (3), 624–635. https://doi.org/10.1016/j.ajhg.2016.07.007.
(65) McCalla, S. G.; Fotuhi Siahpirani, A.; Li, J.; Pyne, S.; Stone, M.; Periyasamy, V.;
Shin, J.; Roy, S. Identifying Strengths and Weaknesses of Methods for Computational
Network Inference from Single-Cell RNA-Seq Data. G3: Genes, Genomes, Genetics
2023, 13 (3), jkad004. https://doi.org/10.1093/g3journal/jkad004.
(66) Miki, Y.; Devi, L.; Imai, Y.; Minami, N.; Koide, T.; Goel, S. Deletion of the PDZ-Binding
Kinase (Pbk) Gene Does Not Affect Male Fertility in Mice. Reprod. Fertil. Dev. 2020, 32
(10), 893. https://doi.org/10.1071/RD19445.
(67) Mistry, M.; Gillis, J.; Pavlidis, P. Meta-Analysis of Gene Coexpression Networks in the
Post-Mortem Prefrontal Cortex of Patients with Schizophrenia and Unaffected Controls.
BMC Neurosci 2013, 14 (1), 105. https://doi.org/10.1186/1471-2202-14-105.
(68) Monaco, G.; Van Dam, S.; Casal Novo Ribeiro, J. L.; Larbi, A.; De Magalhães, J. P. A
Comparison of Human and Mouse Gene Co-Expression Networks Reveals Conservation
and Divergence at the Tissue, Pathway and Disease Levels. BMC Evol Biol 2015, 15 (1),
259. https://doi.org/10.1186/s12862-015-0534-7.
(69) Müller-Dott, S.; Tsirvouli, E.; Vazquez, M.; Ramirez Flores, R. O.; Badia-I-Mompel, P.;
Fallegger, R.; Türei, D.; Lægreid, A.; Saez-Rodriguez, J. Expanding the Coverage of
Regulons from High-Confidence Prior Knowledge for Accurate Estimation of Transcription
Factor Activities. Nucleic Acids Res 2023, 51 (20), 10934–10949.
https://doi.org/10.1093/nar/gkad841.
(70) Nelson, B. R.; Hartman, B. H.; Ray, C. A.; Hayashi, T.; Bermingham-McDonogh, O.;
Reh, T. A. Acheate-Scute like 1 (Ascl1) Is Required for Normal Delta-like (Dll) Gene
Expression and Notch Signaling during Retinal Development. Dev Dyn 2009, 238 (9),
2163–2178. https://doi.org/10.1002/dvdy.21848.
(71) Nguyen, H.; Tran, D.; Tran, B.; Pehlivan, B.; Nguyen, T. A Comprehensive Survey of
Regulatory Network Inference Methods Using Single Cell RNA Sequencing Data.
Briefings in Bioinformatics 2021, 22 (3), bbaa190. https://doi.org/10.1093/bib/bbaa190.
(72) Nord, A. S.; West, A. E. Neurobiological Functions of Transcriptional Enhancers. Nat.
Neurosci. 2020, 23 (1), 5–14. https://doi.org/10.1038/s41593-019-0538-5.
(73) Ouyang, Z.; Zhou, Q.; Wong, W. H. ChIP-Seq of Transcription Factors Predicts
Absolute and Differential Gene Expression in Embryonic Stem Cells. Proc. Natl. Acad.
Sci. U.S.A. 2009, 106 (51), 21521–21526. https://doi.org/10.1073/pnas.0904863106.
(74) Patel, R. V.; Nahal, H. K.; Breit, R.; Provart, N. J. BAR Expressolog Identification:
Expression Profile Similarity Ranking of Homologous Genes in Plant Species. Plant J
2012, 71 (6), 1038–1050. https://doi.org/10.1111/j.1365-313X.2012.05055.x.
(75) Posner, D. A.; Lee, C. Y.; Portet, A.; Clatworthy, M. R. Humoral Immunity at the Brain
Borders in Homeostasis. Current Opinion in Immunology 2022, 76, 102188.
https://doi.org/10.1016/j.coi.2022.102188.
