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Summary Exposure of some acute myeloid leukaemia (AML) cells to daunorubicin leads to rapid cell death, whereas other AML cells show
natural drug resistance. This has been attributed to expression of functional P-glycoprotein resulting in reduced drug accumulation. However,
it has also been proposed that P-glycoprotein-expressing multidrug-resistant (MDR) cells are inherently defective for apoptosis. To distinguish
between these different possibilities, we have compared the cell death process in a human AML cell line (HL-60) with a MDR subline (HL-
60/Vinc) at doses that yield either similar intracellular daunorubicin concentrations or comparable cytotoxicity. Adjustment of the dose to
obtain the same intracellular drug accumulation in the two cell lines did not result in equal cytotoxicity, suggesting the presence of additional
resistance mechanisms in the P-glycoprotein-expressing HL-60/Vinc cells. However, at equitoxic doses, similar cell death pathways were
observed. In HL-60 cells, daunorubicin induced rapid apoptosis at 0.5–1 µM and delayed mitotic cell death at 0.1 µM. These concentrations
are within the clinical dose range. Similarly, HL-60/Vinc cells underwent apoptosis at 50–100 µM daunorubicin and mitotic cell death at 10 µM.
These results show, for the first time, that anthracyclines can induce cell death by a dual mechanism in both sensitive and MDR cells. Our
results also show that not only the cytotoxicity, but also the kinetics and mechanism of cell death, are dose dependent. Interestingly, regrowth
was observed only in association with delayed cell death and the formation of enlarged, often polyploid, cells with micronucleation, suggesting
that morphological criteria may be useful to evaluate treatment efficacy in patients with myeloid leukaemias.
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Despite important progress in the understanding of the underlying
molecular mechanisms, resistance to anti-neoplastic agents remains
a major obstacle to curative cancer treatment. The resistance can be
due to pretarget events such as drug accumulation, metabolism and
intracellular drug distribution, or associated with reduced drugÐ
target interactions. More recently, post-target events such as cell
cycle progression, DNA repair and regulation of cell death have
been shown to play an important role in the sensitivity of tumour
cells to anti-neoplastic agents (for recent review, see Larsen and
Skladanowski, 1998).

Daunorubicin is an anthracycline that is widely used in the treat-
ment of acute myeloid leukaemia (AML). Although initially
successful, resistance usually develops with time, resulting in
relapse and treatment failure. Multidrug resistance (MDR) associ-
ated with overexpression of functional P-glycoprotein seems to be
the most common resistance mechanism associated with relapsed
AML (Baer and Bloomfield, 1991; Marie et al, 1996). The P-
glycoprotein is a membrane-associated efflux pump that is able to
reduce the intracellular drug accumulation of many chemically
unrelated anti-tumour compounds (for review see Gottesman and
Pastan, 1993).

The cytotoxic activity of daunorubicin is associated with the
formation of drug-stabilized complexes between DNA and the
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nuclear enzyme topoisomerase II. Other biological effects include
free radical formation, alkylation of DNA and interaction with
components of the cell membrane (for review, see Gr�nicke and
Hofman, 1992; Taatjes et al, 1997).

So far, little is known about the cell death process induced by
daunorubicin. Current dogma is that chemotherapeutic agents
induce cell death through activation of an endogenous cell death
programme (programmed cell death), resulting in specific
biochemical changes in the dying cells such as DNA fragmenta-
tion and cleavage of a subset of proteins usually associated with
DNA repair [e.g. poly (ADP-ribose) polymerase] or maintenance
of cellular structure (e.g. lamin B). This mode of cell death is
accompanied by distinct morphological alterations, such as chro-
matin condensation and cell shrinkage, and is called apoptosis
(Hickman, 1992; Sun et al, 1994). However, there is evidence to
suggest that the actual situation is more complex. The topoiso-
merase II inhibitor etoposide can induce both apoptosis and
mitotic cell death (also termed mitotic catastrophe (Lock and Ross,
1990; Lock et al, 1994)). Mitotic cell death is associated with
growth arrest in the G2 phase of the cell cycle followed by the
formation of large, often polyploid, cells (Demarcq et al, 1994;
Lock et al, 1994). In addition, etoposide exposure may lead to
necrosis under ATP-depleting conditions (Eguchi et al, 1997).

