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Abstract: Green algae are fast-growing microorganisms that are considered promising for the pro-
duction of starch and neutral lipids, and the chlorococcal green alga Parachlorella kessleri is a favorable
model, as it can produce both starch and neutral lipids. P. kessleri commonly divides into more than
two daughter cells by a specific mechanism—multiple fission. Here, we used synchronized cultures
of the alga to study the effects of supra-optimal temperature. Synchronized cultures were grown
at optimal (30 ◦C) and supra-optimal (40 ◦C) temperatures and incident light intensities of 110 and
500 µmol photons m−2 s−1. The time course of cell reproduction (DNA replication, cellular division),
growth (total RNA, protein, cell dry matter, cell size), and synthesis of energy reserves (net starch,
neutral lipid) was studied. At 40 ◦C, cell reproduction was arrested, but growth and accumulation
of energy reserves continued; this led to the production of giant cells enriched in protein, starch,
and neutral lipids. Furthermore, we examined whether the increased temperature could alleviate
the effects of deuterated water on Parachlorella kessleri growth and division; results show that supra-
optimal temperature can be used in algal biotechnology for the production of protein, (deuterated)
starch, and neutral lipids.

Keywords: microalgae; Parachlorella kessleri; starch; supra-optimal temperature; cell cycle; energy
reserves; growth processes; reproduction events; deuterium; deuterated starch; deuterated lipid

1. Introduction

Light and temperature are two crucial factors affecting algal growth and division,
both in natural habitats and in biotechnological applications. For autotrophically grown
organisms, there is a physiological range of light intensities and temperatures that sup-
port growth and division, and light intensities and temperatures below the threshold are
not sufficient. On the other hand, light intensities and temperatures above this range
are increasingly stressful, and will inhibit cell division and/or growth. The duration of
light, along with its intensity and spectral composition will, in autotrophically grown
algae, affect growth rates [1–11], but will not affect light-independent processes such as
cell division, which uses internal energy stores for its support [1,5–9,11]. In contrast, tem-
perature is much less specific, as it will affect all metabolic processes, including “dark”
ones such as cell division; thus, its effects reach beyond setting growth rates. In principle,
within the physiological range, a 10 ◦C increase in temperature will increase metabolic
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rate twofold [12]. Increasing temperature will thus speed up growth, as well as individual
processes leading to cell division, and consequently shorten the duration of the cell cycle,
as shown in different algae such as Chlorella ellipsoidea [11], Chlamydomonas reinhardtii [13],
Chlamydomonas eugametos [14], and Desmodesmus quadricauda [15]. However, individual
metabolic processes are differentially sensitive to various stresses [16], including tempera-
ture [17], which significantly affects how cells react to changes in temperature. In particular,
cell division seems to be more sensitive to temperature increases than growth does [17,18];
this has peculiar consequences; there are threshold temperatures that will only slightly or
not at all affect cell growth, but will completely block cell division. The effects of such supra-
optimal temperatures were described in the green algae Chlamydomonas reinhardtii [17] and
Chlorella vulgaris [18].

The chlorococcal alga Parachlorella kessleri (formerly Chlorella kessleri [19]) is a biotech-
nologically promising algal species [20–29] that divides by multiple fission. Its cell cycle
consists of multiple rounds of DNA replication that, after completion of the last one, are
followed by successive nuclear divisions. Each of the nuclear divisions is immediately
followed by cell division. Morphologically, the cells become sequentially polyploid but
not polynuclear [30]. Within a single cell cycle, the mother cell can give rise to 2, 4, 8, or
16 cells; this is consistent with the established scheme of multiple fission, where a single
mother cell can divide into 2n daughter cells—where n is the number of rounds of started
reproductive sequences (DNA replication, nuclear division, cell division) [31]. Increasing
light intensity will increase both growth rate and the number of reproductive sequences
started, and thus, the number of daughter cells being formed from a single cell [30].

The primary energy and carbon store of P. kessleri is starch, which is produced under
optimal growth conditions in complete nutrient medium and at physiological values of
light intensity and temperature [23,32]. Starch is exclusively located in the chloroplasts
in the form of starch grains of different numbers and sizes. In the autotrophically grown
algal cell, starch reserves serve mostly as a buffer to supply a stable carbon and energy
source. This is indispensable, as in nature the energy supply from photosynthesis varies
with sunlight intensity during the day, and is absent during nights. The buffering role
of starch is crucial for cell reproduction. The processes of DNA replication, along with
nuclear and cellular divisions, are of importance in the life of a cell and so they depend on a
constant and reliable supply of energy and carbon. Indeed, the majority of starch produced
by cells is degraded exclusively for cell reproduction [33], and this is true even for cells
growing in continuous light [34]. This was evidenced in synchronized cultures of different
algal species, where net starch increased to some maximal value during the cell cycle, and
subsequently was nearly completely degraded during nuclear and cellular division at the
end of the cell cycle [33,35,36]. The cellular starch content at any given time is the net result
of starch synthesis and utilization; thus, decreasing starch content can be caused by lower
starch synthesis, by increased consumption, or by a combination of both factors. It seems
that a decrease in starch content at the time of cell division is caused by a combination
of increased starch spending for cell reproduction and a minimum photosynthetic rate
specific for this period [35]. Furthermore, a blockage of cell division processes as the
primary starch consumers will lead to starch (over)accumulation. This has been established
for different stress conditions, such as the application of inhibitors [36], nutrient starva-
tion [24,25,32,36], high light intensity [32], the presence of a high concentration of CO2 [37],
or supra-optimal temperatures [18], and it should be explored biotechnologically [36,38].
If stress conditions are prolonged, starch reserves will gradually start to be replaced by
neutral lipids—the secondary energy store of P. kessleri [23,24,32,39]. Although neutral
lipids under optimal growth conditions are maintained at a relatively low level, at 1–10%
of dry matter (DM) [23,39,40], they can also (over)accumulate under stress conditions
similar to those inducing starch accumulation, such as nitrogen, sulfur, or phosphorus de-
pletion [24,26,32,39,41], dilution of all the nutrients in the medium [25,39] or salt stress [42].
The ability to (over)produce both starch and neutral lipids makes P. kessleri a useful model
for applications in biotechnology. A peculiar source of stress for P. kessleri is cultivation
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in deuterium, which leads predominantly to the accumulation of starch [30], but also that
of neutral lipids [43]. Deuterium—the stable isotope of hydrogen—is known to have the
highest kinetic effect among the stable isotopes of biogenic elements [43–45]. Deuterium in
deuterated water is known to increase cell stress via several mechanisms [43,44], includ-
ing greater bond dissociation and activation energies [46]. Its presence affects the entire
metabolism, and its specific effects range from disrupting signaling [47] and energy produc-
tion in mitochondria and chloroplasts [48,49] to disrupting cell division [50,51]. Given the
very low concentrations of deuterium (or deuterated water) in nature, its application in high
concentrations is artificial, and is also quite expensive. However, deuterated molecules
are used extensively as analytical standards and for metabolic labeling [43,52,53], and
deuterated compounds are exploited in pharmacology [44,54–57]. Therefore, production of
algal-derived deuterated compounds is justified for the production of fine (bio)chemicals
with very high added value. Indeed, algal-derived deuterated biomolecules such as sugars,
proteins, carotenoids, lipids, and starch can be used commercially [43,52,53,58–60].