(76) Pratapa, A.; Jalihal, A. P.; Law, J. N.; Bharadwaj, A.; Murali, T. M. Benchmarking
Algorithms for Gene Regulatory Network Inference from Single-Cell Transcriptomic Data.
Nat. Methods 2020, 17 (2), 147–154. https://doi.org/10.1038/s41592-019-0690-6.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.02.15.580581doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.580581
http://creativecommons.org/licenses/by-nc-nd/4.0/


(77) Puig, R. R.; Boddie, P.; Khan, A.; Castro-Mondragon, J. A.; Mathelier, A. UniBind:
Maps of High-Confidence Direct TF-DNA Interactions across Nine Species. BMC
Genomics 2021, 22 (1), 482. https://doi.org/10.1186/s12864-021-07760-6.
(78) Qu, S.; Fetsch, P.; Thomas, A.; Pommier, Y.; Schrump, D. S.; Miettinen, M. M.; Chen,
H. Molecular Subtypes of Primary SCLC Tumors and Their Associations With
Neuroendocrine and Therapeutic Markers. J Thorac Oncol 2022, 17 (1), 141–153.
https://doi.org/10.1016/j.jtho.2021.08.763.
(79) Ragazzini, R.; Boeing, S.; Zanieri, L.; Green, M.; D’Agostino, G.; Bartolovic, K.;
Agua-Doce, A.; Greco, M.; Watson, S. A.; Batsivari, A.; Ariza-McNaughton, L.; Gjinovci,
A.; Scoville, D.; Nam, A.; Hayday, A. C.; Bonnet, D.; Bonfanti, P. Defining the Identity and
the Niches of Epithelial Stem Cells with Highly Pleiotropic Multilineage Potency in the
Human Thymus. Developmental Cell 2023, 58 (22), 2428-2446.e9.
https://doi.org/10.1016/j.devcel.2023.08.017.
(80) Rothenberg, E. V. Causal Gene Regulatory Network Modeling and Genomics:
Second-Generation Challenges. Journal of Computational Biology 2019, 26 (7), 703–718.
https://doi.org/10.1089/cmb.2019.0098.
(81) Russo, G. L.; Sonsalla, G.; Natarajan, P.; Breunig, C. T.; Bulli, G.; Merl-Pham, J.;
Schmitt, S.; Giehrl-Schwab, J.; Giesert, F.; Jastroch, M.; Zischka, H.; Wurst, W.; Stricker,
S. H.; Hauck, S. M.; Masserdotti, G.; Götz, M. CRISPR-Mediated Induction of
Neuron-Enriched Mitochondrial Proteins Boosts Direct Glia-to-Neuron Conversion. Cell
Stem Cell 2021, 28 (3), 524-534.e7. https://doi.org/10.1016/j.stem.2020.10.015.
(82) Shannon, P. igvR, 2018. https://doi.org/10.18129/B9.BIOC.IGVR.
(83) Shiraishi, C.; Matsumoto, A.; Ichihara, K.; Yamamoto, T.; Yokoyama, T.; Mizoo, T.;
Hatano, A.; Matsumoto, M.; Tanaka, Y.; Matsuura-Suzuki, E.; Iwasaki, S.; Matsushima,
S.; Tsutsui, H.; Nakayama, K. I. RPL3L-Containing Ribosomes Determine Translation
Elongation Dynamics Required for Cardiac Function. Nat Commun 2023, 14 (1), 2131.
https://doi.org/10.1038/s41467-023-37838-6.
(84) Simão, D.; Silva, M. M.; Terrasso, A. P.; Arez, F.; Sousa, M. F. Q.; Mehrjardi, N. Z.;
Šarić, T.; Gomes-Alves, P.; Raimundo, N.; Alves, P. M.; Brito, C. Recapitulation of Human
Neural Microenvironment Signatures in iPSC-Derived NPC 3D Differentiation. Stem Cell
Reports 2018, 11 (2), 552–564. https://doi.org/10.1016/j.stemcr.2018.06.020.