Daunorubicin exposure was initially shown to induce apoptosis
(Skladanowski and Konopa, 1993). More recent results show that
clinical doses of daunorubicin induce apoptosis in only some acute
myeloid leukaemia cells. For example, daunorubicin induces
typical apoptosis in HL-60 and U937 cells but no characteristic
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apoptotic morphological features and only very low levels of inter-
nucleosomal DNA fragmentation in the KG1 and KG1a cell lines
(Quillet-Mary et al, 1996). Both KG1 and KG1a cells overexpress
the MDR-1 gene as well as functional P-glycoprotein and are
naturally resistant to daunorubicin compared with HL-60 or U937
cells. It has also been reported that another anthracycline, doxo-
rubicin, induces internucleosomal fragmentation in parental P388
leukaemia cells but not in resistant P388/ADR cells that express
the P-glycoprotein (Ling et al, 1993). These results can be inter-
preted in different ways. It is possible that P-glycoprotein expres-
sion and an altered cell death process represent two independent
resistance mechanisms, which can occur together. Alternatively,
the lack of apoptosis in MDR cells might be causally linked to the
transport abnormalities as a minimum intracellular concentration
of anthracycline may be required to trigger apoptosis. Finally, it
has been suggested that P-glycoprotein expression may somehow
directly influence the apoptotic process (Ling et al, 1993;
Frankfurt et al, 1994).

To distinguish between the different possibilities, we compared
the daunorubicin-induced cell death process in a human AML cell
line (HL-60) and a P-glycoprotein-expressing subline (HL-
60/Vinc) at doses that yield either comparable intracellular
daunorubicin concentrations or similar cytotoxicity. For these
studies vincristine-, rather than daunorubicin-selected MDR cells
were used in order to avoid possible drug-specific changes, which
may occur during selection with anthracyclines, such as changes in
topoisomerase II and modification of the oxidative status.

Our results show for the first time that an anthracycline can
induce cell death by a dual mechanism, apoptosis or mitotic cell
death, in both sensitive and MDR cells. The results also show that
not only the cytotoxicity, but also the kinetics and mode of cell
death are dose dependent. Interestingly, regrowth was only
observed in association with delayed cell death and the formation
of enlarged, often polyploid, cells with micronucleation.
Therefore, morphological criteria might be useful to evaluate treat-
ment efficacy in patients with myeloid leukaemias.

MATERIALS AND METHODS

Chemicals

Daunorubicin (Cerubidin¨) was purchased from Laboratoire
Roger Bellon (Neuilly-sur-Seine, France). Vincristine was
obtained from Laboratoire Pierre Fabre (Castres, France). All
other chemicals were purchased from Sigma Chemical Co. (St.
Louis, MO, USA).

Leukaemic cell lines

HL-60 cells and vincristine-selected HL-60/Vinc cells, which
overexpress functional P-glycoprotein (McGrath et al, 1989), were
a generous gift from Dr M Center (Kansas State University, KS,
USA). HL-60/Vinc cells were maintained in the presence of 1 µM

vincristine and kept in drug-free medium for at least 1 week before
each experiment. HL-60 and HL-60/Vinc cells were grown in
RPMI-1640 supplemented with 10% fetal calf serum (FCS), 2 mM

L-glutamine and antibiotics Ð penicillin (100 units mlÐ1) and strep-
tomycin (100 µg mlÐ1) Ð at 37°C in a 5% carbon dioxide/95% air
atmosphere. The cells were screened routinely for Mycoplasmaby
the DNA hybridization method (Gen-Probe, San Diego, CA,
USA).
© Cancer Research Campaign 1999
Daunorubicin accumulation

HL-60 cells (0.5 × 106 mlÐ1) were resuspended in 1 ml of RPMI with
10% FCS containing different doses of daunorubicin at 37°C.
Samples were collected at the indicated times and immediately put
on ice. After one wash at 4°C, cell pellets were resuspended in ice-
cold phosphate-buffered saline (PBS) at 106 cells mlÐ1 and the
daunorubicin fluorescence was determined with a Becton Dickinson
FACScan flow cytometer (excitation wavelength = 488 nm; emis-
sion wavelength = 560 nm). The accumulation of daunorubicin was
expressed in arbitrary units as a function of the fluorescence
measured at different incubation times.

In order to confirm the cytometric measurements of intracellular
daunorubicin concentrations, the drug accumulation after 1 h
exposure to radiolabelled daunorubicin was also determined as
previously described (Jaffr�zou et al, 1991).