Here, we supplement the extensive knowledge that has accumulated on starch and
neutral lipid production under different conditions in P. kessleri by providing baseline infor-
mation on the effects of supra-optimal temperature on cell reproduction (DNA replication,
cell division) and growth (RNA, protein, dry matter, cell volume). Particular focus has
been placed on the production of starch and lipids as the primary and secondary energy
stores. Furthermore, we analyze the effects of a high concentration of deuterium on cell
growth and reproduction, as well as the production of deuterated starch and lipids. The
results of this study can be exploited as a starting point for further optimization in larger
scale biotechnological production, but will also widen the P. kessleri portfolio as a model
for basic research.

2. Materials and Methods
2.1. Organism and Culture

The green unicellular microalga Parachlorella kessleri (Trebouxiophyceae, Chlorophyta)
(strain CCALA 255) was obtained from the Culture Collection of Autotrophic Organisms
at the Institute of Botany, Czech Academy of Sciences in Třeboň, Czech Republic (CCALA;
https://ccala.butbn.cas.cz/, accessed on 7 June 2021).

For routine sub-culturing, the cultures were streaked every three weeks onto nutrient
medium (see below) solidified by agar (1.5%), and grown on a light shelf at an incident
light intensity of 100 µmol photons m −2 s −1 of photosynthetically active radiation.

2.2. Mineral Nutrient Medium

The mineral medium was based on the mean content of P, N, K, Mg, and S in algal
biomass [61], and had the following initial composition (in mg/L): 1100 KNO3, 237 KH2PO4,
204 MgSO4.7H2O, 40 C10H12O8N2NaFe, 88 CaCl2, 0.83 H3BO3, 0.95 CuSO4.5H2O, 3.3 MnCl2.
4H2O, 0.17 (NH4)6Mo7O24.4H2O, 2.7 ZnSO4.7H2O, 0.6 CoSO4.7H2O, and 0.014 NH4VO3 in
distilled water [36]. For the preparation of the medium, 100x concentrated stock solutions of
macroelements and microelements were used. All components were diluted in distilled water
and autoclaved for 30 min at 121 ◦C. The pH was adjusted to 7 with 1 M NaOH.

2.3. Culture Conditions

Two types of cultivation units were used for experiments: (1) glass cylinders (inner
diameter 36 mm, height 500 mm, volume of suspension 300 mL), and (2) flat and rectangular
glass vessels (inner dimensions 400 × 300 × 20 mm, volume of suspension 2500 mL). The
first type of the units was used for routine growth, synchronization, and small-scale
experiments with deuterated water; the second type of the units was used for large-
scale experiments. Culture units were placed in a thermostatic water bath, where the
temperature was set and automatically maintained at the values stated in the Results
section for each experiment. The vessels were illuminated from one side with a panel of
dimmable fluorescent lamps (DULUX L55W/950 Daylight, OSRAM, Munich, Germany).

https://ccala.butbn.cas.cz/
https://ccala.butbn.cas.cz/
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For the experiments, the incident light intensity was set either to 110 or 500 µmol photons
m −2 s −1 of photosynthetically active radiation. The cultures were vigorously mixed with
air bubbles containing 2% carbon dioxide (v/v) dispersed through a 200-µL micropipette
tip fixed in a glass tube placed at the bottom of the cylinder. The aeration in the flat vessels
was performed via bubble stream from a perforated stainless steel tube located at the
bottom of the vessel. The flow rate of the aeration mix was 60 L/h.

2.4. Synchronization of Cultures

Cultures were synchronized under optimal conditions: incident light intensity 500 µmol
photons m −2 s −1, temperature 30 ◦C, 2% CO2 (v/v) in aeration mixture. The cultures
were initiated by inoculating algal cells directly from the culture plates into the liquid
medium. Such cultures were synchronized by alternation of 18 h light and 7 h of dark, as
established earlier [30]. During the synchronization procedure, the cell density was kept
below 1 × 106 cells mL−1 by dilution at the end of the dark period, in order to prevent cell
shading. This regime was maintained for several days (about 3 cycles) until the required
culture synchrony was reached. Once the cultures were synchronized, they were grown
for approximately one more cycle at the same cell density until the volume of the culture
required for the start of the experiment was reached. The synchronized daughter cells were
again diluted to the initial cell density of approximately 1 × 106 cells mL−1, and used as
inocula for experimental cultures.

2.5. Management of Deuterated Cultures

The synchronized inocula for the deuterated water experiments were centrifuged at
3000× g for 5 min and resuspended in a medium containing the desired concentration of
deuterated water. The cultures were cultivated in a semi-batch mode, controlled by the
optical density at 750 nm (OD750). Upon reaching an OD750 of 0.4, the cultures were diluted
with fresh medium with corresponding D2O content to the initial value of OD750. This way,
growth unlimited by nutrients and light was achieved.

2.6. Measurement of Light Intensity

The dimmable fluorescent tubes were used for the adjustment of the incident ir-
radiance. The light intensity was measured using a quantum/radiometer/photometer
(LI-COR, Inc., Lincoln, NE, USA). Incident light intensity (Ii) was measured at the surface
of the culture vessel, while the transmitted light intensity was measured at the rear side
of the culture vessel (It). The different values of incident (Ii) and transmitted (It) light
intensities at different optical densities given by cell size and concentrations were used
to calculate the mean light intensity (Im)—i.e., light energy absorbed by a layer of cell
suspension—according to the Lambert–Beer formula: Im = (Ii − It)/ln(Ii/It).