(85) Sing, T.; Sander, O.; Beerenwinkel, N.; Lengauer, T. ROCR: Visualizing Classifier
Performance in R. Bioinformatics 2005, 21 (20), 3940–3941.
https://doi.org/10.1093/bioinformatics/bti623.
(86) Skinnider, M. A.; Squair, J. W.; Foster, L. J. Evaluating Measures of Association for
Single-Cell Transcriptomics. Nature Methods 2019, 1.
https://doi.org/10.1038/s41592-019-0372-4.
(87) Sonawane, A. R.; Weiss, S. T.; Glass, K.; Sharma, A. Network Medicine in the Age of
Biomedical Big Data. Front Genet 2019, 10, 294.
https://doi.org/10.3389/fgene.2019.00294.
(88) Suresh, H.; Crow, M.; Jorstad, N.; Hodge, R.; Lein, E.; Dobin, A.; Bakken, T.; Gillis, J.
Comparative Single-Cell Transcriptomic Analysis of Primate Brains Highlights
Human-Specific Regulatory Evolution. Nat Ecol Evol 2023, 1–14.
https://doi.org/10.1038/s41559-023-02186-7.
(89) Tamrazi, B.; Venneti, S.; Margol, A.; Hawes, D.; Cen, S. Y.; Nelson, M.; Judkins, A.;
Biegel, J.; Blüml, S. Pediatric Atypical Teratoid/Rhabdoid Tumors of the Brain:
Identification of Metabolic Subgroups Using In Vivo 1H-MR Spectroscopy. AJNR Am J
Neuroradiol 2019, 40 (5), 872–877. https://doi.org/10.3174/ajnr.A6024.
(90) THE TABULA SAPIENS CONSORTIUM. The Tabula Sapiens: A Multiple-Organ,
Single-Cell Transcriptomic Atlas of Humans. Science 2022, 376 (6594), eabl4896.
https://doi.org/10.1126/science.abl4896.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.02.15.580581doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.580581
http://creativecommons.org/licenses/by-nc-nd/4.0/


(91) Ueno, T.; Ito, J.; Hoshikawa, S.; Ohori, Y.; Fujiwara, S.; Yamamoto, S.; Ohtsuka, T.;
Kageyama, R.; Akai, M.; Nakamura, K.; Ogata, T. The Identification of Transcriptional
Targets of Ascl1 in Oligodendrocyte Development. Glia 2012, 60 (10), 1495–1505.
https://doi.org/10.1002/glia.22369.
(92) Uhlén, M.; Fagerberg, L.; Hallström, B. M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.;
Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; Olsson, I.; Edlund, K.; Lundberg, E.;
Navani, S.; Szigyarto, C. A.-K.; Odeberg, J.; Djureinovic, D.; Takanen, J. O.; Hober, S.;
Alm, T.; Edqvist, P.-H.; Berling, H.; Tegel, H.; Mulder, J.; Rockberg, J.; Nilsson, P.;
Schwenk, J. M.; Hamsten, M.; Feilitzen, K. von; Forsberg, M.; Persson, L.; Johansson, F.;
Zwahlen, M.; Heijne, G. von; Nielsen, J.; Pontén, F. Tissue-Based Map of the Human
Proteome. Science 2015, 347 (6220), 1260419. https://doi.org/10.1126/science.1260419.
(93) Van De Sande, B.; Flerin, C.; Davie, K.; De Waegeneer, M.; Hulselmans, G.; Aibar,
S.; Seurinck, R.; Saelens, W.; Cannoodt, R.; Rouchon, Q.; Verbeiren, T.; De Maeyer, D.;
Reumers, J.; Saeys, Y.; Aerts, S. A Scalable SCENIC Workflow for Single-Cell Gene
Regulatory Network Analysis. Nat Protoc 2020, 15 (7), 2247–2276.
https://doi.org/10.1038/s41596-020-0336-2.