Counting and viability

Cells were cultured in media containing different drug concentra-
tions for 1 h, washed and resuspended in drug-free medium. After
the specified incubation times, cells were counted with a haemo-
cytometer, and the viability was determined by trypan blue or
propidium iodide exclusion.

Cytochemical staining

Changes in nuclear chromatin structure were evaluated by staining
with 4′,6-diamidino-2-phenylindole (DAPI) as previously
described (Darzynkiewicz et al, 1988). Briefly, 0.1 × 106 cells were
washed once in PBS and fixed onto microscope slides by cytospin.
Cells were fixed with 3% paraformaldehyde in PBS for 15 min at
room temperature, washed once in PBS and then stained with PBS
containing 1 µg mlÐ1 DAPI for 15 min at room temperature
followed by fluorescence microscopy.

Morphological changes

Cells were exposed to daunorubicin for 1 h at 37°C, washed twice
and cultured in drug-free medium. At different times, aliquots of
cell suspensions were fixed onto microscope slides by cytospin
and stained according to the MayÐGr�nwaldÐGiemsa procedure.
In order to quantify the morphologically different cell populations,
400 cells per slide were examined by light microscopy and the
percentage of cells belonging to the different subpopulations was
calculated and normalized with respect to 0.5 × 106 cells.

Cell cycle analysis

All measurements were made using a Coulter EPICS Profile II
flow cytometer (Coulter Electronics, Hialeah, FL, USA) equipped
with an argon laser to give 488 nm light. For cell cycle distribution
studies, cells were fixed in 70% ethanol, rehydrated in PBS and
stained in PBS containing propidium iodide (20 µg mlÐ1) and
ribonuclease A (100 µg mlÐ1) for 30 min at room temperature.
Data from 104 cells were collected and analysed by Multicycle
software (Phoenix Flow Systems, San Diego, CA, USA).

Gel electrophoresis of fragmented DNA

Following daunorubicin treatment, total cellular DNA was isolated
by a previously described method (Agarwal et al, 1991) with
British Journal of Cancer (1999) 79(7/8), 1090–1097
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Figure 1 Daunorubicin accumulation and efflux in HL-60 and HL-60/Vinc
cells. Cells were exposed to daunorubicin for various times and the drug
accumulation was determined by flow cytometry as described in Materials
and Methods. After 1 h, daunorubicin was removed and the kinetics of drug
efflux was followed. Daunorubicin fluorescence is expressed in arbitrary
units. Data shown are typical of three independent experiments. HL-60 cells
were incubated with 0.5 µM (●●) or 1 µM (■■) daunorubicin and HL-60/Vinc
cells with 10 µM daunorubicin (■). The accumulation of [3H]daunorubicin for
1 h in HL-60 and HL-60/Vinc cells is shown in the insert. HL-60 cells were
incubated with 1 µM [3H]daunorubicin and HL-60/Vinc cells with 10 µM

[3H]daunorubicin. Results are the average of three independent experiments.
Bars, standard deviation
minor modifications. Approximately 5 × 106 cells were washed in
PBS, and the cell pellet was resuspended in 1 ml of a solution
containing 150 mM sodium chloride, 15 mM sodium citrate, pH 7,
10 mM EDTA, 1% (w/v) sodium lauryl sarkosinate and 0.5 mg
mlÐ1 proteinase K. Proteolytic digestion was allowed to proceed at
50°C for 2 h. The DNA was precipitated with two volumes of
absolute ethanol, resuspended in 30 µl of 10 mM Tris-HCl/1 mM

EDTA buffer, pH 8, and treated with 1 mg mlÐ1 RNAase for 30 min
at 37°C prior to loading in a 1.8% agarose gel. Electrophoresis was
carried out in 40 mM Tris-acetate/1 mM EDTA, pH 8. Gels were
stained with 0.5 µg mlÐ1 ethidium bromide and photographed
under ultraviolet light.

Field inversion gel electrophoresis

Field inversion gel electrophoresis was carried out as described
previously (Gromova et al, 1995). After daunorubicin treatment,
2 × 106 cells were embedded in 0.75% SeaPlaque low-melting
agarose (FMC Bioproducts, Rockland, ME, USA) prepared in
serum-free medium. Agarose plugs were then incubated in lysis
buffer [0.2 M EDTA, pH 8.0, 1% sodium dodecyl sulphate (SDS)]
containing 1 mg mlÐ1 proteinase K at 50°C for 36 h under gentle
rotation. The plugs were washed several times in 0.2 M EDTA,
pH 8.0, and stored in this solution at 4°C prior to analysis.
Samples, including a 50Ð1000 kb lambda DNA standard (Promega
Corporation, Madison, WI, USA) were analysed on a 1% agarose
gel using a horizontal electrophoresis system (Gene Navigator
System, Pharmacia LKB Biotechnology, Uppsala, Sweden). The
pulsewave switcher was programmed to provide 15 s forward and
15 s reverse pulses for 12 h. A constant voltage of 275 V was
maintained throughout the total run time in 0.5 × TBE (45 mM