2.7. Assessment of Cell Division Curves

The proportion of mother cells and daughter cells was determined by light microscopy
in cells fixed in Lugol’s solution (1 g I, 5 g KI, 100 mL H2O) at a final concentration of 10 µL
of Lugol’s solution per 1 mL of cell suspension.

2.8. Dry Matter Determination

Biomass was separated from the medium by centrifugation of 4 mL of the cell sus-
pension in pre-weighed microtubes at 3000× g for 5 min; the sediment was dried at
105 ◦C for 12 h and weighed on an analytical balance (TE214S-0CE, Sartorius, Goettingen,
Germany) [36].

2.9. Cell Volume and Number

Cell volume and number were measured using a Beckman Coulter Multisizer 4
(Beckman Coulter Life Sciences, Indianapolis, IN, USA) by diluting 50 µL of fixed (0.2%
glutaraldehyde) cell suspension into 10 mL of 0.9% NaCl (w/v) electrolyte solution.
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2.10. Quantum Yield Measurement

Aliquots of 2 mL were withdrawn from the culture and placed into 10 × 10-mm plastic
cuvettes for 30 min in the dark. Quantum yield was measured using an AquaPen-C 100
(Photon Systems Instruments, Drasov, Czech Republic).

2.11. Neutral Lipids and Starch Staining

For neutral lipids and starch staining, 1 mL of culture was sampled and stored for
up to several hours at 4 ◦C until analysis. Staining was conducted on microscopy slides
prior to observation. For starch staining, 20 µL of culture was combined with 0.5 µL of
Lugol’s solution (1 g I, 5 g KI, 100 mL H2O) and observed immediately via light microscope
(model BX51, Olympus, Tokyo, Japan). Neutral lipids were stained with the addition of
0.5 µL of freshly prepared Nile red dye (0.5 mg/mL in DMSO, catalog no. 72485, Sigma-
Aldrich, Prague, Czech Republic) to 20 µL of culture, directly on the microscopic slide.
Such slides were incubated at room temperature for 20 min in the dark. Stained cells
were observed using a microscope (model BX51, Olympus, Tokyo, Japan) equipped with a
mercury lamp and filter combination U-MNU2 (360–370 nm excitation and >515 nm barrier
filter). Microphotographs were taken with a DP72 camera (Olympus, Tokyo, Japan).

2.12. Neutral Lipids Quantification

Neutral lipids content was measured spectrophotometrically in a microplate format
following the modified procedure of Takeshita, et al. [62]. Aliquots (100 µL) of the cultures
were combined with 5 µL of freshly prepared Nile red dye (0.5 mg/mL in DMSO, catalog
no. 72485, Sigma-Aldrich, Prague, Czech Republic) in a 96-well plate. The same amount
of Nile red dye was added to a sample blank consisting of 100 µL of H2O. The plate
was incubated at room temperature in the dark for 15 min. Fluorescence was measured
using an Infinite 200 PRO microplate reader (Tecan, Männedorf, Switzerland) equipped
with a 485-nm excitation filter and a 595-nm emission filter. The fluorescence intensity of
the samples was normalized using the fluorescence intensity of unstained samples and a
blank. Standard curves produced from a commercial lipid standard—triolein (catalog no.
Y0001113, Sigma-Aldrich, St. Luis, MO, USA)—were used to quantify neutral lipids.

2.13. Estimation of Bulk RNA, DNA, and Proteins
2.13.1. Total Nucleic Acids Extraction

The procedure of Wanka [63], as modified by Lukavský, et al. [64], was used for
the acidic extraction of total nucleic acids. After the removal of small-molecular-weight
contaminants, the total nucleic acids were hydrolyzed with 0.5 M perchloric acid, and the
absorbance of total nucleic acids in the supernatant was read at 260 nm (A260). Total nucleic
acid concentration was calculated based on calibration with a DNA standard of known
concentration treated using the same procedure, and normalized to the number of cells in
the sample.

2.13.2. DNA and RNA Determination

The light-activated reaction of diphenylamine with hydrolyzed DNA, as described
by Decallonne and Weyns [65], was used with the modifications of Zachleder [66]. The
concentrations of DNA within the samples were set by comparison to the A600 and A700 nm
values of the sample with known DNA concentration treated using the same procedure. The
values were normalized to the number of cells extracted; the RNA content was calculated
as the difference between the total nucleic acid and DNA contents.

2.13.3. Protein Determination

The sediment remaining after nucleic acid extraction was used for protein determina-
tion; it was hydrolyzed with 1M NaOH for 1 h at 70 ◦C. The protein concentration in the
supernatant after centrifugation of the hydrolysate (15 min, 5300× g, room temperature)
was estimated by BCA assay (cat. no. 23225, Thermo Fisher Scientific, Waltham, MA, USA)



Cells 2021, 10, 1806 6 of 19

according to the manufacturer’s specifications. The same procedure was carried out with a
calibration curve set by different concentrations of bovine serum albumin.

2.14. Starch Analyses

Net starch content was determined as described by Zachleder, et al. [30]. In short,
the cells were disintegrated by vortexing with zirconium beads, and the pigments were
removed via the addition of 80% (v/v) ethanol to the pellet, followed by incubation for
15 min at 68 ◦C. The procedure was repeated until the pellets were completely discolored.
After that, 1 mL of α-amylase from porcine pancreas (Sigma-Aldrich, St. Luis, MO, USA),
(0.5 mgl−1 (w/v) in 0.1 M sodium phosphate buffer (pH 6.9)) was added to the samples,
and they were incubated for 1 h at 37 ◦C (FTC 90i, VELP Scientifica, Usmate Velate MB,
Italy). Starch content was determined in the supernatant using DNSA color reaction for the
quantification of reducing sugars [67]. The concentration of starch was estimated through
a calibration curve of potato starch (Lach-Ner, Neratovice, Czech Republic) digested
with α-amylase.