(94) van Lengerich, B.; Zhan, L.; Xia, D.; Chan, D.; Joy, D.; Park, J. I.; Tatarakis, D.;
Calvert, M.; Hummel, S.; Lianoglou, S.; Pizzo, M. E.; Prorok, R.; Thomsen, E.; Bartos, L.
M.; Beumers, P.; Capell, A.; Davis, S. S.; de Weerd, L.; Dugas, J. C.; Duque, J.; Earr, T.;
Gadkar, K.; Giese, T.; Gill, A.; Gnörich, J.; Ha, C.; Kannuswamy, M.; Kim, D. J.; Kunte, S.
T.; Kunze, L. H.; Lac, D.; Lechtenberg, K.; Leung, A. W.-S.; Liang, C.-C.; Lopez, I.;
McQuade, P.; Modi, A.; Torres, V. O.; Nguyen, H. N.; Pesämaa, I.; Propson, N.; Reich, M.;
Robles-Colmenares, Y.; Schlepckow, K.; Slemann, L.; Solanoy, H.; Suh, J. H.; Thorne, R.
G.; Vieira, C.; Wind-Mark, K.; Xiong, K.; Zuchero, Y. J. Y.; Diaz, D.; Dennis, M. S.; Huang,
F.; Scearce-Levie, K.; Watts, R. J.; Haass, C.; Lewcock, J. W.; Di Paolo, G.; Brendel, M.;
Sanchez, P. E.; Monroe, K. M. A TREM2-Activating Antibody with a Blood-Brain Barrier
Transport Vehicle Enhances Microglial Metabolism in Alzheimer’s Disease Models. Nat
Neurosci 2023, 26 (3), 416–429. https://doi.org/10.1038/s41593-022-01240-0.
(95) Wang, B.; Long, J. E.; Flandin, P.; Pla, R.; Waclaw, R. R.; Campbell, K.; Rubenstein,
J. L. R. Loss of Gsx1 and Gsx2 Function Rescues Distinct Phenotypes in Dlx1/2 Mutants.
J of Comparative Neurology 2013, 521 (7), 1561–1584.
https://doi.org/10.1002/cne.23242.
(96) Wang, X.; He, Y.; Zhang, Q.; Ren, X.; Zhang, Z. Direct Comparative Analyses of 10X
Genomics Chromium and Smart-Seq2. Genomics, Proteomics & Bioinformatics 2021, 19
(2), 253–266. https://doi.org/10.1016/j.gpb.2020.02.005.
(97) Wen, J. H.; Chen, Y. Y.; Song, S. J.; Ding, J.; Gao, Y.; Hu, Q. K.; Feng, R. P.; Liu, Y.
Z.; Ren, G. C.; Zhang, C. Y.; Hong, T. P.; Gao, X.; Li, L. S. Paired Box 6 (PAX6) Regulates
Glucose Metabolism via Proinsulin Processing Mediated by Prohormone Convertase 1/3
(PC1/3). Diabetologia 2009, 52 (3), 504–513. https://doi.org/10.1007/s00125-008-1210-x.
(98) Weng, Q.; Wang, J.; Wang, J.; He, D.; Cheng, Z.; Zhang, F.; Verma, R.; Xu, L.; Dong,
X.; Liao, Y.; He, X.; Potter, A.; Zhang, L.; Zhao, C.; Xin, M.; Zhou, Q.; Aronow, B. J.;
Blackshear, P. J.; Rich, J. N.; He, Q.; Zhou, W.; Suvà, M. L.; Waclaw, R. R.; Potter, S. S.;
Yu, G.; Lu, Q. R. Single-Cell Transcriptomics Uncovers Glial Progenitor Diversity and Cell
Fate Determinants during Development and Gliomagenesis. Cell Stem Cell 2019, 24 (5),
707-723.e8. https://doi.org/10.1016/j.stem.2019.03.006.
(99) Werner, J. M.; Gillis, J. Preservation of Co-Expression Defines the Primary Tissue
Fidelity of Human Neural Organoids. bioRxiv 2023, 2023.03.31.535112.
https://doi.org/10.1101/2023.03.31.535112.