Tris-borate/1 mM EDTA, pH 8.6) with the temperature maintained
at 4°C and continuous buffer recirculation. The gel was
photographed after staining with ethidium bromide (0.5 µg mlÐ1).

TUNEL assay (terminal deoxynucleotidyl transferase
assay)

Samples were prepared according to a previously published method
(Gorczyca et al, 1993). Following drug treatment, cells were
collected by centrifugation and fixed in 1% formaldehyde in PBS
for 15 min on ice. After centrifugation, the pellet was washed in
PBS, resuspended in 70% ethanol and samples were stored
overnight at 4°C. After rehydration in PBS for 15 min, cells were
resuspended in 50 µl of reaction buffer containing 5 units of
terminal transferase, 2.5 mM cobalt chloride, 200 mM sodium
cacodylate, 25 mM Tris-HCl, pH 6.6, 0.25 mg mlÐ1 bovine serum
albumin and 1 µg biotin-dUTP (Boehringer Mannheim, Germany)
and incubated at 37°C for 30 min. Pellets were washed with rinsing
buffer (PBS containing 0.1% Triton X-100, 0.5% bovine serum
albumin), resuspended in 100 µl staining buffer which contained
2.5 µg mlÐ1 fluorescein isothiocyanate (FITC)-avidin, 4 × SSC
buffer (1 × SSC buffer: 150 mM sodium chloride, 15 mM sodium
citrate, pH 7), 0.1% Triton X-100 and 5% (w/v) non-fat dry milk
and incubated for 30 min at room temperature in the dark. The
pellets were then washed twice with rinsing buffer, resuspended in
PBS containing 5 µg mlÐ1 propidium iodide and 100 µg mlÐ1

RNAase A and incubated at room temperature for 30 min. The red
(propidium iodide) and green (fluorescein) fluorescence were
measured with EPICS Profile II flow cytometer; the data from 104

cells were collected and analysed by Multigraph software.
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RESULTS

Daunorubicin accumulation in HL-60 and HL-60/Vinc
cells

We have previously shown that daunorubicin induces maximal
DNA fragmentation in HL-60 cells at doses between 0.5 and 1 µM

(Quillet-Mary et al, 1996). This dose range also corresponds to the
peak plasma concentration after a bolus injection of daunorubicin
(Speth et al, 1987). At 1 µM, the plateau in intracellular drug accu-
mulation for HL-60 cells occurred after 60 min (Hindenburg et al,
1989). In order to determine the dose that leads to the same intra-
cellular daunorubicin concentration in HL-60/Vinc cells as for HL-
60 cells treated with 1 µM daunorubicin for 1 h, resistant cells were
exposed to various doses of daunorubicin (1Ð100 µM) and the time
course of daunorubicin accumulation was determined by flow
cytometry. The results (Figure 1) show comparable drug accumu-
lation by 1 h for HL-60 cells treated with 1 µM daunorubicin and
HL-60/Vinc cells treated with 10 µM daunorubicin as expressed in
peak drug accumulation. The insert (Figure 1) shows the accumu-
lation of radiolabelled daunorubicin by 1 h and confirms the pres-
ence of comparable intracellular drug concentrations in HL-60
cells exposed to 1 µM daunorubicin and HL-60/Vinc cells exposed
to 10 µM daunorubicin.

If we compare the total drug accumulation over time as
expressed in AUC (total area under the intracellular drug concen-
tration × time curve), the AUC value for HL-60/Vinc at 6 h (1 h
drug exposure followed by 5 h chase in drug-free media) is
between that of HL-60 treated with 1 µM and HL-60 treated with
0.5 µM daunorubicin. As no detectable drug remains in HL-60
(treated with 0.5 µM daunorubicin for 1 h) and HL-60/
Vinc (treated with 10 µM daunorubicin for 1 h) after 5 h chase in
© Cancer Research Campaign 1999
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Figure 2 The viability of HL-60 and HL-60/Vinc cells treated with
daunorubicin for 1 h followed by post-incubation in drug-free medium for the
indicated times, as determined by the trypan blue exclusion assay. Results
are given as the mean of three independent experiments. HL-60 cells were
incubated with 0.5 µM (●●) or 1 µM (■■) daunorubicin and HL-60/Vinc cells with
10 µM daunorubicin (■). Bars, standard deviation.
drug-free media, we can assume that these AUC values represent
the total drug accumulation for the two cell lines.