2.15. Statistical Analysis

Experiments were performed in at least three biological replicates, and the mean
values were used to construct the graphs in SigmaPlot version 11 (Jandel Scientific Software,
Erkrath, Germany). Regression curves of various orders were applied to fit the data. If
not stated otherwise, all results are presented as means and standard deviation (n = 3).
MS Excel 2016 was used to compute one- and two-way ANOVA. A p-value < 0.05 was
considered to be significant.

3. Results
3.1. Growth in Normal Water

Synchronized cultures of Parachlorella kessleri were grown at optimal (30 ◦C) and supra-
optimal (40 ◦C) temperatures, at low (110 µmol photons m−2 s−1) and high (500 µmol
photons m−2 s−1) incident light intensities. The reproductive events (DNA replication,
cellular division) (Figure 1), growth processes (RNA and protein synthesis, dry matter, and
cell volume) (Figure 2), and accumulation of energy reserves (starch and lipids) (Figure 3)
were followed within the time interval corresponding to two consequent cell cycles (48 h)
in the control culture.

Figure 1. The course of reproductive events in the synchronized cultures of Parachlorella kessleri grown at temperatures of
30 ◦C and 40 ◦C (blue and red symbols and lines, respectively), and at incident light intensities of 500 and 110 µmol photons
m−2 s−1 (empty and full symbols, respectively). (A) DNA (pg cell−1), and (B) cell number (106 mL−1). Horizontal dashed
lines indicate the number of doublings of the initial values at the beginning of the cell cycle (0 h). Multiples of these values
are given on the right ordinate. Data are presented as means ± SE. The differences between 30 ◦C and 40 ◦C are statistically
significant at p < 0.001 (two-way ANOVA) in both A and B.
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Figure 2. Time course of growth events in synchronized cultures of Parachlorella kessleri grown at 30 ◦C and 40 ◦C (blue and
red symbols and lines, respectively), and at incident light intensities of 500 and 110 µmol photons m−2 s−1 (empty and full
symbols, respectively). (A) RNA (pg cell−1), (B) protein (pg cell−1), (C) dry matter (pg cell−1), and (D) cell volume (µm3

cell−1). Horizontal dashed lines indicate the number of doublings of the initial values at the beginning of the cell cycle (0 h).
Multiples of these values are given at right ordinate. Data are presented as means ± SE. The differences between 30 ◦C and
40 ◦C are statistically significant at p < 0.001 (two-way ANOVA) in both A and B.

Figure 3. The course of changes in energy reserves in synchronized cultures of Parachlorella kessleri at temperatures of 30 ◦C
and 40 ◦C (blue and red symbols and lines, respectively), and at incident light intensities of 500 and 110 µmol photons
m−2 s−1(empty and full symbols, respectively). (A) Starch (pg cell−1), and (B) lipids (pg cell−1). Horizontal dashed lines
indicate the number of doublings of the initial values at the beginning of the cell cycle (0 h). Multiples of these values are
given on the right ordinate. Data are presented as means ± SE. The differences between 30 ◦C and 40 ◦C are statistically
significant at p < 0.001 (two-way ANOVA) in both A and B. The differences between different light intensities in A are
statistically significant at p < 0.05 (two-way ANOVA).
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3.1.1. Reproductive Events

Daughter cells that were released during the dark period were uninucleate, containing
about 0.04 pg of DNA per nucleus. At the optimal temperature, the first replication round
started after about 8 h and was completed at the 12th h of growth in light at both light
intensities. The second replication round was terminated by the 18th h, when cell division
started. The extent of multiplication differed between the two light intensities, as the
DNA content increased about fourfold at low light intensity, and almost eightfold at high
light intensity. The content of DNA per cell became correspondingly reduced during cell
division between the 20th and 24th hours, when the cell numbers increased about eightfold
and fourfold at high and low light intensities, respectively (Figure 1A). In the second
cell cycle, the completion of DNA replication again shortly preceded the division of cells,
attaining a maximum DNA content per cell just before the release of the daughter cells
(Figure 1A,B). At high light intensity, DNA replication occurred earlier and to a greater
extent than at the low light intensity. Similarly to the first cell cycle, nearly three replication
rounds of DNA occurred at high light intensity, followed by division into mostly eight
daughters, while at lower light intensity only two replication rounds and division into four
daughter cells occurred during the cell cycles (compare Figure 1A,B).

The reproductive events were completely inhibited in the cultures grown at the supra-
optimal temperature (40 ◦C), which was demonstrated by constant values of DNA content
(Figure 1A), and number of cells (Figure 1B) corresponding to the initial values at the
beginning of the first cell cycle.

3.1.2. Growth Processes

Growth was characterized as changes in the cellular content (pg cell−1) of total RNA
(Figure 2A), proteins (Figure 2B), dry matter (Figure 2C), and cell volume (µm3 cell−1)
(Figure 2D). Total RNA content (Figure 2A) in the first cell cycle increased approximately
threefold at the low light intensity and almost fourfold at high light intensity within 18 h of
growth in cells grown at 30 ◦C, reaching a maximum just before cellular division, and then
decreasing with time as the cells divided to a value corresponding to the RNA content of
the daughter cells (Figure 2A). A similar behavior was also noted in the second cell cycle,
with the maximum being reached after 36 h, i.e., 18 h after cell division started. However,
the rate of RNA content increase was slower in the second cell cycle than in the first one,
probably due to a decrease in the mean light intensity (Table 1) due to an increase in cell
concentration by the end of the first cell cycle (Figure 2A).

Table 1. Changes in mean light intensities experienced by the cultures during the experiment at
different incident light intensities and temperatures.

Mean Light Intensity (µmol photons m−2 s−1)

Incident Light Intensity 110 µmol photons m−2 s−1 500 µmol photons m−2 s−1

Temperature 30 ◦C 40 ◦C 30 ◦C 40 ◦C

Time (h)

0 70 ± 5 75 ± 5 332 ± 15 332 ± 12

24 56 ± 5 54 ± 7 274 ± 10 261 ± 10

42 50 ± 5 50 ± 5 186 ± 10 220 ± 10

48 50 ± 5 50 ± 5 177 ± 10 220 ± 10

Similar kinetics were also observed in the time courses of protein content (Figure 2B),
dry matter (Figure 2C), and cell volume (Figure 2D) at 30 ◦C. The growth characteristics
(RNA, protein, and dry matter) were slowed, and attained a lower maximum content at the
lower light intensity of 110 µmol photons m−2 s−1 than at the higher intensity of 500 µmol
photons m−2 s−1. Within the second cell cycle, the differences between these variants were
less apparent, and growth rate was suppressed by an increase in cell concentration, and
a consequent decrease in mean light intensity (Table 1). Cell volume multiplied about
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eightfold (Figure 2D) in proportion to the number of daughter cells liberated at the end of
both cell cycles at both light intensities (Figure 1B).