(100) Xiong, X.; Tu, S.; Wang, J.; Luo, S.; Yan, X. CXXC5: A Novel Regulator and
Coordinator of TGF-β, BMP and Wnt Signaling. J Cell Mol Med 2019, 23 (2), 740–749.
https://doi.org/10.1111/jcmm.14046.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.02.15.580581doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.580581
http://creativecommons.org/licenses/by-nc-nd/4.0/


(101) Yamada, Y.; Bohnenberger, H.; Kriegsmann, M.; Kriegsmann, K.; Sinn, P.; Goto, N.;
Nakanishi, Y.; Seno, H.; Chigusa, Y.; Fujimoto, M.; Minamiguchi, S.; Haga, H.; Simon, R.;
Sauter, G.; Ströbel, P.; Marx, A. Tuft Cell-like Carcinomas: Novel Cancer Subsets Present
in Multiple Organs Sharing a Unique Gene Expression Signature. Br J Cancer 2022, 127
(10), 1876–1885. https://doi.org/10.1038/s41416-022-01957-6.
(102) Yeung, J.; Ha, T. J.; Swanson, D. J.; Goldowitz, D. A Novel and Multivalent Role of
Pax6 in Cerebellar Development. J Neurosci 2016, 36 (35), 9057–9069.
https://doi.org/10.1523/JNEUROSCI.4385-15.2016.
(103) Yu, J.; Mu, J.; Guo, Q.; Yang, L.; Zhang, J.; Liu, Z.; Yu, B.; Zhang, T.; Xie, J.
Transcriptomic Profile Analysis of Mouse Neural Tube Development by RNA-Seq. IUBMB
Life 2017. https://doi.org/10.1002/iub.1653.
(104) Yue, F.; Cheng, Y.; Breschi, A.; Vierstra, J.; Wu, W.; Ryba, T.; Sandstrom, R.; Ma,
Z.; Davis, C.; Pope, B. D.; Shen, Y.; Pervouchine, D. D.; Djebali, S.; Thurman, R. E.; Kaul,
R.; Rynes, E.; Kirilusha, A.; Marinov, G. K.; Williams, B. A.; Trout, D.; Amrhein, H.;
Fisher-Aylor, K.; Antoshechkin, I.; DeSalvo, G.; See, L.-H.; Fastuca, M.; Drenkow, J.;
Zaleski, C.; Dobin, A.; Prieto, P.; Lagarde, J.; Bussotti, G.; Tanzer, A.; Denas, O.; Li, K.;
Bender, M. A.; Zhang, M.; Byron, R.; Groudine, M. T.; McCleary, D.; Pham, L.; Ye, Z.;
Kuan, S.; Edsall, L.; Wu, Y.-C.; Rasmussen, M. D.; Bansal, M. S.; Kellis, M.; Keller, C. A.;
Morrissey, C. S.; Mishra, T.; Jain, D.; Dogan, N.; Harris, R. S.; Cayting, P.; Kawli, T.;
Boyle, A. P.; Euskirchen, G.; Kundaje, A.; Lin, S.; Lin, Y.; Jansen, C.; Malladi, V. S.; Cline,
M. S.; Erickson, D. T.; Kirkup, V. M.; Learned, K.; Sloan, C. A.; Rosenbloom, K. R.;
Lacerda de Sousa, B.; Beal, K.; Pignatelli, M.; Flicek, P.; Lian, J.; Kahveci, T.; Lee, D.;
James Kent, W.; Ramalho Santos, M.; Herrero, J.; Notredame, C.; Johnson, A.; Vong, S.;
Lee, K.; Bates, D.; Neri, F.; Diegel, M.; Canfield, T.; Sabo, P. J.; Wilken, M. S.; Reh, T. A.;
Giste, E.; Shafer, A.; Kutyavin, T.; Haugen, E.; Dunn, D.; Reynolds, A. P.; Neph, S.;
Humbert, R.; Scott Hansen, R.; De Bruijn, M.; Selleri, L.; Rudensky, A.; Josefowicz, S.;
Samstein, R.; Eichler, E. E.; Orkin, S. H.; Levasseur, D.; Papayannopoulou, T.; Chang,
K.-H.; Skoultchi, A.; Gosh, S.; Disteche, C.; Treuting, P.; Wang, Y.; Weiss, M. J.; Blobel,
G. A.; Cao, X.; Zhong, S.; Wang, T.; Good, P. J.; Lowdon, R. F.; Adams, L. B.; Zhou,
X.-Q.; Pazin, M. J.; Feingold, E. A.; Wold, B.; Taylor, J.; Mortazavi, A.; Weissman, S. M.;
Stamatoyannopoulos, J. A.; Snyder, M. P.; Guigo, R.; Gingeras, T. R.; Gilbert, D. M.;
Hardison, R. C.; Beer, M. A.; Ren, B.; The Mouse ENCODE Consortium. A Comparative
Encyclopedia of DNA Elements in the Mouse Genome. Nature 2014, 515 (7527),
355–364. https://doi.org/10.1038/nature13992.