Characterization of the cell death process in
daunorubicin-treated HL-60 cells

Treatment of HL-60 cells for 1 h with either 0.5 or 1 µM dauno-
rubicin resulted in a rapid decrease in viability as determined by
the trypan blue exclusion assay (Figure 2). The loss of viability
was accompanied by the appearance of cells with morphological
changes characteristic of apoptosis as visualized by MayÐ
Gr�nwaldÐGiemsa staining (results not shown) and by the forma-
tion of cells containing fragmented, condensed chromatin as
revealed by staining with DAPI (Figure 3A). The percentage of
apoptotic cells was 25%, 48% and 85% at 6, 12 and 24 h after drug
treatment respectively.

Conventional agarose gel electrophoresis showed the appear-
ance of detectable internucleosomal DNA fragmentation 4 h after
daunorubicin treatment (Figure 3B), whereas field inversion gel
electrophoresis showed formation of larger DNA fragments
(around 50 Kbp) as early as 2 h after treatment (results not shown).

The effect of daunorubicin on cell cycle progression was also
determined. Flow cytometric analysis showed that daunorubicin
exposure resulted in an enrichment of cells in the early S-phase of
the cell cycle as determined 6 h after drug treatment. This was
accompanied by the appearance of cells in the sub-G1 region,
which corresponds to apoptotic cells (Figure 3C). After an addi-
tional 6 h, the number of cells in the sub-G1 region had greatly
increased; most remaining cells had a DNA content corresponding
to early to mid-S-phase (Figure 3C). Subsequent TUNEL analysis,
which identifies the fraction of cells with fragmented DNA as a
function of cell cycle distribution, showed that apoptotic cells
(21% by 6 h), predominantly, were recruited from G1 and, to a
lesser extent, from early S phase (Figure 3D).

Taken together, these results show that 1 h treatment of HL-60
cells with 1 µM daunorubicin leads to a rapid loss of viability due
© Cancer Research Campaign 1999
to apoptosis. Similar results were obtained for HL-60 cells treated
with 0.5 µM daunorubicin (data not shown).

Characterization of the cell death process in
daunorubicin-treated HL-60/Vinc cells

HL-60/Vinc cells were treated with 10 µM daunorubicin for 1 h
followed by incubation in drug-free medium which was renewed
after 72 h. Although this dose resulted in the same intracellular
drug concentration as for HL-60 cells treated with 0.5 to 1 µM

daunorubicin (Figure 1), the cellular effects were very different.
The cell viability decreased by up to 50% during the first 24 h,
after which time the number of viable cells remained almost
constant for the next 72 h (Figure 2). After 96 h, the cells started to
grow again and had recovered normal proliferation rate by 144 h
(data not shown). Light microscopy studies showed that different
morphological changes occurred during the post-treatment period.
Three major populations could be identified: cells with unchanged
morphology, enlarged/polyploid cells and apoptotic cells (Figure
4A). As shown in Figure 5, enlarged cells appeared rapidly and
represented about 60% of the total cell population 12 h after drug
treatment. This was followed by the progressive emergence of
polyploid cells that often had fragmented nuclei. Thereafter, the
number of large cells decreased and only few such cells could be
detected after 120 h. A small fraction of apoptotic cells was
observed throughout the post-treatment period, the percentage of
which increased to reach 20% of the total cell population 96 h
after drug treatment. Finally, the fraction of cells with normal
morphology was strongly reduced during the first 96 h and then
started to increase, constituting the majority of cells by 120 h.
Interestingly, surviving cells exhibited P-glycoprotein expression
levels, drug sensitivity and morphological features similar to those
of untreated HL-60/Vinc cells, suggesting that the surviving cells
did not represent a subpopulation with intrinsic higher dauno-
rubicin resistance (results not shown).

DNA analysis by both conventional and pulse-field gel
electrophoresis revealed no DNA fragmentation until 48 h after
treatment, when both large DNA fragments (not shown) and
DNA ladders (Figure 4B) appeared.