Completely different kinetics of growth processes occurred in cultures grown at
40 ◦C. As described above, the reproductive processes (events) at this temperature were
inhibited (Figure 1), but the growth processes continued undisturbed for the duration of
two cell cycles of the control cultures grown at 30 ◦C (Figure 2). The cells reached a giant
size corresponding to about five doublings (32-fold increase) in cell volume within 36 h
(Figure 2D). Within the same time period, protein content attained three doublings (8-fold
increase; Figure 2B), dry matter attained four doublings (16-fold increase, Figure 2C), and
RNA content increased 8-fold (Figure 2A). The proportions of different components of the
cells differed compared to control cells.

3.1.3. Energy Reserves

The biochemical analyses of starch content solely detect net starch, i.e., the total
amount of starch produced in light minus starch consumed in light. Cells of the control
culture grown at high light intensity increased their starch content to about 16 times the
daughter cells’ content within 12 h of growth in the first cell cycle (Figure 3A). At the end
of the cell cycle, the starch was extensively degraded, until it reached the values present
in the daughter cells. At lower light intensity (110 µmol photons m−2 s−1), accumulation
of starch to its maximal value during the growth phase was slower, and it attained a
lower maximum than in the culture grown at high light intensity (500 µmol photons
m−2 s−1) (Figure 3A). In the second cell cycle, the synthesis of starch decreased due to an
increase in cell concentration caused by mother cell divisions (Figure 1B). This slowed the
accumulation of starch so that it only covered the requirements of metabolism, but did not
accumulate (Figure 3A).

Due to inhibited reproductive processes at 40 ◦C, the net starch content did not
decrease at the time of cell division in controls. Consequently, starch overaccumulated
to between 508- and 254-fold compared to the initial content in the daughter cells, and
to about 32-fold the maximum values found in the control cells (Figure 3A) The rate of
accumulation at the lower light intensity was slightly slower, and the final content of
overaccumulated starch was lower (77 vs. 104 pg cell−1) (Figure 3A).

The secondary energy reserve, neutral lipids, did not accumulate at the optimal
temperature of 30 ◦C. The lipid content remained fairly constant, and decreased during
the second cell cycle (Figure 3B). Contrary to growth at 30 ◦C, lipid reserves at 40 ◦C
increased from the middle of the first cell cycle until the end of the second cell cycle
(Figure 3B). Lipid accumulation was delayed at low light intensity, but the final values
—about a 64-fold increase compared to the initial values—were comparable between both
light intensities (Figure 3B).

3.2. Growth in Deuterated Water

Stress caused by growth at the supra-optimal temperature affected the cell compo-
sition, and significantly increased the content of both starch and lipids. Since increased
temperature increases kinetic energy—leading to a seeming decrease in both dissociation
and activation energies, which are both affected by the presence of deuterium—we tested
whether the combination of increased temperature and the presence of deuterium would
affect cell growth and accumulation of energy reserves. Synchronized cultures of P. kessleri
were grown at the optimal temperature of 30 ◦C and two higher temperatures: 35 ◦C, and
39 ◦C. In contrast to the experiments described above, for the experiments in deuterated
water, the temperature of 39 ◦C was used as the supra-optimal one; this was due to the
fact that combination of the higher temperature (40 ◦C) and deuterated water strongly
affected cell vitality and viability, but the effect of 39 ◦C on deuterated cultures (and control
cultures) was similar to the effect of 40 ◦C. As high light intensity, in combination with the
presence of deuterium, increases cellular stress [30], only a low light intensity of 110 µmol
photons m−2 s−1 was used for these experiments. Due to the inhibitively high price of
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deuterated water, only cellular division was followed, and growth was assessed by changes
in optical density at 750 nm (OD750) and cell volumes (Figure 4). The stress caused to the
photosynthetic apparatus was estimated as quantum yield.

Figure 4. Time course of cell division and growth in synchronized cultures of Parachlorella kessleri grown at an incident
light intensity of 110 µmol photons m−2 s−1 and temperatures of 30 ◦C (yellow diamonds), 35 ◦C (green circles), and 39 ◦C
(blue squares), with different concentrations of deuterated water in the medium (0, 70, 90, and 99%). (A) Optical density
at 750 nm, (B) cell number (106 mL−1), (C) modal cell volume, and (D) quantum yield. Note the logarithmic scale on the
Y-axis for (A–C). Note that the cultures were maintained in semi-batch mode. However, both panels (A) and (B) show
recalculated values multiplied by individual dilution factors. Thus, they represent a projection of the growth in semi-batch
cultivation mode to the continuous growth. This way, the plots remain easily readable.



Cells 2021, 10, 1806 11 of 19

3.2.1. Growth and Division

Synchronous cultures of P. kessleri grown in deuterated water showed a concentration-
dependent decrease in their growth rate (Figure 4A). Apart from decreased growth rates,
changes in cell numbers (Figure 4B) indicated decreased division rates in deuterated
cultures. This was further supported by observed changes in mode cell volume (Figure 4C),
which reflected cell cycle progression in synchronous cultures. At 30 ◦C, the culture in
0% D2O (Figure 4C, first panel, yellow line) completed three full cell cycles, as illustrated
by three sequences of cell volume increase and decrease, while there were only two cell
cycles completed in 70% D2O (Figure 4C, second panel, yellow line), one full cell cycle
in 90% D2O (Figure 4C, third panel, yellow line), and only growth—not followed by cell
division—which was characteristic for the majority of cells in 99% D2O (Figure 4C, fourth
panel, yellow line).