(105) Yusuf, D.; Butland, S. L.; Swanson, M. I.; Bolotin, E.; Ticoll, A.; Cheung, W. A.;
Zhang, X. Y.; Dickman, C. T.; Fulton, D. L.; Lim, J. S.; Schnabl, J. M.; Ramos, O. H.;
Vasseur-Cognet, M.; Leeuw, C. N. de; Simpson, E. M.; Ryffel, G. U.; Lam, E. W.-F.; Kist,
R.; Wilson, M. S.; Marco-Ferreres, R.; Brosens, J. J.; Beccari, L. L.; Bovolenta, P.;
Benayoun, B. A.; Monteiro, L. J.; Schwenen, H. D.; Grontved, L.; Wederell, E.; Mandrup,
S.; Veitia, R. A. The Transcription Factor Encyclopedia. Genome Biology 2012, 13 (3),
R24. https://doi.org/10.1186/gb-2012-13-3-r24.
(106) Zamboni, M.; Llorens-Bobadilla, E.; Magnusson, J. P.; Frisén, J. A Widespread
Neurogenic Potential of Neocortical Astrocytes Is Induced by Injury. Cell Stem Cell 2020,
27 (4), 605-617.e5. https://doi.org/10.1016/j.stem.2020.07.006.
(107) Zhang, W.; Girard, L.; Zhang, Y.-A.; Haruki, T.; Papari-Zareei, M.; Stastny, V.;
Ghayee, H. K.; Pacak, K.; Oliver, T. G.; Minna, J. D.; Gazdar, A. F. Small Cell Lung
Cancer Tumors and Preclinical Models Display Heterogeneity of Neuroendocrine
Phenotypes. Transl Lung Cancer Res 2018, 7 (1), 32–49.
https://doi.org/10.21037/tlcr.2018.02.02.
(108) Zhang, Y.; Cuerdo, J.; Halushka, M. K.; McCall, M. N. The Effect of Tissue
Composition on Gene Co-Expression. Brief Bioinform. https://doi.org/10.1093/bib/bbz135.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.02.15.580581doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.580581
http://creativecommons.org/licenses/by-nc-nd/4.0/


(109) Zhong, E.; Pareja, F.; Hanna, M. G.; Jungbluth, A. A.; Rekhtman, N.; Brogi, E.
Expression of Novel Neuroendocrine Markers in Breast Carcinomas: A Study of INSM1,
ASCL1, and POU2F3. Hum Pathol 2022, 127, 102–111.
https://doi.org/10.1016/j.humpath.2022.06.003.
(110) Single-Cell Transcriptomics of 20 Mouse Organs Creates a Tabula Muris. Nature
2018, 1. https://doi.org/10.1038/s41586-018-0590-4.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.02.15.580581doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.580581
http://creativecommons.org/licenses/by-nc-nd/4.0/