Flow cytometric analysis of daunorubicin-treated cells revealed
a marked growth arrest of cells in the G2/M phase of the cell cycle
24 h after drug treatment (Figure 4C); thereafter, cells with 8N
DNA content were detected (Figure 4C). In parallel, cells
appeared in the sub-G1-region, which corresponds to apoptotic
cells. TUNEL analysis confirmed that DNA fragmentation was a
slow event, which first occurred 24 h after drug treatment, and
then slowly increased to include 35% of the cells after 132 h. The
DNA fragmentation preferentially occurred in late S-phase,
whereas no apparent fragmentation took place in cells with DNA
ploidy higher than 4N (Figure 4D). To determine what happened
with both normal and enlarged cells, cell sorting experiments were
carried out 72 h after drug treatment based on side and forward
scatter, separating cells with 2N and cells with >4N DNA content.
Subsequent incubation of the two cell populations revealed that
the large, mostly polyploid cells eventually died out whereas the
cells with 2N DNA content started to grow again (result not
shown).

These results show that treatment of HL-60/Vinc cells with
10 µM daunorubicin induced a G2/M arrest, which was followed by
either polyploidy or delayed internucleosomal DNA fragmentation
British Journal of Cancer (1999) 79(7/8), 1090–1097
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Figure 3 Nuclear morphology, DNA fragmentation and cell cycle distribution of HL-60 cells exposed to 1 µM daunorubicin for 1 h, followed by post-incubation
in drug-free medium for the indicated times. Data shown are typical of three independent experiments. (A) Morphological alterations of chromatin were
evaluated by DAPI staining and viewed at 400 × magnification: (a) untreated cells, (b) daunorubicin-treated cells after 6 h post-incubation. Note the presence of
numerous apoptotic cells, e.g. top left. (B) Formation of oligonucleosomal DNA fragments. DNA was isolated at various times and analysed by agarose gel
electrophoresis. Lane 1, control (untreated cells); lanes 2–7, cells after 2, 4, 6, 12, 24 and 48 h post-incubation. (C) Cell cycle distribution (D) DNA
fragmentation of HL-60 cells after 6 h post-incubation in drug-free medium as determined by the TUNEL assay
that occurred during the next cell cycle. This sequence of events
was clearly very different from what was observed for HL-60 cells
treated with 0.5 to 1 µM daunorubicin although the overall intracel-
lular drug concentration was comparable between the two cell
lines. One explanation could be that HL-60/Vinc cells have addi-
tional resistance mechanisms such as an altered intracellular distri-
bution or an altered topoisomerase II, which would lead to
decreased drug target interaction. Alternatively, it could be a direct
result of differences in the cell death programme between the two
cell lines.

Dose effect of daunorubicin on the cell death process
in HL-60 and HL-60/Vinc cells

To establish if the cell death pathway was modified in the resistant
cells, HL-60 and HL-60/Vinc cells were treated with isotoxic
doses of daunorubicin. The previous treatment with 1 µM dauno-
rubicin for HL-60 cells or 10 µM for HL-60/Vinc cells resulted
in approximately 90% (IC90) and 50% (IC50) loss of viability,
respectively, as determined by trypan blue exclusion by 24 h
(Figure 2).
British Journal of Cancer (1999) 79(7/8), 1090–1097
Treatment of HL-60 cells with 0.1 µM daunorubicin, which
corresponds to the IC50 dose for this cell line, resulted in a G2/M
block, followed by the occurrence of polyploid cells, delayed DNA
fragmentation (Figure 6A) and a transient decrease in cell viability.
These findings are similar to what was observed for  HL-60/Vinc
cells treated with an isotoxic dose of daunorubicin  (10 µM).

Alternatively, HL-60/Vinc cells were treated with 100 µM

daunorubicin, which corresponds to the IC90 value for this cell line.
This resulted in rapid apoptosis, with no arrest in G2/M but a rapid
accumulation of cells in G1 and early S followed by internucleo-
somal DNA fragmentation (Figure 6B). These results are similar
to what was observed for HL-60 cells treated with an isotoxic dose
of daunorubicin (0.5Ð1 µM).