Interestingly, the effects of temperature varied between different deuterated cultures.
In the control culture, temperatures of 30 and 35 ◦C showed similar performance, both
in terms of growth (Figure 4A, first panel) and cell cycle progression (Figure 4B,C, first
panels), while at a temperature of 39 ◦C cell division was clearly inhibited, as documented
by the occurrence of abnormally enlarged cells at 39 ◦C (Figure 4C, first panel, blue line),
accompanied by significantly lower cell numbers (Figure 4B, first panel, blue line). This
phenotype recapitulates what is described in more detail above. In deuterated cultures, the
best performance, in terms of growth measured as OD750, was obtained at 35 ◦C (Figure 4A,
green lines). However, such a performance was mainly caused by an increase in cell volume
under such conditions—especially in 90% and 99% D2O (Figure 4C, green lines). At the
same time, division was more adversely affected by cultivation at 35 ◦C (Figure 4B, green
lines), as fewer cells were produced during cultivation. The adverse effect of cultivation at
39 ◦C was especially pronounced in quantum yields (Figure 4D, blue lines), which points
to severe impairment of photosynthetic efficiency in such cultures.

In order to quantify and compare the effects of different deuterium concentrations
(and their combination with tested temperatures), mass doubling time and cell number
doubling time were calculated (Table 2). Mass doubling time increased with increasing
D2O content in the growth medium, thus proving the adverse effect of D2O on growth. At
the same time, cell number doubling time also increased with increasing D2O content in
the medium, thus proving the adverse effect of deuterium on division. This trend applied
to all temperatures tested; however, at 39 ◦C, it was the weakest, as such a temperature
already poses severe stress—even for the control, undeuterated culture. Moreover, the
effect of increasing D2O concentration on growth seemed to be more pronounced than the
effect on cell division at 30 ◦C, but not at 35 and 39 ◦C (Table 2).

3.2.2. Energy Reserves

The combined effects of different deuterium concentrations with optimal and supra-
optimal temperatures affected both starch and neutral lipid accumulation. After 24 h of
cultivation, the starch content was increased in all variants except for the control culture
grown at 30 ◦C (Figure 5, compare A with B–D and I–L). The degree of starch accumulation
at 30 ◦C generally increased with increasing D2O concentration—except for 99% D2O,
which contained the lowest amount of starch among cultures grown at 30 ◦C (Figure 5,
compare panels A–D); at 39 ◦C, the net starch content was comparable in all variants
(Figure 5I–L). The neutral lipids content was negligible in the control cultures grown in
0% D2O (Figure 5E), but it started to accumulate in some of the cells grown at 39 ◦C
(Figure 5M), thus repeating the behavior described above (Figure 3). The deuterium-treated
cultures had a higher content of neutral lipids, and their content increased with increases
in both temperature and deuterium concentration from 70% D2O to 90% D2O (Figure 5).
The cells grown at the highest deuterium concentration (99% D2O) contained slightly less
neutral lipids than those grown in 90% D2O, but both of the cultures contained neutral
lipids in almost all cells at 39 ◦C, which was in contrast to 70% D2O, where only about half
of the cells contained detectable neutral lipids (Figure 5, compare O and P with N).
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Table 2. Comparison of mass and cell number doubling times for cultures grown in media containing different concentrations
of deuterated water at different temperatures. The average of at least three experiments is shown.

Concentration of
Deuterated Water (%) Temperature (◦C) Mass Doubling

Time (h) % of Control Cell Number
Doubling Time (h) % of Control

0

30 9.58 100.00 8.85 100.00

35 10.66 100.00 9.99 100.00

39 28.18 100.00 24.84 100.00

70

30 22.97 239.67 14.18 160.25

35 17.01 159.54 28.90 289.35

39 36.48 129.46 63.35 255.00

90

30 32.23 336.30 21.00 237.37

35 24.01 225.27 36.35 363.91

39 43.92 155.86 73.63 296.38

99

30 42.34 441.87 35.35 399.54

35 35.32 331.37 92.33 924.32

39 50.61 179.58 63.51 255.66

Figure 5. Light and fluorescence photomicrographs of synchronized cultures of Parachlorella kessleri grown for 24 h at an
incident light intensity of 110 µmol photons m −2 s −1, temperatures of 30 ◦C and 39 ◦C, and different concentrations of
deuterated water in the media (0, 70, 90, and 99%). (A,E,I,M) control cultures grown in 0% D2O, (B,F,J,N) cultures grown in
70% D2O, (C,G,K,O) cultures grown in 90% D2O, and (D,H,L,P) cultures grown in 99% D2O. In (A–D) and (I–L) the cells
were stained with Lugol’s solution to visualize starch; for (E–H) and (M–P) the cells were stained with Nile red to visualize
neutral lipids. Scale is 10 µm.
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4. Discussion

Parachlorella kessleri is an alga with emerging biotechnological potential, particularly
because it can produce both starch as a primary energy store and neutral lipids as a
secondary one [23,32]. Here, we used synchronized cultures of P. kessleri to analyze the
effects of supra-optimal temperature on the production of starch and neutral lipids, both in
the presence of normal (hydrogenated) water and of deuterated (heavy) water. We chose to
use synchronized cultures where all of the cells within the cultures were in the same phase
of the cell cycle. This allowed us to identify any subtle differences in the behavior of the
supra-optimal-temperature-treated cultures and, thus, better characterize the effects.

The application of different light intensities to the control culture at 30 ◦C led to
different degrees of multiplication of DNA, and to the production of different numbers
of daughter cells: four daughter cells at low light intensity, and eight daughter cells at
high light intensity (Figure 1). Interestingly, the number of daughter cells produced was
not significantly affected by the decreasing light intensities in the second cycle. At the
low light intensity, about 70 µmol photons m−2 s−1 at the beginning of the first and
56 µmol photons m−2 s−1 at the beginning of the second cell cycle were both sufficient for
division into four daughter cells (Table 1). Similarly, for division into eight cells, a sufficient
mean light intensity was 332 µmol photons m−2 s−1 at the beginning of the first cell cycle
and 274 µmol photons m−2 s−1 at the beginning of the second. This ability to divide into
multiple daughter cells, even at low light intensities, allows the alga to grow and divide
at high cell densities when the majority of incoming light is shaded [68,69], making it a
highly efficient species for algal biotechnology [70,71]. Although the number of daughter
cells produced was not affected, the different incident light intensities affected the timing
of the reproduction processes, so that DNA replication and cell divisions in the second
cell cycle were delayed by 4 and 2 h, respectively (Figure 1). Moreover, the daughter cells
produced at the end of the second cell cycle were smaller than those at the end of the
first cycle, and contained fewer proteins than the cells at the beginning of the experiment
(Figure 2). As the RNA and starch contents per cell stayed approximately the same at 30 ◦C
(Figures 2 and 3), the cell composition was clearly altered by light intensity. Furthermore,
cells at high light intensity were, in both cell cycles, richer in protein compared to the low-
light-grown cells (Figure 2B). This phenomenon might be exploited when a protein-rich
algal biomass is required [68,72]. Altogether, this documents the plasticity of the multiple
fission lifestyle, which allows the cells to slightly prolong the growth phase in order to be
able to reach a critical cell size for starting another reproductive sequence, and to maintain
the reproduction potential at the expense of producing slightly smaller daughter cells with
altered cell compositions. Such growth and metabolic plasticity of algae allows them to
thrive both at low light intensities [68,69], and in the harsh conditions of a desert, with very
high light intensity and extreme fluctuating temperatures [73–76].