Altogether, these studies show that daunorubicin may induce
rapid apoptosis or delayed cell death in both sensitive and MDR-
resistant cells depending on dose. No differences in the cell death
processes were observed between the two cell lines at isotoxic
concentrations. We conclude that neither modifications of the cell
cycle regulation nor of the cell death process had occurred in the
multidrug-resistant HL-60/Vinc cells as determined by the cellular
response to daunorubicin.
© Cancer Research Campaign 1999
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Figure 4 Nuclear morphology, DNA fragmentation and cell cycle distribution of HL-60/Vinc cells treated with 10 µM daunorubicin for 1 h, followed by incubation
in drug-free medium for the indicated times. Data shown are typical of three independent experiments. (A) Morphological alterations of chromatin were
evaluated by DAPI staining and viewed at 400 × magnification: (a) untreated control cells, (b) daunorubicin-treated cells after 48 h post-incubation. Note the
presence of apoptotic cells (middle left), normal mitotic figures (top) and enlarged cells with multiple nuclei (middle right) of which one is undergoing mitosis
(bottom right). (B) Formation of oligonucleosomal DNA fragments. DNA was isolated at various times and analysed by agarose gel electrophoresis. Lane 1,
control (untreated cells); lanes 2–7, cells after 2, 4, 6, 12, 24, 48 h post-incubation. (C) Cell cycle distribution. (D) DNA fragmentation of HL-60/Vinc cells after
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Figure 5 Morphological changes of HL-60/Vinc cells exposed to 10 µM

daunorubicin for 1 h, followed by incubation in drug-free medium. The
viability of HL-60/Vinc cells was determined by trypan blue exclusion at the
indicated times. In parallel, cells were stained according to the
May–Grünwald–Giemsa procedure. For each time point 400 cells were
examined, the percentage of cells belonging to the different subpopulations
was determined and normalized with respect to the total number of viable
cells. Data shown are typical of three independent experiments. Cells with
unchanged morphology (▲), enlarged cells (■■), apoptotic cells (●) and total
cell number (■)
DISCUSSION

Exposure of some AML cells to daunorubicin leads to rapid apop-
totic cell death, whereas other AML cells show natural resistance,
which has been attributed to the expression of functional P-glyco-
protein resulting in decreased drug accumulation (Quillet-Mary et
al, 1996). However, it has also been proposed that P-glycoprotein-
expressing MDR cells are inherently defective for apoptosis (Ling
et al, 1993; Frankfurt et al, 1994). The aim of the present study
was to compare the cell death pathways in a human AML cell line
(HL-60) with its MDR counterpart (HL-60/Vinc) at doses that
yield either comparable intracellular daunorubicin concentrations
or comparable cytotoxicity. We showed that a clinically relevant
exposure of HL-60 cells to daunorubicin (0.5Ð1 µM for 1 h) leads
to rapid apoptosis. In contrast, when HL-60 cells were treated with
0.1 µM daunorubicin for 1 h, a different type of cell death was
observed, which has the features of mitotic cell death. Mitotic cell
death is a slow process that requires several cell cycles and is asso-
ciated with the formation of enlarged, often polyploid and multi-
nucleated, cells. Most of the cells eventually die by mitotic failure
(Ômitotic cell deathÕ), whereas a smaller fraction dies by delayed
apoptosis.
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Figure 6 Cell cycle distribution of (A) HL-60 cells exposed to 0.1 µM

daunorubicin for 1 h followed by post-incubation in drug-free medium for the
indicated times. (B) HL-60/Vinc cells exposed to 100 µM daunorubicin for 1 h
followed by post-incubation in drug-free medium for the indicated times.
Insert, DNA fragmentation of HL-60/Vinc cells as determined by the TdT
assay
The mechanism of cell death was also dose dependent in HL-
60/Vinc cells, although much higher drug concentrations were
required to induce the two processes. Mitotic cell death was
observed after 1-h treatment with 10 µM daunorubicin, while
apoptosis occurred at 50Ð100 µM daunorubicin. Therefore, our
results do not support the notion that P-glycoprotein expressing
MDR cells are inherently defective for apoptosis, as has previ-
ously been suggested (Ling et al, 1993; Frankfurt et al, 1994).

Although no intrinsic changes in the regulation of cell cycle
progression or cell death pathways occurred in HL-60/Vinc cells,
our results show that the resistance of these cells is at least bifacto-
rial because HL-60/Vinc cells remain refractory to daunorubicin
even at intracellular drug concentrations that are sufficient to kill
sensitive cells. These results were unexpected as it has been
reported that expression of mdr1 antisense oligodeoxynucleotides
in HL-60/Vinc cells totally restores their sensitivity towards
vincristine (Cucco and Calabretta, 1996). No difference between
HL-60 and HL-60/Vinc cells was found with respect to both
multidrug-related protein (MRP) and lung-related protein (LRP)
expression (M.-G. C�me, A. Skladanowski and A.K. Larsen,
unpublished results). It is possible that the resistant cells have an
altered intracellular drug distribution, as sequestration of anthra-
cyclines into cytoplasmic vesicles is well documented for many
cell lines with acquired drug resistance (Keizer et al, 1989;
Gervasoni et al, 1991; Meschini et al, 1994; Seidel et al, 1995). An
additional possibility is that the nuclear target for daunorubicin,
DNA topoisomerase II, could be altered in the HL-60/Vinc cells.
British Journal of Cancer (1999) 79(7/8), 1090–1097
To the best of our knowledge, this is the first report describing a
dual mode of cell death induced by an anthracycline. A similar
situation has previously been reported for other DNA-damaging
agents, including etoposide, X-ray irradiation, bleomycin and
cisplatin (Lock and Ross, 1990; Chang and Little, 1992; Rodilla,
1993; Tounekti et al, 1993; Thompson, 1995). The dual mode of
cell death might have impact on the clinical efficiency of these
compounds because the two cell death programmes appear to be
under separate genetic control. This was most clearly shown by
recent experiments when the overexpression of Bcl-2 in human
epithelial tumour cells inhibited etoposide-induced apoptosis, but
had no effect on the formation of polyploid, multinucleated cells
characteristic of mitotic cell death. As a consequence, Bcl-2
enhanced short-term viability but had no effect on long-term
clonogenic survival (Lock and Stribinskiene, 1996).

It is well established that the apoptotic response is affected by
multiple stimuli, including the expression of oncogenes and
tumour-suppressor genes and the presence of external survival
factors (Thompson, 1995). In contrast, the mechanism of mitotic
cell death is less well understood. Anthracycline treatment leads to
cell cycle arrest in either the G1 or G2 phase of the cell cycle
depending on dose and cell type (Tobey, 1972; Bhunyan and
Groppi, 1989). In our system, no G1 arrest was observed within a
large range of concentrations, which is probably related to the
absence of the p53 gene in HL-60 cells (Sugimoto et al, 1992).
Cell cycle arrest in the G2 phase is believed to protect the cell by
providing time to repair DNA lesions prior to mitosis and the initi-
ation of a new cell cycle. In principle, the G2 arrest must consist of
at least three components: a sensor that monitors the integrity of
the genome, a signal that this sensor generates and a response
element in the cell cycle engine that causes it to arrest or delay
before the G2 to M transition. In budding yeast, several genes
including RAD9, RAD17, RAD24and MEC3have been identified
in which gene products participate in the feedback control that
detects damaged DNA. Cells that contain recessive mutations in
these genes do not arrest in G2 subsequent to DNA damage and
suffer lethal chromosome damage during mitosis (Weinert and
Hartwell, 1988; Weinert, 1992). The response element that causes
G2 arrest following treatment with daunorubicin is not known.
However, it has been reported that treatment with other topoiso-
merase inhibitors such as doxorubicin (Ling et al, 1996), etoposide
(Lock and Ross, 1990) and camptothecin (Tsao et al, 1992)
prevents the activation of p34cdc2 kinase, which controls the entry
into mitosis. Addition of caffeine to etoposide-treated cells leads to
activation of p34cdc2, release of the cells from G2 arrest and subse-
quent increase in the incidence of mitotic death (Lock et al, 1994).
Taken together, these results suggest that mitotic cell death may
arise from a failure of coupling the G2/M transition to completion
of DNA repair.

Our results have several important practical implications. The
doses that induce either rapid apoptosis or delayed mitotic cell
death in HL-60 cells are both clinically relevant as a bolus admin-
istration of daunorubicin to leukaemia patients results in a mean
peak plasma concentration of about 0.5 µM (Speth et al, 1987).
Therefore, a relatively modest reduction in the in vivo daunoru-
bicin peak plasma concentration due to a reduced dose, slow-down
of drug administration or altered pharmacokinetics could have a
profound effect on the efficiency of the treatment. Our results may
also be relevant for response prediction. In both sensitive and
resistant cells, the two different cell death pathways resulted in a
different outcome as regrowth was observed only in association
© Cancer Research Campaign 1999
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)

with mitotic cell death, which is characterized by the formation of
enlarged, often polyploid, cells with micronucleation. Therefore,
morphological criteria might be a useful way to estimate treatment
efficacy in patients with myeloid leukaemia.
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