Growth at the supra-optimal temperature led to a blockage of DNA replication and
cell division (Figure 1), an approximately 30-fold increase in cell size (Figure 2D), and
overaccumulation of both starch and lipids (Figure 3). The cell cycle arrest at supra-optimal
temperatures has been established both in the related alga Chlorella vulgaris [18] and in the
distantly related Chlamydomonas reinhardtii [17,77]. However, the nature of the blockage
seems to be different in P. kessleri, since no DNA replication was detected (Figure 1), which
is in contrast to both Chlorella vulgaris and Chlamydomonas reinhardtii, where (at least some)
DNA replication occurred and the cell cycle blockage took place at the level of nuclear
(and cellular) division(s) [17,18,77]. Indeed, it has been established that individual cell
reproduction processes are sensitive to stress in an order opposite to their occurrence in
the cell cycle, with cell division being the most sensitive process [16]. Thus, the observed
behavior may also be caused by the supra-optimal temperature used, and if a lower
temperature is used, DNA replication might not be affected. In the experiments presented,
both supra-optimal temperatures of 39 ◦C and 40 ◦C caused the same blockage of cell
division (Figures 1 and 4), suggesting that the temperature of 40 ◦C is well above the
threshold required to cause the cell cycle blockage. However, the effects of temperature
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are very precise and subtle, so a 1 ◦C variation in temperature can have the quite distinct
effect of only a partial blockage [17,77]. Of the three effects of supra-optimal temperature
treatment, the most striking was the approximately 32-fold overaccumulation of starch
compared to the highest content reached in the control cells, and the approximately 508-fold
increase compared to the initial cell content. The accumulation was very fast, as close to
maximal values were reached within about 24 h at the high light intensity, and within about
36 h at the low light intensity (Figure 3A). At the optimal temperature, the net accumulation
of starch was slower, and reached lower levels at the low light intensity; this phenomenon
was even more pronounced at the supra-optimal temperature (Figure 3). This stresses
the importance of light intensity for starch (over)production, and is consistent with the
established knowledge in the field [38]. The starch overaccumulation at supra-optimal
temperatures was consistent with the previous experiments on the related Chlorella sp.
K [78], Chlorella vulgaris [18] and distantly related Chlamydomonas reinhardtii [17,77]. The
overaccumulation of neutral lipids was delayed by about 16 hours compared with that of
starch (Figure 3). This fits with the two-step production of starch, followed by neutral lipids,
as stress conditions are prolonged [23,24,32,39]. Lipid production also proved to be light-
dependent, as it was about six hours delayed at the low light intensity (Figure 3B). Although
the lipids overaccumulated to about 64 times the initial values, their final cell content was
much lower than that of starch (Figure 3), making starch the predominant component of the
cell. Indeed, cell composition was strikingly affected by the supra-optimal temperatures.
At the high light intensity, the cell volume (Figure 2D) increased about 30-fold, dry matter
(Figure 2C) increased about 19-fold, RNA content more than 8-fold (Figure 2A), and
protein content by about 32-fold (Figure 2B). Together with a massive 508-fold increase
in starch, this made the biomass significantly enriched in starch and proteins. In general,
starch (over)production can be attained either through increasing starch production by
improving growth conditions (high light, high CO2 concentration) [36,37] or by decreasing
starch consumption—mainly by blocking cell reproduction as the biggest starch consumer
under nutrient-limiting conditions [24–26,32,39,41]. Indeed, a blockage of cell division has
emerged as an effective tool to (over)produce starch [79]. Improved starch production by
optimizing growth conditions, combined with decreasing its consumption due to inhibition
of the major consumers, should lead to superior starch (over)accumulation. Rapid and
extensive starch (over)production by supra-optimal temperature treatment was shown
in the green alga Chlamydomonas reinhardtii in both laboratory-scale [17] and pilot-scale
photobioreactors [38]. Compared to Chlamydomonas reinhardtii, P. kessleri grows at lower
light intensities, and is able to reach very high cell densities [70,71]. Together with the
ability to produce significant amounts of neutral lipids via a simple alteration of conditions,
this makes it an excellent organism for algal biotechnology. The experiments presented
here provide a means for the fast and reliable overproduction of starch by increasing
the temperature to a supra-optimal one. Such a treatment is very simple, but a rapid
and controllable increase in temperature, and maintenance of that temperature, might
be complicated at a very large scale. Alternatively, the treatment can be used in closed
pilot-scale reactors [38], where temperature control is more feasible. Such production
would only be justifiable for high-added-value compounds, such as stable isotopically
labeled ones.

The experiments on the combined effects of deuterium and temperature had a dou-
ble rationale: Firstly, from a basic research point of view, it is intriguing to analyze the
combination of deuterium, which increases bond dissociation and activation energies [46],
with increased temperature, which is known to increase kinetic energy and, thus, speed
up general metabolism. Secondly, (over)production of deuterated compounds such as
starch, proteins, and/or neutral lipids is biotechnologically relevant, as these are very
high-added-value products that can be exploited both as biochemical standards and in
stable isotope-labeling experiments [43,52,53]. When starting the experiments, it was not
clear which of the two phenomena would prevail. We assumed that the temperature
increase might decrease the effect of the presence of deuterium, and at the same time that
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the deuterium might prevent the blockage of cell division observed in hydrogenated water
at supra-optimal temperatures. As it turned out, some of our assumptions were confirmed,
while others were not. Cultivation in increasing concentrations of deuterated water showed
a concentration-dependent decrease in growth rates and cell division (Figure 4A,B). Inter-
estingly, although the difference in growth rates between 30 ◦C and 35 ◦C in the control
was negligible (Figure 4A, first panel), the cultivation at 35 ◦C promoted growth in all
deuterated cultures (Figure 4A, second to fourth panels, green circles). This partially con-
firmed the prediction that increased temperature might alleviate the effects of deuterium
on the cells. However, the effect was specific only to growth, and was not reflected in cell
division (Figure 4B, green circles), as the cells remained large (Figure 4C, green circles). This
implies that although the effects of deuterium on metabolism in general can be partially
compensated for by temperature, the deuterium-induced problems with cell division are
either more sensitive or more specific. A further increase in temperature to 39 ◦C inhibited
both cell growth and division (Figure 4A,B, blue squares). The effect of supra-optimal
temperatures was more detrimental to the deuterated cultures than to the controls, sug-
gesting that the alleviating effect of 35 ◦C was replaced with a strictly stress effect. Due to
the combination of the two stresses, the same temperature considered to be supra-optimal
in control cultures might be above this threshold for highly deuterated cultures. Thus,
temperature in deuterated cultures showed aspects of hormesis—a phenomenon where
low concentrations of a compound are beneficial but higher levels cause stress [80,81]. The
significant stress caused to the deuterated cells by the supra-optimal temperatures was
further supported by a rapid decrease in the Fv:Fm ratio in all deuterated cultures after
about 36 h of the experiment (Figure 4D, second to fourth panels, blue squares). This
was in contrast to the control cultures at the same temperatures (Figure 4D, blue squares),
which were not significantly affected. The cultures of P. kessleri showed striking resilience
to the presence of deuterium, as they were not significantly stressed by growth in very
high deuterated water concentrations for more than three days (Figure 4D, yellow and
green lines). Only on the fourth day of cultivation did the cultures at the two highest
deuterated water concentrations (90% and 99%) start to be stressed (Figure 4D, third and
fourth panels). However, the absence of cell division at the higher deuterated water con-
centrations allowed (over)accumulation of starch, although the temperature did not seem
to have a promoting or inhibiting effect in such cultures (Figure 5, compare B–D with
J–L). The combination of supra-optimal temperatures and growth in deuterated water
promoted the accumulation of neutral lipids (Figure 5, panels N–P). These experiments
confirmed that the effect of supra-optimal temperatures is a general phenomenon not
only in different organisms [17,18,77], but also in different growth conditions. If desired,
such treatment can be used to (over)produce deuterated starch and, interestingly, also
deuterated neutral lipids. Due to limitations in maintaining supra-optimal temperatures
and the inhibitively high prices of deuterated water, such treatment is conceivable only at
small scales for the production of stable isotopically labeled compounds [43,52,53]. This is
consistent with the proposed algal production of deuterated sugars and amino acids [58],
proteins [59], chlorophylls [52,60], and carotenoids [52]. Supra-optimal temperature seems
to be a promising tool for a rapid increase in starch (and neutral lipid) content, compared
to the slower effect of nutrient starvation [43]. Furthermore, it offers recovery of other
deuterated cell components.

5. Conclusions

We describe the effects of supra-optimal temperatures on synchronized cultures of the
green alga P. kessleri. Supra-optimal temperatures block DNA replication and cell division,
but do not affect cell growth. Moreover, due to the absence of cell division, starch and
neutral lipids overaccumulate to levels 508-fold and 64-fold those of the initial values in
the daughter cells. This leads to the production of large cells with altered cell composi-
tions, consisting mostly of proteins and starch. We tested whether increased cultivation
temperatures could alleviate the effects of deuterium in heavy water. Temperature showed
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a hormetic effect, as a temperature increase over optimum improved cell growth, but the
supra-optimal temperatures caused extensive stress. The cultures were strikingly resilient
to the stress caused by heavy water, and were able to grow and divide even at 90% D2O,
although they were only able to grow but not divide at 99% D2O. The supra-optimal
temperature treatment, when applied to cultures grown in heavy water, had similar effects
as in normal water, and led to the production of cells with increased starch and neutral
lipid contents. Our results establish new treatments for the overaccumulation of starch
(and proteins) in P. kessleri, and they also prove that such treatment can be used to produce
deuterated starch, proteins, and neutral lipids for biotechnological purposes.
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Parachlorella kessleri—-a novel highly efficient lipid producer. Biotechnol. Bioeng. 2013, 110, 97–107. [CrossRef]

http://doi.org/10.1242/jcs.102.3.469
http://doi.org/10.1093/jxb/ery391
http://doi.org/10.1007/BF02931518
http://doi.org/10.3390/cells8101237
http://www.ncbi.nlm.nih.gov/pubmed/31614608
http://doi.org/10.2216/i0031-8884-43-5-529.1
http://doi.org/10.1007/BF02537412
http://doi.org/10.1016/j.biortech.2013.09.079
http://doi.org/10.1038/srep25731
http://www.ncbi.nlm.nih.gov/pubmed/27180903
http://doi.org/10.1016/j.biortech.2013.06.096
http://www.ncbi.nlm.nih.gov/pubmed/23876655
http://doi.org/10.1016/j.biortech.2012.11.030
http://doi.org/10.1016/j.algal.2018.09.005
http://doi.org/10.1007/s10811-017-1286-0
http://doi.org/10.1007/s11120-013-9930-2
http://www.ncbi.nlm.nih.gov/pubmed/24097049
http://doi.org/10.1016/S1388-1981(03)00069-6
http://doi.org/10.1186/s40529-014-0053-7
http://doi.org/10.3390/biom11060891
http://www.ncbi.nlm.nih.gov/pubmed/34203860
http://doi.org/10.1111/j.1529-8817.1979.tb02984.x
http://doi.org/10.1016/j.biortech.2014.01.135
http://www.ncbi.nlm.nih.gov/pubmed/24583913
http://doi.org/10.1016/j.biochi.2019.09.017
http://doi.org/10.1111/j.1399-3054.1957.tb06973.x
http://doi.org/10.1002/bit.23016
http://www.ncbi.nlm.nih.gov/pubmed/21404251
http://doi.org/10.1016/j.plantsci.2007.03.001
http://doi.org/10.3390/cells10051084
http://doi.org/10.1002/bit.24595


Cells 2021, 10, 1806 18 of 19
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